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Unit-I
COMPLEX VARIABLE

1. 1 Algebraic Preliminaries: We shall recall some of the properties of a complex number.

(i)

(i)

(iif)

(iv)

v)

A complex number is of the form z = a + ib where a and b are real numbers and i is

the imaginary unit defined by i = v/—1, a is called the real part of z and this is written
as R(z) = a, b is called the imaginary part of z and this is written as I(z) = b.

If the two complex numbers a + ib and ¢ + id are equal, thena =cand b = d, i.e,,
the real and the imaginary parts of the first are respectively equal to the real and the
imaginary parts of the second.

Complex numbers are assumed to obey the addition, subtraction, multiplication
Division laws of Algebra. Thus,
(a+ib)+(c+id)=(a+c)+i(b+d)
(a+ib)—(c+id)=(a—c)+i(b—d)
(a+ib)(c +id) = (ac — bd) + i(ad + bc) since i? = —1

(a +ib) B (a+ib)(c —id)
(c+id) (c+id)(c—id)

_(ac+bd>+ _(bc—ad)
-~ \c2 4+ d2 ‘ez v az

Of the two complex numbers a 4+ ib and a — ib, each is said to be the conjugate of

the other. The conjugate of a complex number z is usually written as z. Sometimes z
is also denoted by z*.

If z=(a+ib), thenZ = a — ib.

zZ = (a + ib)(a — ib) = a? + b? which is purely real.

z+z

Also S =a= real part of z = R(2)
z—z

and 5= b = imaginary part of z = I(z)

The complex number a + ib can be represented by a point in a plane referred to a set
of rectangular x and y-axes such that the real part a represents the abscissa and the
imaginary part b represents the ordinate of the point. In this manner, there is a one-to-
one correspondence between the pair of real numbers (a, b) and the single complex
number a + ib. In this case, the xy-plane is called the plane of a complex variable or
the complex plane, the x-axis is called the real axis and the y-axis, the imaginary axis.

Let the polar coordinates of the point (a, b) be (r, 6).
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Then, a = r cos6 and b = r sin@
Sor =va?+b%and 6 = tan‘lg
The number r is called the modulus and 6 is called the amplitude or argument

of the complex number z = a + ib. In symbols, we write

r =|z| = |a + ib| =+ a? + b?

0=ampz=argz= tan‘la

Now z = a + ib = r(cosO + i sinf) = re'®

Yo

X

Figure 1

(vi) From the above polar mode of representation of a complex number, the rules for the
product and quotient of two complex numbers follow immediately.
Thus, z,z, = (a; + ib;)(ay + ib,) = ryef1.1,e'%2 = 1 1,e!(01+62)
Hence, [z,2,| = iy = |z4]. | 2,]
and arg(z1 ,zz) =0, +0, =argz, +argz,
i.e., the modulus of the product is equal to the product of the modulus and the
argument of the product is equal to the sum of the arguments.

z, rmefr

— = =~ pi(61-62)
i0,
Z, Te Ty
A |zl Z
So [-|=—=-—andarg|(—) =6, — 6, = argz, —argz,
Zl |z, Z,

i.e., the modulus of the quotient is the quotient of the modulus and the argument of
the quotient is equal to the difference of the argument of the denominator from that of
the numerator.

(vii) When n is positive integer,

z" = (rei®)" = rnein® = rn(cosnd + i sinnb)
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i.e.,[r(cos@ +isin@)|™ = r"(cosn6 + i sinnf)
Hence (cosf + i sinf)™ = cosnb + i sinnf

which is the De Moivre’s theorem.

1.2. Function of a Complex Variables:

If z=x+ iyand w = u + iv are two complex variables, and if for each value of z in
a certain portion of the complex plane (called also as the domain R of the complex plane)
there corresponds one or more values of w, then w is said to be a function of z and is written
as

w=f(z) = fx+iy) =ulx,y) +ivix,y) (1

where u(x, y)and v(x,y) are real functions of the real variables x and y. Clearly for a given
value of z, the values of x and y are known and thus, one or more values of w are determined
by (1). If for each value of z in R, there is correspondingly only one value of w, then w is
called a single-valued function of z. If there is more than one value of w corresponding to a

given value of z, then w is called a multiple-valued function or many- valued function.

Z
z%+1

1 f . .
For example, w = z2,w = —w= are single valued function of z. The function

w = zY2, w = arg(z) are examples of many valued functions. The first one has three values
for each value of z (except for z = 0) and the second one assumes infinite set of real values
for each value of z other than z = 0.

The complex quantities z and w can be represented on separate complex planes, called
the z-plane and the w-plane respectively. The relation w = f(z) establishes correspondence

between the points (x, y) of the z-plane and the points (u, v) of the w-plane.

- ‘-‘A
YA 7 Planc W — Plane
z=x+1iy w=u+iv
7 w = f(Z)
. >
O Figurc 2 )IX o Figure 3 u
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1.3. Limits: Let w = f(z) denote some functional relationship connecting w with z.

Thenw = f(x + iy) = u(x,y) + i v(x,y) where u and v are real functions of x and
y. As z approaches z,, the limit of f(z) is said to be wy if f(z) can be kept arbitrarily close
to wy, by keeping z sufficiently close to, but different from z,.

i.e., limw = lim f(z) = w,
zZ-2Zg z-2Z

Now let z, = x, + iy,

when z approaches z,, it means that x = x, and y — y,.

Hence limf(z) = lim(u+iv) = lim (u+iv) =uy+iv,
zZ—2Zg z-2Zg ;:;g

Hence J}l_g}o u(x,y) = ugp and J;1_)rgclo v(x,y) = v,.
Yy=Yo Yy=Yo

Note: In the above, when we say that z — z,, it means that x = x, and y = y, in any

order, by any path as shown in figure 4.

YA

3 7x

Figure 4
1.4. Continuity: The idea of continuity is closely connected with the concept of a limit. A

single-valued function w = f(z) is said to be continuous at a point z = z, provided each of

the following conditions is satisfied:
(i) f(z,) exists
(i) Zhﬁr?0 f(z) exists, and
(i) Jim f(2) = f(z0)
Remarks:
1. If f(z) is continuous at every point of a region R, it is said to be continuous throughout
R.
2. w=f(z)=ulx,y)+iv(x,y).If f(2)is continuous at z = z,, then its real and

imaginary parts, i.e., u and v will be continuous functions at z = z,, i.e.,atx = x,and y =
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¥o- Conversely, if u and v are continuous functions at z = z,, then f(z) will be continuous at
Z = Zg.

3. The sums, differences and products of continuous functions are also continuous are also
continuous. The quotient of two continuous functions is continuous except for those values of

z for which the denominator vanishes.

1.5. Continuity of a Function of Two Real Variables:
w=f(z) = f(x+iy)
is a function of the two variables x and y. Hence, to discuss the continuity of f(z), we shall

have to deal with the continuity of a function of two independent variables x and y.

Definition: a function f(x, y) of two real independent variables x and y is said to be
continuous at a point (x,, Vo) if,
(i) f(xo, Vo), the value of f(x, y) at (xo, y,) is finite, and

(i) lim f(x,y) = f(xq, yo) in whatever way x — x, and y = y,

X=Xg
Y=Yo

To illustrate the idea of continuity of a function of two variables given in the following
examples:

EX. 1. Show that f(x,y) = xzziy  is discontinuous at origin, given that £(0,0) = 0.

Solution: Given f(x,y) =

x2+y

If y — 0 firstand thenx — 0

lim lim £Cx, ) = lim lim ——2— = 1im 229 _
ey = ey T T
If x - 0firstand theny — 0
2xy . 2y(0)
i S o) = il ey =iy =0

Let x and y both tend to zero simultaneously along the path y = mx.

2x.mx 2m

2xy .
Then, lim f(x,y) = )i im. 7y 2 5 =lim s = T
xHO x—0

This limit changes its value for different values of m.

2m

—2=1andf0rm=2, 2m :
m

whenm = 1, ol and so on.

Hence hm +y # 0, when x = 0, y = 0 in any manner. So the function is not

continuous at the origin.
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EX. 2. Discuss the continuity of f(x, y) = xi’:y; at the origin, given that £(0,0) = 0.

Solution: Given f(x,y) =

x2+y

If y — O first and then x — 0

2xy? - 2x(0)
hm hmf(x y) = }CILI(I);I_) pranE }Clir(l) oz 0
If x - 0firstand theny = 0
2xy? . 2y%(0)
i /) = Jimlim =5 = lim == =0
Let x and y both tend to zero simultaneously along the path y? = x.
2xy? 2 y*
Then, llm flx,y) = llmﬁ—;l_rgzi =1+0

y—»o y=0
Hence, the function is discontinuous at the origin.

1.6. Derivative of a Function of a Complex Variable: For a real function of a single real
variable say, y = f(x), the derivative of y with Respect to x is defined as

dy . fx+Ax)—f(x)
— = lim
dx Ax—o0 Ax

Hence Ax can approach zero in only one way.

Let w = f(z) be a single-valued function of z. Then, the derivative of w is defined to

be
dw f(Z+AZ) - f(2)
= = 1
=f'(2) = A
provided the above limit exists and is the same, in whatever manner Az approaches zero.
v
N Ax
A Q z+ Az
Ay Ay
zP B
Ax
o Figure & >}L

We can show by a figure that Az can approach zero in several ways. P is the point in

the z-plane corresponding to z=x+4+1iy. Q is the point z + Az. Az = Ax + i Ay, where
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Ax, Ay are small increments in x and y respectively. As Az —» 0, i.e.,Ax,Ayalso = 0 and
the point Q approaches to P. Now @Q can approach P along the rectilinear path QAP on which
first Ax and then Ay approach zero or Q may approach P along the rectilinear path QBP on
which first Ay and then Ax approach zero. More generally, Q can approach P along infinitely
many paths, i.e., Az approaches zero in several ways.

Hence, in the definition of f'(z), the derivative of f(2), it is necessary that the limit

of the difference quotient

. _ fz+A2)-f(2)
i.e., lim
Az—0 Az

should be the same, no matter how Az approaches zero. When this limit is unique, the

function is said to be differentiable. This severe restriction narrows down greatly the class of

functions of a complex variable that possess derivatives.
Thus we find that ‘;—"ZV depends not only upon z but also upon the manner in which Az
approaches zero. To illustrate this, consider the simple case,

w=f(z)=x—1iy

Then
fE+D82) —f(2) [(x+Ax)—i(y+An]-(x—iy)
Az B Ax + i Ay
_Ax—iAy
C Ax+iAy
A (x.y+4Y)
& Q
Pxy) & any)
0 Figurc 6 | X

Now, let Az — 0 is such a way that first Ay and then Ax approach zero, i.e., Q
approaches P along the horizontal line. Then
o Ax—iAy o Ax
A A Fidy  AMar !
But, suppose Q approaches P along the vertical line so that first Ax and then Ay

approach zero. Then
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. Ax—iAy . —iAy
im — = lim — =-1
Az-0Ax + 1Ay Ay-o0 i Ay

For other paths of approach of Q towards P, we can get as many distinct values of the

above limit as we please. We therefore say that f(z) = x — i y possesses no derivative.

Definition: If a single-valued function w = f(z) possesses a derivative at z = z, and at
every point in some neighbourhood of z,, then f(z) is said to be analytic at z, and z, is
called a regular point of the function. If f(z) is analytic at every point of a region R, then we
say that f(z)is analytic in R. A point at which an analytic function ceases to have a derivative

is called a singular point. An analytic function is also referred to as regular or holomorphic.

1.7. Conditions under which w = f(z)is analytic:

Let w = f(z) be an analytic function of a complex variable in a region R. Then
f'(z) exists at every point in R. Let us now find the conditions for the existence of the
derivative of f(z) ata point z.

Let z=x+iyandw=f(z) =f(x+iy)=ulx,y)+iv(x,y)
where u and v are functions of x and y. Let Ax and Ay be the increments in x and y
respectively and let Az be the corresponding increment in z

Thenz + Az = (x + Ax) + i(y + Ay)

Hence Az = Ax + i Ay

Also f(z+ Az) = u(x + Ax,y + Ay) + i v(x + Ax, y + Ay)

f(z+Az)—f(z) _ [u(x+Ax,y+Ay)+iv(x+Ax,y+Ay)]-[u(x,y)+i v(x,y)]
Az - Ax+i Ay

Hence

As Az — 0, we have Ax — 0 and Ay — 0.
Hence by definition,

f(z+A4z) - f(2)

e =,

Az
, _[ulx +Ax,y + Ay) +iv(x + Ax,y + Ay)] — [ulx, y) +iv(x, y)]
f'(@) = lim, Ax +id L
Ay—0 y

If f(2) is analytic, f'(z) must have a unique value, in whatever manner Az — 0. Now
let Az — 0 in such a way that first Ay and then Ax — 0. Then from (1),
[u(x + Ax,y) + i v(x + Ax,y)] — [ulx,y) + i v(x, y)]

f'z) = Al)icr_r)lo Ax
. fulx +Ax,y) —ulx, )] +i [v(x + Ax, y) — v(x, y)]
heof1e) = fim, Ax
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lim

Coulx+Ax,y) —ulx,y) . vlx+Ax,y) —v(x,y)
im +1

Ax—0 Ax Ax—0 Ax
_Ou N dv )
“ox " lox )

(by definition of partial derivatives)
Since f'(z) is to be unique, it is necessary that the partial derivatives Z_Z and Z—Z must

exists at the point (x, y).
Secondly, let Az — 0 such that Ax — 0 first and then Ay — 0. Then from (1)
[ulx,y + Ay) + iv(x,y + Ay)] — [ulx,y) + i v(x, y)]

ro=gm,

i Ay
e g Gy +Ay) —ulo )]+ i[v(xy + Ay) —v(x,y)]
Ll f12) = Jim, By

ulx,y +Ay) —ulx,y) . vix,y+Ay)—v(xy)
+ lim

= a0 i Ay Ay 50 Ay
lou OJdv Jdv  Odu
= oo =i 3

du v -
Hence % and % must exist at (x, y).

Now, if the derivative f'(z) exists, it is necessary that the two expressions (2) and (3)
which we have derived for it must be the same. Hence equating these expressions, we have
dJu dv Jdv  Odu

I + La = @ —1 @
Equating real and imaginary parts, we get
Ju Jv
dx dy
and @ = _a_u (5)
0x dy

4)

L.e., Uy =1, and v, = —u,

The equations (4) and (5) are called Cauchy-Riemann differential equations.

Note: The Cauchy-Riemann equations are only the necessary conditions for the function
f(z) = u+iv to be differentiable i.e., if the function is differentiable, then it must satisfy
these equations. But the converse is not necessarily true. A function may satisfy these
equations at a point and yet it may not be differentiable at that point.

Hence the conditions expressed by Cauchy-Riemann equations (C-R equations) are

only necessary but not sufficient for a function to be analytic.
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1.8. Sufficient Conditions for f(z) to be Analytic: We shall now prove the following
theorem

The single valued continuous function w = f(z) = u + i v analytic in a region R, if

aua_uav

the four partial derivatives 3 3y ox

and z—; exist, are continuous and satisfy the Cauchy-

Riemann equations at each point inR.
Proof: Letw = f(z) = u(x,y) + i v(x,y)
It is now given that
du OJv Jv Ju
oy M=, (1)
Also these partial derivatives are continuous.
Then Au = u(x + Ax,y + Ay) —u(x,y)
= [u(x + Ax,y + Ay) — u(x + Ax, y)] + [u(x + Ax, y) — u(x, y)]
= Ay.iu(x + Ax,y + 6,.Ay) + Ax.iu(x + 6,.Ax,y)
dy 0x
Using the first Mean Value Theorem, 6, and 6, being both positive and less than 1.

Now, at the point (x, y) the derivatives Z—Z and Z—; are continuous.

Hence the above expression Au may be written as

Au = A [au+A]+A [auu] 2
u = AX. ax 1 y ay 2 ()

where 4, and A, both tend to zero as |Az| —» 0

Similarly, using the result that the derivatives z—z and z—; are continuous, we get

dv dav
Av = Ax. [a + ,ul] + Ay. [@ + ,uz] 3)
where u,; and u, both tend to zero as |Az| - 0

Now Aw = Au +i Av

ou Ju ] dv dav
= {Ax. [a + Al] + Ay. [@ + /12]} + l{Ax. ™ + /,tl] + Ay. [E + ,uz]}
du Jv du Jv
=Ax<a+la>+Ay(@+L@>+81Ax+ssz (4)

where & = A, +ip;and &, = A, +ip, and e, = 0as |[Az| - 0.

In (4), apply the conditions (1) i.e., put

10



Complex Analysis

ou _ v and &Y av ou
ox oy " ox T Tay

Then Aw = A <6u+ av>+A ( av+,au)+ Ax + &, A
en Aw = Ax (- +i - Y 5 tig,) tadx+eady

= (A +'A)au+'(A +'A)av+ Ax + &, A
= (Ax lyax [ (Ax lyax & Ax + & Ay

=(A +'A)[au+'av]+ Ax + &, A
= (Ax lyax lax & Ax + & Ay

H Aw_au+,6v+ Ax+ Ay c
ence Az 0x 0x SIA #2770, Az ()

Now |Ax| < |Az| and |Ay| < |Az|

Ax Ay
and so |—| <1and —| <1
Az

Also g, &, = 0 as |Az| = 0
So proceeding to the limit as Az — 0, (5) gives
dw Jdu  Jdv
az " ox ' 'ox
i.e.,f'(z) exists and is equal to Z—:‘ +1 Z—Z
We shall put the above discussion in 4.7 and 4.8 relating to differentiability in the
form of a theorem as follows.

If u and v are real single-valued functions of x and y which, with their four first

u au av
8 ax

order partial derlvatlves(
Cauchy-Riemann equations
Uy = Uy and vy = —U,
are both necessary and sufficient condition, so that f(z) = u + i v may be analytic. The
derivative of f(z) is then given by either of the expressions
dav du

v
f(Z)——+l—orf(z)——— 5

1.9. Derive the Cauchy-Riemann equations if f(z) is expressed in polar coordinates.
Solution: Let f(z) = u(r,6) + i v(r,0) in polar coordinates.

z=x+iy =1r(cosf +isinf) =re'?.
Let Ar and A6 be the increments in r and 6 respectively and let Az be the

corresponding increment in z.

Az = A(r e'f)

and —) are continuous throughout a region R, then the

11
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fz+Az) =ulr+Ar,0 + AB) + i v(r + Ar, 6 + A6)
f(z+Az) — f(z) =[ulr + Ar,0 + AB) + i v(r + Ar, 0 + AO)] — [u(r,0) +iv(r,0)]
f(z+A4z) - f(2)

Hence

Az
3 [u(r + Ar,0 + A9) + i v(r + Ar,0 + AB)] — [u(r,0) + i v(r, 0)]
B Az
3 [u(r + Ar,0 + A0) + i v(r + Ar, 0 + AB)] — [u(r,0) + i v(r,0)]
B A(r ei)
By definition, f'(z) = AlZir_)n0 flzt AAZ; — /(@)
_ [u(r + Ar, 6 + A8) + i v(r + Ar, 6 + AB)] — [u(r,0) + i v(r,6)]
= 2250 A(r ) (1)

If £ (2) is analytic, f'(z) must have a unique value in whatever manner Az — 0.
First let Az — 0 along a radius vector through the origin.
i.e., keep 8 constant.
Then Az = A(r eig) = e¥Ar.
As Az —» 0, Ar - 0. So (1) gives
[u(r + Ar,0) + iv(r + Ar,0)] — [u(r,0) + i v(r,0)]

f'@=jm,

el Ar
_ it u(r+Ar,0) —u(r,0)  v(r+Ar,0) —v(r,0)
I it Ar +i Ar
o ulr+Ar,0)—u(r,8)  v(r+Ar,0)—v(r,0)
= e~ | lim +i lim
Ar—0 Ar AT—0 Ar
i (6u ny 617) @
- € or ! or )

Secondly, keep r constant.
Then Az = A(r ef) = ire’® A
As Az - 0, A6 — 0. So (1) gives

[u(r,0 + A8) + i v(r,0 + A8)] — [u(r,0) +iv(r,0)]
iret® A

1) = fim,

1 y [u(r,8 + A8) +iv(r,0 + AG)] — [u(r,0) +iv(r,0)]

~ Tei® ad5o iAG
1 [u(,60+240)—u(r,08)]+i[v(r,6 +A0) — v(r,0)]
=—— lim ,
retf A6-o0 iAO

12



Complex Analysis

' A10—>0 AG AB—0 AB

1 o u(r,80+A40) —u(r,0) - v(r,0+A8) —v(r,0)
=m —i lim + lim

1 _w( ,6u+6v> 3
¢ 0" a0 )

Since f(z) is analytic, f'(z) must have a unique value in whatever manner Az — 0.
Then From (2) and (3), we get

ou dv 17/ Ou Ov
o =r (5" )
Equating on both sides real and imaginary parts, we get
Ju 10dv
or-ros M
v 10u
and =728 (5)

These equations are the Cauchy-Riemann equations if f(z) is expressed in polar
coordinates.
Note: Differentiating (4) partially with respect to r, we get
0%u 10v 1 0%v

ar2 = 1296 roroe ©)
Differentiating (5) partially with respect to 8, we get
0’u 0%v ;
262~ ' 8 or @
Thus using (4), (6) and (7), we get
82u+16u+162u_0 _ 0’v _ 0%*v
orz Tror rzoez - \*"“aro0 " agar

EX. 3. Show that w = f(z) = Z = x — i y is not analytic anywhere in the complex plane.
Solution: Let w=u+iv=x—1iy.

Hereu =xandv = —y

Th 6u_16u_06v_0 dav_ 1
N ax T "oy ox an dy
ou v Ju Ov
Hence — = —— but — # —

ady 0x dx 0y

13
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The second of the Cauchy-Riemann equations is satisfied everywhere, but not so the
first. So w = Z is not analytic anywhere in the complex plane.

EX. 4. Show that w = f(z) = z = x + i y is analytic anywhere in the complex plane.
Solution: Letw =u+iv=x+1iy.

Hereu=xandv =y

Th Ou_lau_oav_o dav_l
MNox ™ "oy “oax ey T
u v ou ov . . ]
Hence 3 = ox and == oy at all points in the complex plane. The C-R equations

are identically satisfied. Further these four partial derivatives are continuous.

Hence w = f(z) = zis analytic anywhere in the complex plane.

EX. 5. Show that w = f(z) = e? is analytic everywhere in the complex plane and find f'(z).
Solution: Letw = f(2) = e? = e**'Y = e*(cosy + i siny) = u + iv

Here u = e* cosy and v = e” siny.

o ou . 0v v
Then il cosy,@ = —e” siny,=— = e” siny and @ = e* cosy
ou v du OJv
Clearly @ = ~ox but ax = @

The C-R equations are identically satisfied. Also the partial derivatives are
continuous.
Hence f'(z) exists at all points of the z plane i.e., f(z) is analytic everywhere.
du dv

f,(Z):a-Fla

= e* cosy +ie* siny
= e*(cosy + i siny)

= eXplV = pX+y — pZ

EX. 6. Show that w = f(z) = zZ is differentiable but not analytic at the point z = 0.
Solution: Letw = f(z) =zz=(x+iy)(x—iy)=x*+y* =u+iv
Hereu = x?>+y?andv =0

du du ov ov
Thena = 2x,5 = Zy,£ =0 and 5 =0

du dv Ju ov
Nowa = 5onlywhen x =0 and T —aonlywheny =0.

14



Complex Analysis

Hence the C-R equations are satisfied only when both x and y are zero. i.e., they are
satisfied only at the origin. Hence f(z) has a derivative at z = 0.
But the C-R equations are not satisfied for z # 0. Hence there is no neighbourhood

about z = 0 in which the function is differentiable. Hence it is not analytic at z = 0.

EX. 7. Test whether w = f(z) = z3 is analytic or not.
Solution: Givenw = f(z) = z3 = (x + iy)3 = x3 + 3ix?y + 3i%xy? + i3y3
=3 -3xy?) +iBx’y —y>) =u+iv
Here u = x3 — 3xy? and v = 3x%y — y3
ou _ 3,2 _ 3,20 _ _ v _ W _ 3,2 _ 32
Then Pl 3x% —3y oy 6xy, Pl 6xy and 3y = 3x* —3y

ou _
ax

2 2 2
Clearly, % and ﬁ = ——for all values of x and y.

The C-R equations are identically satisfied. Further these four partial derivatives are

continuous.

Hence w = f(z) = z3is analytic.

EX. 8. Verify whether w = sinx cos hy + i cosx sin hy is analytic or not.
Solution: Given w = sinx cos hy + i cosx sinhy = u + iv

Here u = sinx cos hy and v = cosx sin hy

du ou , , ov , , ov
Then o = cosx coshy, 3, = Sinx sin hy, o, = —Sinx sin hy and 3, — cosx coshy

u v ou v
Clearly, %=y and 3y = ox for all values of x and y.
The C-R equations are identically satisfied. Further these four partial derivatives are
continuous.

Hence w = sinx cos hy + i cosx sin hy is analytic.

EX. 9. State whether sin(x — iy) is analytic or not.
Solution: Given w = sin(x — iy) = sinx cos iy — cosx sin iy

= sinx cos hy — i cosx sinhy = u +iv

Here u = sinx cos hy and v = —cosx sin hy
Then ™ _ cosx coshy,a—u = sinx sin hy,a—v = sinx sin hy and (’)_v
0x dy dx dy
= —cosx coshy
Clearly 6_u * 6_17 an 6_u * _6_1]
dx 0 dy 0x

15
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The C-R equations are not satisfied.

Hence w = sin(x — iy) is not analytic.

EX. 10. If f(2z) = u + iv is analytic, then v + iuis analytic or not.
Solution: Given f(z) = u + iv is analytic

Then u and v are satisfy C-R equations

du OJv
e.,a = E (1)
ou v
and @ = —a (2)

If v + iu is analytic, we must have

av_au dav_ Ju
dx 0y an dy  ox
a_u_av

i.e., we must have ou_ _9v and
U ox oy oy  ox’

But these are contrary to (1) and (2). So v + iu is not analytic.

EX. 11. If f(2z) = u + iv is analytic function, find the condition under which v + iu will be
analytic.
Solution: Given f(z) = u + iv is analytic

Then u and v are satisfy C-R equations

e e)
"0x dy
Ju Jav
and Fie —a( )
If v + iu is analytic, we must have
A 3)
dx 0y
an E)_v = _(’)_u 4)
dy 0x
Combining (1) and (4), we have
Ju Ju Ju
%= i.e.,azo (5)
Combining (2) and (3), we have
Ju  Odu_  Ou _0 )

@ = — @ lL.e., @
From (5) and (6) it is clear that u is a constant, independent of x and y.
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.. v av
Similarly, we can prove that P 0 and Pl 0

i.e.,v is a constant, independent of x and y.

So the required conditions are u and v must be both constants.

EX. 12. (a) If u + iv as well as u — iv are analytic. What can you say about u and v.

(b) If both f(z)and f(z) are analytic functions, show that f(z) is a constant.
Solution: (a) since f(z) = u + iv is analytic
Then u and v are satisfy C-R equations
Ju OJv

€ oy = @ (D
Ju Jdv
and @ =3 (2)
Since f(z) = u — iv is also analytic.
Then u and v are satisfy C-R equations
i.e. a_u = _a_v 3)
"0x dy
and a_u = @ 4
dy Ox
Combining (1) and (3), we have
T LR O
Combining (2) and (4), we have
du du  Jdu
= =0 (6)

@ = —@ i. e.,@
From (5) and (6) it is clear that u is a constant, independent of x and y.
Similarly, we can prove that Z—; = 0 and z—; =0
i.e., v is a constant, independent of x and y.
So the required conditions are u and v must be both constants.
(b) Let f(z) =u+iv. Then f(z) =u —iv
It is given that f(z)and f(z) are analytic functions, so u and v must be both

constants (refer (a)).

Therefore f(z) is a constant.

17
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EX. 13. If u + iv is analytic, show that v — iu and - v + iu are also analytic.
Solution: We know that if u + iv is analytic, k(u + iv) is also analytic, where k is a
constant.

Hence (i) taking k = i we have i(u + iv) = —v + iu is also analytic

(ii) taking k = —i we have —i(u + iv) = v — iu is also analytic

EX. 14. Show that w = f(z) = z" is analytic for positive integral values of n and find f'(z).
Solution: Using polar coordinates, let f(z) = u(r,8) +i v(r,0) and let z = re®®.
Then f(z) =u(r,0) +iv(r,0)
=z" = (re?)"
= r"(cos nf + isinnfh)

Here u = r™cos n8 and v = r"sin n0

Th au_ e Hau_ " Hav_ "15in g dav
en ar—nr cosn 30 = nr*sinn ,ar—nr sinn@ an 50
=nr"cos né

Ju 10dv v 10u
Clearly o =

——and — = ———.
rdo an ar rdf
Hence the C-R equations are satisfied. Further the partial derivatives are continuous.
So f(z) = z™ is analytic.
() — p—if (0% 4 :9Y\ _ —if (. .n-1 =1
Now f'(z) = e (8r+lar)_e (nr™*~1cosnB + i nr"* 1lsin no)

= e nyr"~1(cosnb + i sin nh)

= g 0 pyn-1pind

. n\n—1
= nrh—lei(n-1)6 — n(relﬂ)

=nz"1

EX. 15. Show that w = f(z) = logz is analytic everywhere in the complex plane except at

the origin and that its derivative is i

Solution: Using polar coordinates, let f(z) = u(r,8) +iv(r,0) and let z = re®®.
Then f(z) = u(r,0) + i v(r,0) = logz
= log(re®) = logr + i@
Here u = logrand v =0

Th (')u_lau_oav_o dav_1
Ny Tree” oar "M ee
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au_lav av_ 10u

— =-"_and — = ,
or radb an or rdo
Hence the C-R equations are satisfied. Further the partial derivatives are continuous at

Clearly

all point except when r = 0, i.e., except at the origin.
So f(z) = logz is analytic everywhere except at the origin.

Now f'(z) = e (6_u+ l@) =710 (1) = 1. _1
or or r ret z

EX. 16. Prove that the function f(z) where
x3A+i)—-y3(1-1i)
x% +y?

f(z) = ,whenz #0,f(0) =0

is continuous at z = 0. Prove also that the C-R equations are satisfied by f(z) at z = 0 and

yet f'(z) does not exist at z = 0.

31 +i)—y3(1—-1i)
x%+y?

Solution: Given that f(z) = ,whenz # 0

2 +i)—y3(1-1i)

) =

2 2
=0 xc+y
3+
=lim¥=0

x—0 X
BA+i)—-y3(1-i
lim f(z) = lim ( 2 v ( )
z—0 x—0 X -|-y2
y—0
—y3(1 -
P ) S
y-0 y

Also f(0) = 0 be given.
Hence
lim £(2) = £(0)

When x — 0 first and then y — 0 and also When y — 0 first and then x = 0 .
Let x and y both tend to zero simultaneously along the path y = mx™.
For n = 1, this is a straight line and for n = 2, 3, ..., we will get different curves
passing through the points (x,y) and the origin. Then

£i_l)‘%f(z) _ lim 31 +i)—y3(1-10)

y=mx™ x2 + y2
x—0

x3(1+0)— (mx™3(1 —1i)
x—I;% x2 4+ (mx™)?
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xX3[1+i—m3x3"3(1 - )]

= x%[1+ m2xn-2]
x4+ i—m3x33(1 - 0)]
= lim
x—0 1+ m?2x2n-2
Cox[1+i-m3G )3 - 1)
= lim =0
x-0 1+ m?(xn1)2

(because whenn > 1,n — 1 is positive and lirr(l)x"‘l =0)
xX—
When n = 1 the above limit

Cox[1+i-m3-1)]
= lim =
x—0 1+ m?

Hence lir% f(z) = £(0) in whatever manner z — 0.
Z—

0

Therefore f(z) is continuous at the origin.

x3__y3 .X34'y3

Now f(z) = 1y +i X2ty =u(x,y)+iv(xy)
X3 —y3 X3 +y3
Here u(x,y) = mand v(x,y) = 1 y7
Since £(0) = 0,u(0,0) = 0 and v(0,0) = 0.
Now at origin
ou . u(x,0)—u(0,0)
— = lim
dx x-0 X
X3
= llI‘l’l—3 =1
x—-0X
ou  u(0,y)—u(0,0)
— = lim
dy y-0 y
3
= limi3 =-1
y=0 y
v v(x,0) — v(0,0)
0x  x-0 x
x3
=1Hn—§::1
x-0 X
ov . v(0,y)—v(0,0)
— = lim
ay y—-0 y
3
::923552:1

Hence at origin,
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Ju OJv dv Ju
Pl @ and Froia @
So the C-R equations are satisfied at the origin.
Now, by the definition

. f(2)
lim

f (0) - £1_I)I(l) z-0 Z
A+ iD)—-y3(1-1i)

lim -

-0 (x2+y?)(x+iy)

Let y = 0 first and then x — 0.

f@) - £0)
iGN

BA+D) —y3(1— i)

1A =1
f(0) yl—r% x2+y?)(x+iy)
X—
x3(1+1i
= m—( 3 l)=1+l
x—0 X
If x - 0 firstand theny — 0.
B+ -y3Q-i
£(0) = lim AI+D)—-y*(1-10)

Gy (i)

xX—
y—-

= lim —
y-0 ly l

Generally when z — 0 along the path y = mx,

vy XA+ —-y3(1-1)
f (0) - yl;rrl;llx (XZ + yZ) (x +1i )’)

x—-0

x3(1+0) - (mx)3(1-1i)

31— —-(1-0)

P (x2 + m2x2) (x + i mx)
A+ -m*(1-10)
S (1+m2) (A +im)

Complex Analysis

i+1

This assumes different values, as m varies, f'(z) has no unique value at origin, i.e.,

f(z) is not differentiable at that point.

Hence we find that even at a point, if f(z) is continuous and satisfies the C-R

equations, the function need not be differentiable.

EX. 17. Show that the function f(z) = /|xy] is not regular at the origin, although C-R

equations are satisfied.
Solution: Let f(z) = +/|xy| =u +iv
Hereu = \/|xylandv =0
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Now at origin
ou . u(x,0)—u(0,0)
— = lim
Jdx x-0 X
0-0
= lim =0
x-0 X
ou . u(0,y)—u(0,0)
— = lim
dy y-0 y
0-0
=lim——=20
y=0 y
ov . v(x,0)—v(0,0)
— = lim
dx  x-0 x
0-0
= lim =0
x-0 X
ov . v(0,y)—v(0,0)
— = lim
oy  y-0 y
0-0
=lim——=0
y=0 y

1 lau_av dav_ ou
earyax_aya“ ox 0y

So the C-R equations are satisfied at the origin.
Now, by definition

o) = i/ DO _ SO

z-0 Z

Ayl
= lim -
z-0x + iy

If z — 0 along the line y = mx, we get

£(0) = lim Jhemxl Jiml _ JlIml

x—>ox+ imx x—>01+lm 1+im

Now this limit is not unique since it depends on m therefore f’(0) does not exist.
Hence the function f(z) = /|xy]| is not regular at the origin, although C-R equations
are satisfied.

1. 10. Differentiation Formulas: We have already defined the derivative of w = f(z) to be

dw _ fz+Az)-f(2)

=@ = lim Az

This definition is identical in form to that of the derivative of a function of a real

variable. Hence the fundamental formulas for differentiation in the domain of complex
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numbers are the same as those in the case of real variables. Thus we have the following

formulas:

(0 If k is a complex constant, then% (k) =0.
(i) If k is a complex constant and w is a differentiable function,:—z (kw) =k Z—‘:.

(ii))  1f wy(2) and w,(2) are two differentiable functions, then:—z (wy Fwy) =

dwq — dw,

dz dz ’
i 4 — . w2 dw,
(iv) — (wy.wy) = wy. T we—
() () o
dz \w, w3
(vi)  If wis a function of w, (z), & = & ¥
dz dw,; dz

(vii)  If n is a positive integer,% (z™) = n.z™"1. This can be extended to the case

when n is a negative integer or any fraction.

EX. 18. Find where the functionw = f(z) = i ceases to be analytic.

Solution: Giventhatw = f(z) = i
daw d (1)_ 1 40
dz dz\z) ZZLfZ

Forz =0, ‘Z—VZV does not exist. So, w is analytic everywhere except at the point z = 0

which is singular point of f(z).

EX. 19. Show that an analytic function with constant real part is constant and an analytic
function with constant modulus is also constant.
Solution: Letw = f(z) = u + i v be an analytic function.

(@) Letu(x,y) = a constant = ¢,
Jdu Ju
Thena—Oanda— 0

Since w is analytic, the C-R equations are satisfied.

ov Ju v ou
Thereforea == 0 and£ === 0

Since Z—Z = 0 and Z—; = 0, it is clear that v is independent of x and y.
i.e.,v(x,y) = aconstant = c,

Hencew = f(z) =u+iv=c; +ic, =aconstant
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0 1f(@)| = |lu+iv| =Vu?+ v? = a constant
i.e.,u? + v? = constant = ¢ (1)

Differentiating (1) partially with respect to x and y, we get

Zua—u+2v@—0and2ua—+2va—v 0
0x 0x dy dy
] Ju av du dv
i.e.,u Ix +va—0andu@+v@ 0
Using the C-R equations , we get
Jdu v Ju v
ua+va—0andva—ua 0

The determinant of the coefficients of z—z and Z—z of the above two equations is
N L 2y — _
_|v —u|_ (u® +v%) =—c

and this is not equal to zero
Hence the solutions of the above two equations are

Jdu v
a— =0 and a— =0
) du OJv Ju av
Since ™ = @ and @ = —a,we have
Ju v
@ =0and — ay =0

Therefore both u and v are independent of x and y.
u(x,y) =aandv(x,y) =b

Hencew = f(z) =u+iv =a+ib = aconstant.

EX. 20. Show that an analytic function with constant argument is argument.

Solution: Let w = f(z) = u + i v be analytic function and 6 its argument.
We know that tan = 5

As 0 is constant, tan@ is also constant.

Therefore E = constatnt = k, k is real

Therefore v = ku (D

Differentiating (1) partially with respect to x and y, we get
v I Ju )
ox  Ox (2)

24



Complex Analysis

v Ju

and @ = k@ 3)
But u and v are C — R equations, i. e.,a—u = a_v 4)
dx Jdy
and a_u = _a_v (5)
dy 0x
putting (3) in (4), we get
ou = ka—u = —ka—v using (5)
0x dy d0x
= —k. ka—u using (2)
d0x

Ju
ie., 1+k¥»)—=0
0x

2 au_
1+k“#0,s0o—=0
0x

~ u is independent of x (6)
. ou . v _
Putting P 0in (2), we get Pl 0
. v _ . a_u _
Putting Fo 0 in (5), we get oy 0
~ u is independent of y (7
From (6) and (7) we have u is a constant, independent of x and y.
Since v = ku

Therefore v is also a constant, independent of x and y.

Therefore w = f(z) = u + i v = a constant.

1.11. Properties of Analytic Functions:
Property 1. Both the real part and the imaginary part of any analytic function satisfy
Laplace’s equation

0’p 0%¢

—4+—=0

dx?  0y?
Proof: Let f(z) = u + i v be analytic in some domain of the z-plane.

Then u and v satisfy the C-R equations

du OJv

9% " ay ¢y
du v

and E = —a (2)
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Differentiating (1) with respect to x and (2) with respect to y partially, we get

6(6u>_6(6v> da(au)_a( av)
ax \ax) ~ ax \ay) " ay\ay) T oy \ " ax

. 0%u 0% 3

L€ 5x2 T dxay (3)
q 0°u  9%v A

M 5y2 T T yax )

Adding (3) and (4), we get
0%u N 0°u  9*v 9%
0x2  dy? 9dxdy 0yox

0%u N 0’u 0 & (s 0’v 0%
“oxz oy T SINCE Gxay ~ ayox
Similarly we can show that
0%v  0%v
ﬁ + a—yz =0 (6)
(5) and (6) shows that u and v satsfy the Laplace’s equation
0’9 0%¢
ﬁ + a—yz =0 (7)

which is Laplace’s partial differential equation in the two independent variables x and y.
This equation occurs frequently in mathematical physics. It is satisfied by the potential at a
point not occupied by matter in a two-dimensional gravitational field. It is also satisfied by
the velocity potential and stream function of two-dimensional irrotational flow of an
incompressible non-viscous fluid.

Note: In proving results (5) and (6), it has assumed that the second order partial derivatives
of u and v with respect to x and y all exist and further are continuous.

Any function which possesses continuous second order partial derivatives and which
satisfies Laplace’s equation is called a harmonic function. Two harmonic functions, u and v
which are such that u + i v is an analytic function are called conjugate harmonic functions.

The importance of analytic function of a complex variable is that such a function
furnishes us with distinct solutions of Laplace’s equation. It is this connection of analytic
function with Laplace’s equation that has given a great importance to the theory of functions
of a complex variable in applied mathematics.

The equation (7) is written as V2@ = 0, where
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V2 is called the Laplacian operator.

Property 2. Ifw = f(z) = u + i v is an analytic function, the curves of the family u(x,y) =
constant = ¢, cut orthogonally the curves of the family v(x,y) = constant = c,.
Proof: Given that w = f(z) = u + i v is an analytic function

Then u and v are satisfy C-R equations

du OJv
ox 3y €y
Ju av
and @ = —a (2)

Suppose u(x,y) = c; is the equation of the family of curves for different values of c;.
Similarly, v(x,y) = c, is the equation of the family of curves for different values of c,.

Since u(x, y) = c,, by the total differentiation,

du =L ax+ 2
T Ty
H du_6u+6u dy_o_ B
ence dx = Ox ay .dx =susiceu = ¢4
Ju
dy (ﬁ)
So E = - (a_u> (3)
dy
This is the slope of the general curve of the u-family.
Similarly for the v —family,
(52)
N @
“ (&)
dy
Using (1) and (2), (4) can be written as
(#)
dy _ \oy
dx (0u
(5)

The product of the slopes of the two families is
ou (0_u>
(%) ay) _

X —w==-1.
(%)
dy dx

Hence the curves cut each other orthogonally. The two families are said to be the

orthogonal trajectories of one another.
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92 92 92
ax2 Ty~ Yazaz

Proof: Let z = x + iy and Z = x — iy so that

Result 1. To prove that

z+z z—Z i(z—2)

X = andy = =

2 21 2
.. .. Ox 1 o0x oy I oy
ThlSImphesg_E_a_Z_'E__E__a_Z_

Let f = f(x,y). Then f = f(z, 2)

We have
of _0fox 0oy
0z 0x0dz 0yoz
1/0f Of
=2 13)
of _0fox 0oy
0z 0x0z 0yoz
1.0 0
=z(%+"%)
Now o°f =i(g>
0z0z 0z\0zZ

_1(6 _6><6+_6>
4 \0x lay 0x layf
1 62+62
~ 4\0x2 " 0y? f
02 02 02
“ax2 T ay2 = 45207

Result 2. If f(z) is a regular function of z; Prove that

9% 92 s — a2
2 62 62

Proof: Recall that 32 + 37 = 46262‘

0?2 02 92
= (WJra_yZ) If@)* = 4o 5 f@Df (@D as 1zI? =227

= oo rr @)

0 i
=4[ (2]
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= 4f"(2)f"(2) = 4If' (@)I?

(since f(z) is treated as constant in differentiating with respect to z)

Result 3. If w = f(z) is a regular function of z such that f'(z) # 0. Prove that

02 92
(ﬁ-'_a_;/z) log |f (Z)l =0
If |f'(2)] is the product of a function of x and function of y, then show that f'(z) =

e®Z*+BZ+Y where « is the real and B,y are complex constants.
02 92 02

+—=4
d0x?  dy? 020z

02 02 02
= (@ +6_yz> log If'(2)| = 40262‘ log If'(2)]

Proof: Recall that

O 1og If ()P
2" log If'(2)
2

0
22— log{f D' (D} as |2 = 27

=2

0 02
= log{f' (D} + 25— log{f' ()}

B a f”(Z) a f”(Z_)
= Za_f{f’(z)}+ 2£{f'<z—>}

=0+0=0
It follows from the fact that f(z) is treated as constant in differentiation with respect to z.
92 02
Hence (ﬁ + a—yz> logIf'(2)| =0 (D
Let |f'(2)| = 0(x). ¥ ()

From (1),

02 02
<@ +W> log (9(x). () =0

62 2

0
2 [log @(x) + log Y(y) ] +to3 377 > [log @(x) + log Y(y) ] =

2 2

0
W[IOg ®(x)]+ 377 sllogy()]=0

2 2

d
5[109 ®(x)]+ o sllogy(y)]1=0

29



Complex Analysis

d? d’
S llog 0(x)] = ~ 37 [log ¥ (¥) ] = 2p,say

For L.H.S. and R.H.S both are independent of each other.

2

x2 [log @(x)] = 2p, given an integration

d
E[log O(x)] =2px+q

Again integrating, log @(x) = px* +qx +r
Similarly, —log ¥(y) = py?* + .y + 1,
log (0(x). ¥ () = log @(x) + log Y(y)
=px*+qx+r—py’—qy—n
=p(x? =y + (qx —q1y) + (r — 1)
or If'(2)| = 6C0). ¥ (y)
= exp [p(x* —=y?) + (qx — q1y) + (r — 11)] (2)
Now |exp(az? + Bz + y)| = lexp{a(x + iy)? + B(x + iy) + v}
= lexp{la(x? — y?) + 2iaxy] + (a + ib)(x + iy) + (¢ + id)}|
as a is a real.
= lexp{a(x? — y?) + ax — by + ¢} + exp{i(2axy + bx + ay + d)}|
= lexp{a(x? — y?) + ax — by + c}|
As |e®| = 1 for any real p, which of the same form as (2).
Hence we can write
f'(2) = exp(az® + Bz +7y)

Result 4. If f(2) is an analytic function of z, prove that

02 02
<— +—> IRf (2)I? = 2If"(2)|?

dx?  0y?
Proof: Let f(z) = u + iv, then Rf (2) = u.

d Ju
— (1y2) = 29y —
0x (w®) = 2u 0x

92 [ou\>  0%u]

— (42) = e - -

0x?2 () _(6x> u 0x?] D

Similarly,

92 [ou\> 0%

— (12) = e - -

dy? W) =2 _(63/) u(’)yz_ )

Adding (1) and (2), we get
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O ) rr =2[(2) +u ] +2|(2) +ult
f@1"= ox Yoz dy “ay2

0x?
_y (6u) +<6u> N 62u+82u
ox dy “1ox2 dy?

But u satisfies Laplace’s equation and f(z) is an analytic function, u and v satisfies

(3)

C-R equations, that is
du Odv g Ju  0v
ox oy M5y T Tox

02 92 , ouy?  ov\?
<ﬁ+ﬁ> IRF@)I" =2 [(a) +(5)
But f'(2) =3 =2+ i then f'(2) = 5= — i 2

r@r=rore= (G5 (G- =G + G
In view of this, the last gives

62 62 2 — ! 2
<—+a—y2>|Rf(Z)| = 2If'(2)|

(3) becomes

(4)

0x?

Result 5. If u(x, y) and v(x, y) are harmonic functions in a region R, prove that
<6u 61]) (au N 617)
dy 0x dx dy

Proof: Suppose u(x,y) and v(x, y) satisfy Laplace’s equation.

is an analytic function of z = x + iy.

0%u  0%u
e.,ﬁ + a_y2 =0 (D
0%v  9%v
and %2 + W =0 (2)
Also suppose
du OJv du OJv

= dt =
dy 0x n dx + dy
To prove that s + it is an analytic function, we have to show that

. 65 at
(I) 6x 6y d ay _5

.. 65 6t 65
(") 6x 6y 6y

ds 0Jt 0%v 6217 — o 3) 5
dx 6y dx? 8y2 B from (2)

and — — are continuous
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ds N ot (0%u N 0%u\ 0 @ %
dy ox \ox% ady%) from

From (3) and (4), the result (i) follows.
Existence of (1) and (2) implies that the result (ii).

1.12. Construction of an Analytic Function whose Real or Imaginary Part is known:
Let f(z) = u + iv be an analytic function, whose real part u alone is known
beforehand. We can find v, the imaginary part and also the function f(z). The
procedure is as follows:
First Method:

Hence
e PR 1
dv dx + o dy (D

N ( )_ 0%u q 6(6u>_62u
ow ay\ dy)  0y? N9 5x\ax) = axz

As u satisfies Laplace’s equation,
0%u N 0’u
ox?  0y?
0%u 0%u

i.e.,ﬁz —a—yz

0 ( au>_ d (au>
dy\ 0dy) ox\ox

and so the R.H.S. of (1) is a perfect differential.

0

Hence

du du . . .
Also P and o, are known, since u is given.

Hence integrating (1), v = [ (—Z—;dx + g—;‘dy) +c

where c is an arbitrary constant. Thus v is known and the function f(z) = u + iv is

determined.
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Second Method:
dw 0 du ,av du Jdu

Weknowthatf(z)=a=a(u+w)=a—+ Fvie a—x—l@ (D
(since 22 = =2 from ¢ — R equations)
since ax = ay rom equations
Since u is given —; and — are known
Hence integrating (1) ()—f(a“ 'a“)d +
ence integrating (1), f(z) = o lay zZ+c.
It is implied that the expression
du Jdu
0x lay
must be expressed in terms of z = x + iy, and then the above integration is to be

effected.

Third Method (Milne-Thomson Method):
To find f(z), when the real part u(x,y) is given.
Let f(2) = ulx,y) +iv(x,y) ¢y
Since z = x + iy, z = x — iy, we have

zZ+Z zZ—2Z

=TT
Z+ZZ—Z . (z+Z z—2Z
Sof(z)_”( 2 2 )J””( 2 Zi)

Consider this as a formal identity in the two independent variables z, Z.
Putting z = z, we get

f(z) =u(z,0)+iv(z0) (2)
(1) Isthe same as (1), if we replace x by z and y by 0.

, ow d ou dv du Jdu
Now f'(z) = -~ = (u+iv) =~ +i—=-——1i 3y

( v u

since Fr i @ from C—R equations)

Let 2% = 6, (e y)and 2 = 6, (x,y)
et = = @1(x, y)an 3y = ,(x,y).

Then f'(2) = @0, (x,y) — i @, (x,y) (3)
Now, to express f'(z) completely in terms of z, we replace x by z and y by 0 in the
expression (3).
f'(2) =0,(z,0) —iP,(z0)
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Hence f(z) = f(®1 (z,0) —i0,(z 0))dz +C

Similarly, given the imaginary part v, we can find u such that u + iv is analytic. Let
us use Milne-Thomson Method.

, dw 0 ] Ju dv Jdv Jdv
Now f (z)=§=a(u+w)=a+la=@+1a
. Ju OJv )
(smce Foie @ from C—R equat10ns)
(@) =9(xy) —i(xy)
where g—; =1 (x,y) and % =,(x,y)

Now, to express f'(z) completely in terms of z, we replace x by z and y by 0 in the
above expression

f’(Z) = 1!’1(2, 0) —i lpz(Z: 0)
Hence f(z) = J(lpl(z, 0) —iy,(z, 0))dz + C.

1.13. The Complex Potential Function:

We have seen that every analytic functionf(z) = u(x,y) + i v(x,y) defines two
families of curves

u(x,y) = c;and v(x,y) = c,

which form an orthogonal system. This property of analytic functions is of great use in field
and flow problems. We consider two dimensional regions in which there is sort of steady
flow like fluid flow, heat flow or electric current flow. The paths of fluid particles are called
stream lines and their orthogonal trajectories are termed as equi-potentials.

In physical applications, the analytic function

w=0(x,y)+ip(x,y)

is referred to as the complex potential function. Its real part @(x, y) represents the velocity
potential function and the imaginary part ¥ (x, y) represents the stream function. Both @ and
1 will satisfy Laplace’s equation and given any one of them, we can find the other.

Also the magnitude of the fluid velocity v or the electric intensity
£ |dW|
LS dz
EX. 21. Show that the function u = %log(xz + y?) is harmonic and determine its conjugate.

Solution: Given u = %log(x2 +y2)
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Weh Jou  x ou y

ehave 5x T x? +y2'dy  x2+y2

0°u  (x*+y?).1-x2x y?—x*
Ox2 - (x2 + y2)2 - (xz + y2)2
0%u 3 x? —y?

6y2 - (xz + y2)2

0%u N 0%u 3
ox2  dy?

Now

Similarly,

Clearly, 0.

Hence u is harmonic. Let v be the conjugate of u. Then

Ju Ju

=— de + ady (using C — R equations)

= dx + ———d
x2+y2 x+x2+y2 Y

_ xdy — ydx
C x24y2
x2

T X2+ y?

xdy — ydx
( x? )

2
=774 0)

Hence Integrating

EX. 22. Find the analytic function whose real part is

x24y2°

P _ , . x
Solution: Let f(z) = u + iv where u = e

Weh ou  y*—x* ou 2xy
¢ have ox  (x2+4+y2)2’'dy  (x2+4y2)?
Now

ow du Odv Odu Ou

f(Z):a_ax-Ha:ax l(’)y

oy —x? P
- (x2 + y2)2 L (x2 + y2)2

35



Complex Analysis

_ (y+ix)? (y + ix)?
24y (y+ i)y — ix)?
1 i2 1

- (y —ix)? - (iy + x)? -T2
Integrating, f(z) = i +c
EX. 23. Find the analytic function whose imaginary part is e*(x sin y + y cos y).
Solution: Let f(z) = u + iv where v = e*(x siny + y cos y)

ov ) .
We have — = e*(siny + xsiny + y cos y)

ox
v
and$=ex(xcosy+cosy—ysiny)
N ,()_aw_6u+,6v_6v+,6v
OWfZ_ax_ax lax_ay “ox

=e*(xcosy+cosy—ysiny)+ie*(siny+xsiny+ycosy)
By Milne-Thomson’s method, f'(z) is expressed in terms of z by replacing x by z
and y by 0.
Hence f'(z) = e?(z + 1).
Integrating, f(z) = (z+ 1)e? —e?+c=ze? +c

where c is a complex constant.

EX. 24. Find the analytic function f(z) = u + iv of which the real part
u=-e*(xcosy—ysiny)
Solution: Given

u=-e*(xcosy—ysiny)

We have
ou
—=e*(cosy+xcosy—ysiny)
0x
ou
and Y =e*(—xsiny —siny —ycosy)
Now

ow oJu Jdv Ju Jdu

f& ==t i~ m oy

=e*(cosy+xcosy—ysiny)—ie*(—xsiny —siny —ycosy)
By Milne-Thomson’s method, f'(z) is expressed in terms of z by replacing x by z

and y by 0.
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Hence

f'(2) =e*(z+ 1)
Integrating, f(z) = (z+ D)e? —e*+c=ze*+¢

where c is a complex constant.

EX. 25. Find the analytic function f(z) = u + iv of which the real part

sin 2x

w= cosh 2y — cos 2x

Solution: Let f(z) = u + iv, where
sin 2x

u=
cosh 2y — cos 2x

We have
u (cosh 2y — cos 2x).2cos 2x — sin 2x. (2 sin 2x)

ax (cosh 2y — cos 2x)?

du  sin 2x.(2 sinh2y)
dy  (cosh 2y — cos 2x)?
ow oJdu dv Jdu Jdu

NOWf (Z)zaza‘kla:a—l@

and

3 (cosh 2y — cos 2x).2cos 2x — sin 2x. (2 sin2x)  sin 2x.(2 sinh 2y)

B (cosh 2y — cos 2x)? —t (cosh 2y — cos 2x)?
By Milne-Thomson’s method, f'(z) is expressed in terms of z by replacing x by z
and y by 0.

Hence
, _2cosZz—2_ -2 _ -2 _ )
f1(2) = (1—cos2z)? 1—cos2z 2sin’z —eosecz
Integrating,

f(z) =cotz+ic
Taking the constant of integration as imaginary. Since u does not contain any

constant.

EX. 26. An incompressible fluid flowing over the xy-plane has the velocity potential
X

— 42 _ 2_|_
@ X y x2+y2

Examine if this is possible and find a stream function .
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Solution: Given

®=x2_y2+x2+y2 (1)
Then
GQ)_Z (x2+y2).1—x.2x_2 y? —
ox " (x2 + y2)2 B (x + yz)2
020 (x +y2)2 (=2x) = (y* —x?).2(x* + y?). 2x
ax? (x2 + y2)4
B 2x(x? + y% + 2y? — 2x?)
- (xz + y2)3
2x(3y? — x?
o 2y X)) 3)
(x% +y2)3
610 x.2y 2xy
A R A R ®
0°p o (x2+y2)2.1—vy.2(x*+vy2).2y
dy? ¥ (% + y?)*
2x. (x? — 3y?)
=—2- 2o O
(x%2 +y?)
0%Q 0%9Q
Clearly Iz +— 3y = 0.

That is @ satisfies Laplace’s equation.
Hence it can be a possible form of the velocity potential function.
To find the stream function ¥, we know that @ + iy is analytic.

Therefore @ and v satisfy C-R equations.

oy 09
Le., W = a (6)
ay 09
and — Fi @ (7)
Taking (7) and using the result given by (4), we have
6L|J 2xy
ax =2yt (x? + y?)2 (8)

Integrating with respect to x, we get
2xy
l/) = 2xy+fmdx+F(y)

where F(y) is an arbitrary function of y.

(2)
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- oy ——
i.e., | =2xy x2+y2+F(y) €©)
Differentiating (9) with respect to y, we get
oY (x%2+y3).1—y.2y
—=2x— F'
oy T e TP
yZ _ xZ
=2 —+ F' 1
x+ oy 5? +F'(y) (10)

But from (6) and (2), we have

oy 00 y? — x?
oy Ox (x2 + y?)?
Comparing (10) and (11), we get

(11)

F'(y)=0
i.e.,F(y) = C,an arbitrary constant.

Hence from (9), ¥ = 2xy — —2— + C.

x2+y2

Taking C = 0, we get the simplest form of the stream function

= 2xy —
Y =2xy X+ y2

EX. 27. In a two dimensional fluid flow the stream function is

- __ Y
Y= x2 +y2
Find the velocity potential @.
Solution: Given
- __ Y
V= x2 +y2
is a stream function, i.e., it must satisfy Laplace’s equation, V2 = 0
Now
- __ Y
)= x2 + y2
We have
Wy 2xy
ox  (x2+y?)2
oy (y?—x?)

7 =y
0%y  2y.(y* —3x?%)
axz  (x2+y2)3

0%y 2y.(y?—3x?%)
6y2 - (x2 + y2)3
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0%y 9%y 5
..W+a—yz—00rvw—0

Hence 1 satisfy Laplace’s equation.
Now @ is the velocity potential, let w = @ + iy
dw ow 00 dyY OJY Oy
—_— =4 — =—+41—
dz Jx Ox dx 0dy 0x
=P R
T (a2 + y2)2 L (x2 + y2)2
By Milne-Thomson’s method, f'(z) is expressed in terms of z by replacing x by z and y by 0.

Hence

Integrating,

Where c is a complex constant.

1
P+ iy ==E”+ c

= —+cC

X +1y

x—1
==Y e

x% 4+ y?

x =1y . ,
=——-—=+4+a+ibwherec=a+ib
x% 4+ y?

Equating real parts on both sides, we get

x
x2+y2

Velocity potential = @ = +a.

EX. 28. If f(2z) = u + iv is analytic function and u — v = e*(cos y — sin y), find f(z) in

terms of z.
Solution: Let f(z) = u + iv (D)
Sothatif(z) =iu—v (2)

Adding (1) and (2), we get
A+D)f@D=w@-v)+ilu+v)
i.e.,F(z)=U+1iV 3

WhereU =u—v,V=u+vand F(z) = (1+1i)f(2)

If £ (2) is analytic, then F(z) is also analytic.

GivenU =u—v =e*(cosy — siny)

We have
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ou ,

e e*(cosy —siny)

ou x( ny)

3y e*(—cosy —siny
ouU a9V aU adU

NOWF(Z)=£+15=5—1E

= e*(cosy —siny) —ie*(—cosy — siny)
By Milne-Thomson’s method, F'(z) is expressed in terms of z by replacing x by z
and y by 0.

Hence
F'(z) ==e?(1+1i)
Integrating,

F(z)=(1+41ie*+C
e, 1+i)f(z) =0 +De?+C

f(z) = e? 4+ c where c is a complex constant.

EX.29.If u+v= xz.f—yz when f(1) = 1 and f(z) is analytic function of z, find f(z)in

terms of z.
Solution: Let f(z) = u + iv (D
Sothat if(z) =iu—v (2)

Adding (1) and (2), we get
A+Df@2)=w—-v)+i(u+v)
i.e,F(z)=U+iV 3)

WhereU=u—v,V=u+vand F(z) = (1+i)f(2)

If £(z) is analytic, then F(z) is also analytic.

X
HereV =u+v = T
x%+y?
We have
v y*—x?
ox  (x2 + y?)2
av 2xy

dy  (x2+y?)?
, ouU av v av
Now F'(z) = % + o= 3y + i

3 20y . y? —x?
- (xz + y2)2 L (x2 + y2)2
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By Milne-Thomson’s method, F'(z) is expressed in terms of z by replacing x by z

and y by 0.
Hence _
F(2)=—
Integrating, _
F@)=—+C

ie., 1+iD)f(2) =£+ C

f(z) = 1;“; + ¢ where c is a complex constant.
EX.30. Ifu +v = (x — y)(x? + 4xy + y?) and f(z) is analytic function of z, find f(z) in
terms of z.
Solution: Let f(z) =u+iv (D
Sothat if(z)=iu—v (2)
Adding (1) and (2), we get
A+Df@D=w-v)+ilut+v)
i.e.,F(z)=U+iV 3)
Where U =u—v,V=u+vand F(z) = (1+i)f(2)
If £ (2) is analytic, then F(z) is also analytic.
HereV =u+v = (x — y)(x? + 4xy + y?)

We have
av
P (x—y)2x + 4y) + (x* + 4xy + y?)
av
% = (x —y)dx + 2y) — (x* + 4xy + y?)
au av  aV av
NowF'(z) =—+i—=—+1

0x dx 0y ‘5
=(x—y)Udx+2y)— &2 +4xy+y2) +il(x —y)2x + 4y) + (x? + 4xy + y?)]
By Milne-Thomson’s method, F'(z) is expressed in terms of z by replacing x by z
and y by 0.

Hence
F'(z) =3(1 +1i)z?

Integrating,
F(z)=+i)z3+C
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Le,(1+Df(x)=0Q+Dz3+C

f(2) = z3 + ¢ where c is a complex constant.

2 sin 2x

EX.31. Ifu+v = P w—" and f(z) is analytic function of z, find f(z)

in terms of z.
Solution: Let f(z) = u + iv (D
Sothat if(z) =iu—v (2)
Adding (1) and (2), we get
A+Df@D=w-v)+i(u+v)
i.e., F(z)=U+1iV 3
WhereU=u—v,V=u+vand F(z) = (1+1i)f(2)
If £ (2) is analytic, then F(z) is also analytic.

2 sin 2x sin 2x

HereV =u+v = =
e?y +e 2 —2cos2x cosh2y—cos2x

We have

v (cosh 2y — cos 2x).2 cos 2x — sin 2x.2 sin 2x
ox (cosh 2y — cos 2x)?

_2cos 2x.cosh 2y — 2

~ (cosh 2y — cos 2x)2
dV  2sin2x.sinh 2y
0y  (cosh 2y — cos 2x)?
Now F'(z) :6_U+ ia—Vz a—V+ ia—V
0x dx Jdy dx

_ 2sin2x.sinh 2y 4 2 cos 2x.cosh 2y — 2
~ (cosh 2y — cos 2x)? ! (cosh 2y — cos 2x)?

By Milne-Thomson’s method, F'(z) is expressed in terms of z by replacing x by z

and y by 0.
Hence
F'(2) = 2i cos2z—1 —2i
2= l(l—cosZz)z " 1—cos2z
—2i )
=iz, = cosec?z
Integrating,

F(z)=icotz+C
i.e., 1+i)f(z) =icotz+C
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[
1+

f2) =

cot z + ¢ where c is a complex constant.

cos x+sin x—e™ Y

EX. 32.Ifu—v = when f (g) = 0 and f(z) is analytic function of z,

2 cosx—e¥—-e V'’
find f(z) in terms of z.
Solution: Let f(z) =u+iv (D
Sothat if(z)=iu—v (2)
Adding (1) and (2), we get
A+Df@D=w-v)+i(u+v)
i.e., F(z)=U+1iV 3
Where U =u—v,V =uvand F(z) = (1 +i)f(z)
If £ (2) is analytic, then F(z) is also analytic.

cos x+sinx—e”Y cosx+sinx—e™Y

Given U = u — v = =
iven UV = S s xr—eV —e—V 2 (cos x — coshy)

We have

ou (cos x — coshy).(cos x —sinx) + (cos x + sinx —e™”).(sin x)
ox 2(cos x — cosh y)?

ou (cos x — coshy).e™ + (cos x + sinx —e™).(sinh y)

dy 2(cos x — cosh y)?

, ou oV oU oU
NowF(z)=a+la=a—l@

(cos x — coshy).(cos x —sinx) + (cos x + sinx —e™Y).(sin x)

2(cos x — cosh y)?

(cos x — coshy).e™ + (cos x +sinx —e™Y).(sinh y)
i
2(cos x — cosh y)?

By Milne-Thomson’s method, F'(z) is expressed in terms of z by replacing x by z

and y by 0.
Hence
Fi(z) = (cosz—1).(cosz—sinz) + (cosz+sinz—1).sinz _ (cosz—1)
2= 2(cos z —1)2 LZ(cosz—l)Z
1 z
= () —  — [ ) — 2 _
(1+l)2(1—cosz) (1+1)4cosec >
Integrating,
1+ z
F(z)=—( > )cot §+C
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1+ z
> cot §+C

e, (1+0f(2) =—

() = —cot 4
f(z) = 2c02 c

Given £ (5) = 0, then

2 2 4
1

0=—§+C
1

Hence
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Unit-11
INTEGRATION IN THE COMPLEX PLANE

2.1. Introduction:

In our usual study of the subject of calculus, we practically very often relate the
definite integral most closely to differentiation, thus forgetting the real meaning of the
definite integral. This is because most of the definite integrals relating to functions of a real
variable can be evaluated by knowing their antiderivatives. But in the case of functions of a
complex variable, certain integrals of analytic functions can be evaluated without knowing
the antiderivatives. For this purpose, it is very necessary that the definition of the definite
integral must be thoroughly understood. Because of the two dimensional character of
complex variables, first we shall develop the idea of a definite integral in the real cartesian
plane.

2.2 Line Integrals:

Let f(x,y) be areal function of the real variables x and y, continuous in both x and y
and C be a continuous curve of finite length with initial point A(x,, v,) and terminal point
B(x,, v,). f(x,y) has no relation to the equation of C and is merely a function defined at
every point in some region of the xy-plane containing the curve C. Further, the curve C is
such that it is cut by a line parallel to either coordinate axis in only one point.

We divide the arc AB into n arcs As,, As,, ..... As, whose projections on the x-axis
are Ax,, Ax,, ..... Ax,, and whose projections on the y-axis are Ay;, Ay,, ..... Ay, respectively
as shown in fig. 1. Let As, be a typical arc and (xy,y,) be the coordinates of an arbitrary
point in it.

We find the value of the function f(x,y) ate each of the points (x;,y;) and form the
products f (xx, Yi)-Ask, f (X, ¥ie)- Axi and f (xy, v ). Ay, On assuming these products over

all the subdivisions of the arc AB, we have the sums

n n n
z f(xk:yk)-ASk'z f (X, ¥i). Axy, and Z f e, i) Ay
k=1 k=1 k=1

The limiting values of these sums as n becomes infinite in such a way that each As,

approaches zero are known as line integrals.
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They are written as

f f(x,y)ds, f f(x,y)dx and f f(x,y)dy respectively.
c c c

C is called the field of integration.

¥4
A T R - B
BIL_ e R R 4
(% 4) <t |
' b
5 g
Ay prremmmem e . v
RN 3 . 'L
s B
2k P : .
0O AZAT, AT, X

Figurc 1

From these definitions, it is clear that the following familiar properties of ordinary

definite integrals are true for the integrals, provided that the curve joining A and B remains
the same:

B B

f c Fdt=c f F dt, c being any constant .
A A

A A A
B C B

det=det+det

A A Cc
The ordinary real definite integral like f; f(x) dx can be regarded as a line integral

in which the integrand is a function of x alone and the curve C is the x-axis. Also, the

232



Complex Analysis

evaluation of line integrals can be reduced to the evaluation of ordinary definite integrals, as
shown in the following examples.

EX.1. Evaluate

L 2

xy ds
(0, 0)
along the three different paths shown in the figure below.

Yo

LY
x

Figurc 2
Solution: (i) Let us first integrate from (0, 0) to (1, 2) along the parabola y? = 4x.
Differentiating the curve’s equation with respect to x, we get
dy dy 2
2y—=+4i.e.,—=—
Y i i.e

dx vy
We know that

ds\? dy\?
(@ -+
dx dx

2
i.e.,(—) =1+i2=1+i=ﬂ
dx y 4x

X

ds Vx+1 Vvx +1
L—_—= ords = dx
dx Vx Vx
Also y = 2+/x along the path OP. We can now express the line integral completely in
terms of x.
(1, 2) x=1
vx +1
xy ds = f x.2+/x. dx
Vx
(0, 0) x=0
1
=2 f xVx+1dx

0
Put x + 1 = u?then dx = 2u du

Whenx = 1,u =+v2 andwhenx = 0,u = 1.
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1, 2) V2
xy ds = 2f (w? -1 u.2udu
(0, 0) 1
A

=2f(u4—u2)du

8
= (V2+1) M

(ii) Let us now evaluate the line integral along the rectilinear path OMP. We do the

integration in two stages.

P(1, 2) M(1, 0) P(1, 2)
xy ds = f xy ds + J xy ds
0(0, 0) 0(0, 0) M, 0)
Along the first path OM, ds = dx and y = 0.
M(1, 0) x=1
xy ds = Jx.de=0
0(0, 0) x=0
Along the path MP, ds = dy and x = 1.
P(1, 2) y=2 )2 5
xy ds = f 1.y.dy=[7l =2
M(1, 0) y=0 0
P(1, 2)
Hence f xyds=0+2=2 (2)
0(0, 0)

(iii) Let us now evaluate the line integral along ONP.

P(1, 2) N(O, 2) P(1, 2)
xy ds = f xy ds + J. xy ds
0(0, 0) 0(0, 0) N(O, 2)

Along the first path ON, x = 0 and ds = dy. So the value of the first integral will be
equal to zero.
Along NP,y = 2 and ds = dx.

Hence the second integral
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P(1, 2)
xyds=0+1=1 3)
0(0, 0)
From results (1), (2) and (3), we find that, in general, a line integral depends not only on the

terminal points of integration but also upon the particular path which joins them.

Note: If the paths were traversed in the opposite sense i.e., from (1, 2) to (0, 0), the values of

the integral will be

8
15 (V2 + 1), -2 and — 1 respectively.

EX.2. Find the value of
(1, 3)

[x*ydx + (x* — y*)dy]
(0, 0)
along (i) y = 3x2 (i) y = 3x.
Solution: Let I denote the given line integral. It can be changed completely in terms of x.
(i) Since y = 3x2 then dy = 6x dx

Substituting for y and dy in terms of x, we have
x=1

I = [3x*dx + (x? — 9x*)6x dx]

= (3x* + 6x3 — 54x°) dx

x=0
_[3r, ext s b9
15 4 6 |, 10

(i) Since y = 3x then dy = 3dx

Substituting for y and dy in terms of x, we have

x=1
I = f [3x3dx + (x? —9x2)3 dx]
x=0
x=1
= (3x3 — 24x?) dx
x=0
3x* 24x3]" 29
-
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EX.3. Find the value of
1, 3)

[3x2ydx + (x3 — 3y2)dy]
(0, 0)
along (i) y = 3x? (i) y = 3x.
Solution: Let I denote the given line integral. It can be changed completely in terms of x.
(i) Since y = 3x? then dy = 6x dx

Substituting for y and dy in terms of x, we have

x=1
I = [Ox*dx + (x3 — 27x*)6x dx]
=0
x=1
= (15x* — 162x°) dx
x=0
15x5  162x6]"
B l 5 6 L =

(i) Since y = 3x then dy = 3dx
Substituting for y and dy in terms of x, we have
x=1

I = [9x3dx + (x3 — 27x2)3 dx]

X

Il
n <

x=1

= f (12x3 — 81x2%) dx
x=0

= —24

~ I12x4 81x3r

4 3 ],

Note: The two values of! in this problem are the same. In fact, we can verfy that the value of
I over any other path connecting the points (0, 0) and (1, 3) is also —24. Thus the value of
this integral depends only on the end points and not upon the curve joining them. The reason

for this remarkable behaviour will be learnt later on.

1+i

EX.4.Evaluate f (x? —iy) dz along the paths (i) y = x (ii) y = x2.
0

Solution: (i) Along OB whose equation is y = x = dy = dx and x varies from 0 to 1.
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1+i (1,1)
f (x2—iy)dz = f (x2—iy)(dx +idy)
0 (0,0)

j (2 — iy) dz = f (2 — iy) (dx + i dy)
OB x=0

1 1
_ j(xz—ix)(dx+idx) — (A +1) f(xZ—ix)dx
x=0 x=0
. x3 . xz 1
= (1 + l) ? - l?
0
N
-a+0(3-3)
(ii) Along the parabola whose equation is y = x? = dy = 2x dx.
1+i (1,1)
Now j (x%2 —iy)dz = j (x2 —iy)(dx +idy)
0 (0,0)

f(xz —iy)dz = f(xz —ix?) (dx + i2x dx)

oc x=0

1
=1-1) f x2 (14 2ix)dx
x=0

1
=(1-19 f(xz + 2ix3) dx

x=0

. x3 .x4 1
= (1—l) I?-Fl?lo

a0+l

4y Ay
ca,)
B(1,1) .
5% 4
> X 01(0,0)
0.0) Fgue 2 e
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EX.5. Integrate f(z) = x% + ixy from A(1, 1)to B(2, 8) along
(i) The straight line AB (ii) The curve C:x =t,y = t3

(2,8)
Solution: (i) j f(z)dz = f (x? + ixy) (dx + idy)
C (1,1)
Along AB: Equation of AB passing through A(1, 1)to B(2, 8) is
y—1 x-1
m=2_1=>y=7x—6anddy=7dx

f £(2)dz = f [x? + ix(7x — 6)](dx + 7idx)

x=1

— 7i+1) f [(7 + 1)x? — 6ix] dx

x3 2
=(n+1)kn+1}§—3m4

7i+1
=3 (22i+7)

(if) Along C whose parametric equations are
x=ty=t3
Then dx = dt,dy = 3t%dt
A(l,1)>t=1and B(2,8)=>t =2

(2,8)

f f(2)dz = f (x? + ixy) (dx + idy)
c (1,1)

t=2
f f(z)dz = f (t% + it*) (dt + i3t%dt)
Cc t=1
2
= f(t2 +it*) (1 +i3t?) dt
1
2
= f(f:2 +it* + 3it* — 3t®) dt
1
2
= f[f:2 + (1 4 3i)t* — 3t dt
1
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5 712

5737

1

t3 ,
= I?‘F (1+ 3i)

ol B(2,8) "1

Faguire 28 Figure 2.4

EX.6.Evaluate [. (x —2y)dx + (y* — x*)dy where C is the boundary of the first

quadrant of the circle x2 + y? = 4.
Solution: Parametric equations of the circle are

x=2cosfBandy = 2sin6,where0 <6 < 2m
Thendx = —2 sin 6 df and dy = 2 cos 6 df

aju—zny+0ﬂ—x%mz
C

/2

= f [(2cos 8 —45sin0)(—2sin 6 dB) + (4 sin?0 — 4 cos?0)(2 cos 6 d)]
0
/2 /2 /2
=—4 —f sinZHdH—f (1—c0520)d9—2f sin’6 cos 0 d6
0

0 0

/2

1
+2f 1(60539+3c059)d9

EX.7.Evaluate [>7 2% dz along

0

(i) the real axis to 2 and then vertically to (2 + i).

(i) the imaginary axis to i and then horizontally to (2 + i).
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2+1

Solution: | = f z?dz = fzz dz + fzz dz (D
0 0A AB

We have z = x + iy then dz = dx + idy
(i) Along 04,y =0

z=x+iy=xanddz = dx

2
32
8
]zzdz=jx2dx=l%l =3 (2)
A 0

0A

(ii) Along AB,x = 2
z=x+iy=2+iyanddz = idy

Also z2 = (2 4+ iy)? = 4 + 4iy — y?

and y varies from 0 to 1.

1
fzzdz=if(4+4iy—y2)dy
0

0OA
311 ,
11i
=il4y+2iy2—y— =—2+— (3)
3 o 3
From (1), (2) and (3), we have
1—8 2+11i—1(2+11')
=3 3 3 l

(ii) Along OP,x =0
z=x+1iy=1iyanddz = idy

Also z? = (iy)? = —y? and y varies from 0 to 1.

L 311 .
f z%dz = f(—yz) idy = —i [y?l = —% (4)
OP 0 0

Along PQ,y = 1then z = x + i and dz = dx and x varies from 0 to 2.
z2=(x+i)?=x%2-1+2ix

‘ x3 22
fzzd2=f(x2—1+2ix)dx=I?—x+ile =§+4i (5)
PQ 0 0
From (1), (4) and (5), we have
i 2 2411
I:—§+§+4l: 3
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Note: From the, we conclude that the complex line integral is independent of the path of

integration.
(1,3) (1,3)

EX.8.Evaluate (a) j 3x%y dx + (x3 = 3y?)dy (b) f x%y dx + (x? —y?)dy
(0,0) (0,0)

along the curve (i) y = 3x (ii) y = 3x2.

Solution: Let I denote the given integral. it can be changed completely in terms of x.

(i) Since y = 3x,dy = 3 dx

Substituting for y and dy in terms of x, we have

1

@ 1 —j9x3 dx+f(x — 27x%)(3dx)

4 x3 1
f(le —81x?%)dx = [12Z —81—| =-24

3 0

(b)) I=]3x3dx+ | (x? —9x2)(3dx)
fooas

= .f(3 3 —24x%)dx = 3x4 24x3 1 -2
= x x*)dx = |3 7). ==
0

(ii) Since y = 3x2,dy = 6x dx
Substituting for y and dy in terms of x, we have
1

(@) I=]09x*dx+ | (x3—=27x*)(6xdx)
fowas

5

1 6 1
X X
= f(15X4 - 162x5)dx = [15?— 162€ =-24
0

1

b)) I= f 3x*dx + f(x2 — 9x*)(6x dx)

0
1 1
—f(63+34 54x°)d —6x4+3x5 54x6 —3+3 9 = 69
T X Xax =107 5 6l 27577710

0 0
Note: In the above problem (a), we find that the two values of I are the same. In fact, we can

also see that the value of I over any other path joining the points (0,0) and (1,3) is —24.
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Thus the value of this integral depends only on the end points and not upon the curve
connecting them.

(1,1
EX.9.Evaluate j (3x2 + 4xy + ix?) dz along y = x2.

(0,0)
Solution: Let z = x + iy so that dz = dx + idy

(1,1) (1,1
Now j (B3x%2 +4xy +ix?)dz = f (3x2% + 4xy + ix?) (dx + idy) (1)
(0,0) (0,0)
Along y = x2,dy = 2x dx.
On putting the values of y and dy, (1) becomes

1,1 1
] (3x2% + 4xy + ix?) dz = f(3x2 + 4x3 + ix?) (dx + i2x dx)
(0,0) 0

[(3+ i)x? +4x3] (1 + i2x)dx

Il
o\»—t

[(3+i)x?+2(3i+1)x3 +i8x*] dx

Il
O\»—t

x3 x* x51
=|3+i)=+2@i+1)—+i8—
3 4 5],
_3+,103
—271730

EX.10.Evaluate [. (y* + 2xy)dx + (x* — 2xy)d y

where C is the region bounded by y = x? and x = y?.

Solution: Given curves are y = x? (1D

and x = y? (2)
The two curves (1) and (2) intersect at the points (0,0) and (1,1).
The positive direction in traversing C is as shown in figure.

Along y = x2,dy = 2x dx, the line integral is

= f[(x‘* + 2x3)dx + (x% — 2x3)] 2x dx

x=0
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g xt x5
= f(4x3 —3xY)dx=|4—-3—
4 5
0 0
3 2

Along x = y?,dx = 2y dy, the line integral is

0
= j[(y2 +2y3)2ydy + (y* - 2y3)] dy
y=1

0
= j(2y3 +5y* —2y*)dy
1

=[y*! = -1 4)

Hence, the line integral over C = E -1= —% [adding (3) and (4)].

Figure 2.5

3+i
x
EX.11.Evaluate f z?dz ,along (i) the line y = 3 (ii) parabola x = 3y?2.
0

Solution: Let I denote the given integral. Then we have

3+i 31
I = f z%dz = f (x + iy)? (dx + idy)
0 (0,0)

3B

= f (x? —y2 +i2xy) (dx + idy)
(0,0)
(3,1) 3.1)

= f [(x2 — y2)dx — 2xydy] + i f [2xydx + (x? — y?)dy]
(0,0) (0,0)

(i) I can be changed completely in terms of x.
. x 1
Since y = g,dy = gdx

Substituting for y and dy, we have
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3
1—f2x2d2(d +f 2dx + V1,
= X 9 X 3X 3x l X X x 9 3X
x=0 x=0
3 3
_162d+ fZ6 4 _6x33+,26x33
= ) g¥idxti | gpxtdx =gl tigg|s
x=0 x=0 0 0
— 6425,

(ii) I can be changed completely in terms of x.
i X =1
Since y = 3,dy = 3dx

Substituting for y and dy, we have
1

= j[(9y2 —y?)6ydy — 6y*dy] +1i f[6y2(6ydy) + (9y? —y?)]
=0 y=0

= f 42y3dy +i j(36y3 + 8y?)dy
y=0 y=0

4 4 3v11
- 42y—+i(36y—+8y—)] =2 ;%
4 4 3 /1, 2 3

2.3 Properties of Line Integrals:
Theorem 1. LetP and Q be two functions of x and y, such that P, Q and — are continuous

and single valued at every point of a simply connected region R. The necessary and sufficient

condition that fc (P dx + Q dy) = 0 around every closed curve C drawn in R is that g—i = 2—5
at all points in R.
Proof: First let us prove the sufficiency of the condition.

9Q

P ., .. .
Suppose % = ay identically in R.

Let R, be the subregion of R bounded by the particular closed curve C;.

Applying Green’s theorem to R,,

f(de+Qdy)—ff _Q_O_P dxdy—O

€= a—P at all points in R and so at all points in R, also.

Slnce g
We shall now prove the necessity of the condition.
Suppose fc (P dx + Q dy) = 0 around every closed curve C in R.
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Suppose that‘;—z = 3—5 > 0 at some point (x,,y,) of R.

. ap a . . a oP . . .
Since % and i are continuous functions of x and y, % ~ % Is also a continuous function of

x and y.

Hence there must be a region S about (x,, y,) in which

0Q 0P
dx dy
has the same sign as at (x,, vo).
i.e., in the region S,
0Q P
————>0.
dx 0dy

Let C; be the boundary of S. Applying Green’s theorem to S, we have

(de+Qdy)— O_Q_O_P dx dy
)

C1
and this is >0, as the integrand is positive.

Hence we get that

f(de+Qdy)>0.

C1

But this is against the hypothesis that [(P dx + Q dy) = 0 around every closed curve

inR.

8Q P
Therefore o cannot be >0 at (x,, y,).

Similarly we can show that Z—Z — Z—i cannot be negative at (x,, y,).

8Q P _
Therefore oy must be = 0 at (x,, vo).

But (x,,v,) is any point in R.

Therefore a—Q - a—P must be = 0 at (x,, y,).

3Q _ op o
Or—== 5, 2t every point in R.

Theorem 2. Let P and Q satisfy the conditions of theorem 1. The necessary and sufficient

condition that

B

f(de+Qdy)

A
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be independent of the path connecting A and B is that ‘Z—z = Z—; at all points in R.
Proof: First let us prove the sufficiency of the condition.

9Q _ 9P iyonti i
Suppose 2% = identically in R.

Y AN
C= B

Figure 14
Let C; and C, be any two curves connecting the two points A and B. Together they form a
simple closed curve in R and so we can apply the last theorem. Therefore

J (Pdx+Qdy)=0

C1+C,

i.e.,f(de+Qdy)+f(de+Qdy)=0

C1 C;

B A
i.e.,f(de+Qdy)+f(de+Qdy) =0
A B
Therefore

B A B
f(de+Qdy)=—f(de+Qdy)=J.(de+Qdy)
A B 4

alongC;alongC,alongC,

i.e.,f(de+Qdy)= f(de+Qdy)

Cy C,
i.e., the line integral taken over any two paths from A to B, has the same value. So it is

independent of the path joining the point A and B i.e., it is a function of the end points alone.
We shall now prove the necessity of the condition.

B
Supposef(P dx + Q dy)
a

Is independent of the path from A to B.
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Then for any two curves C; and C, connecting A and B we have

f(de+Qdy)= f(de+Qdy)
(o G2

i.e., j (Pdx+Qdy) = f (P dx + Q dy), from figure

AEB ADB

=— j(de+Qdy)

BDA

Therefore f (Pdx+Qdy)+ J (Pdx+Qdy)=0

AEB BDA

i.e., j (Pdx+Qdy)=0
AEBDA
i.e., the line integral around any closed path in R is zero.
9Q oP

H by th 1, — =
ence by theorem ax ~ 3y

EX.12. Show that
1, 2)
[(x2 +y?)dx + 2xy dy]

(0, 1

is independent of the path and determine its value.

Solution: Here P = x2 + y2,Q = 2xy

P 2Q _
Then 9 = 2y and P 2y
Clearly g—g = 3—5 and they are also continuous.

Hence the line integral is independent of the path.

We can choose any path joining (0, 1) and (1, 2). For instance, let us take the line
joining (0, 1) and (1, 1) and then the line joining (1, 1) and (1, 2).
Along the line joining (0, 1) and (1, 1), we have y = 1 and dy = 0. x varies from 0 to 1.
Along the line joining (1, 1) and (1, 2), we have x = 1 and dx = 0. y varies from 1 to 2.

Hence the required integral is
2

1
=f(x2+1)dx+f2ydy
0

1
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x3 ! y2]? 13
=|z+x| +2|7%
3 2 L

0

EX.13. Show that the line integral

f [ Z_y 2dx+ 2x Zdy]

/ x“+y x“+y

evaluated along a square 2 units on the side with center at the origin has value 2. Give the
reason for failure of this integral to vanish along this closed path.

Solution: The square ABCD is formed by the lines x = +1,y = +1.

The direction in which the square C is traversed is shown in the figure 15.

Along AB,y = —1,dy = 0 and x varies from —1 to 1.

So the line integral along AB is
1
1 -1,7]1
T 1dx = [tan~'x]1;
-1
= tan™'1 — tan™1(-1)

T T T
=7-(-3)=3

YJ\

v=1

D % c

x =-1 x==1
X

b 4 ~
Al

7 }'=-l B

Figure 15

Along BC, x = 1, dx = 0 and y varies from —1 to 1.

So the line integral along BC is
1

— 1 d — [t -1 ]1

~ )14y y=lan "y,

-1

= tan™'1 — tan"1(-1)
T T\ T
=3-(-3)=3
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Along €D,y =1, dy = 0 and x varies from 1 to — 1.

So the line integral along CD is

-1 1
_f _1d_f 1 d_n
) 21 P T ) ez 1T
1 -1

Along DA,x = —1,d x = 0 and y varies from 1 to — 1.

So the line integral along DA is

-1 1
—f q'd——f L4
) 1+2Y T 12
1 -1

Adding the above four results, the value of the given line integral along C = 4 x % = 2.

Now P = m’ Q = m,then we have
0P [(x*+yH).1-y.2y] y?—x?
A D R
0Q (x*+y?).1-x2x y?—x?
ox (x2 + y2)2 C (x2+y?2)2

ap

We find that 9 = g—g. Also P, Q,z—iandg—z are continuous and single valued for all points of

the xy-plane concept (0, 0).

Hence f (Pdx + Qdy) = 0 around any closed curve C which does not enclose (0, 0).
C

But here the square ABCD encloses the origin and hence the line integral along ABCD is not

Z€ero.

2.4 Complex Integration:

Y;'\

Figure 16
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Let w = f(z) be a continuous function of the complex variable z = x + iy. Let C be
any curve connecting two points A and B. We divide C into n parts at the points
A=2y2,25 .., Zy = B.
Let Az, =z — zp_1

and ¢ be an arbitrary point in the arc z;_;z;. Then the limit of the sum

> FG0) Azasn - oo
k=1

In such a way that the length of every chord Az, approaches zero, is called the line integral of

f(z) along C. This is written as

[ 1@ dz=1m > @0 s,
Cc k=1

It can be noted that this definition differs from the definition of a real line integral in
that it is based on the directed chord Az, tending to zero and not on the arc As,, tending to
zero. Also the real definite integral can be interpreted as an area. It has also physical
interpretation. But a line integral in the complex plane has no corresponding interpretation.
However, the theory of integration in the complex plane has remarkable applications in
engineering, physics etc.

We can express a complex line integral in terms of real line integral. Taking

w = f(z) = ulx,y) +iv(x,y),
and noting that dz = dx + idy, we have

ff(z) dz = f(u+iv) (dx + idy)
C C

= f (udx —vdy) + i f (vdx + udy)
c c

The two integrals on the right side are clearly line integrals of real functions.
Since a complex line integral can be expressed in terms of real line integrals, the
following familiar properties are true for complex line integral also, provided the same path

of integration is used in each integral. Thus

ff(z)dz=—ff(z)dz
A B
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B

fkf(z)dz=kff(z)dz

A
B

jBf(Z)+g(z) dz—ff(z)dz+fg(z)dz

A

ff(z) dz = ff(z) dz + f f(z)dz
where 4, B, C are any three points on the path of integration.

EX.14. If C is a circle of radius r and centre a, prove that

d
(a)j 2 omi
Z—a

C

dz
(b) f m = 0, where n is an integer.

Solution: Let A represent the fixed complex number a and P a variable point z on the circle.
Then AP = z — a. Let AP make an angle 6 with the real axis. Then AP = re'®, asr is its

length. Therefore
z—a=re

This is the parametric equation to the circle C and 8 varies from 0 to 2w, r being

constant.
Therefore dz = ri e'?do
Yk
z-;.ufﬂ.nr
Py
of afe)
-
] .
Figure 17 &
ri ei® 2m

d9=f idf = 2mi

(@fz_a—

rel@
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21 ; 21 ,
dz ri et riet®
(b) — Y+l i6\)n+1 df = n+2,(n+1)6 do
(z—-a) (ret?) rit2e
C 0 0
1 2T 2T

= —f e~n0 4o = L f (cos n@ — i sinnb) do
rh rn
0

0

i [sinnf icosnfp*"
_ L[ Leosno_
rt n n 0
These two results are important and will be of use later on.
2+i
EX.15. Evaluatef z%dz along (i)thelinex = 2y (i) the real axis to 2 and then
0

verticallyto 2 + i  (iii) the imaginary axis to i and then horizontallyto 2 + i .

Solution:
2+i

Let sz z%dz

Q) Along OA, x = 2y
z=x+iy=2y+iy=Q+i)y
Therefore
z2 =2+ 1i)%y? = (3 + 4i)y?
anddz = (2 + i)dy

whenz =0,y = 0and when z =2 + i,y = 1. Therefore

1
I = f(3 + 4i)y?.(2+i)dy
y=0

=B+4i)(2+1) ly;l
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2411
-3
(i)  We now evaluate I along the contour OBA as shown in figure.

I = fzzdz+ fzzdz

OB BA

Along OB,y = 0 then z = x and dz = dx.

2 3 2 8
fzzdz= fxzdx=[x—l =_
3 o 3

OB x=0
Along BA,x =2;z=x+iy=2+1iy;dz = idy
z? = (2+1iy)? =4 + 4iy — y?;y varies from O to 1.

1
jzzdzz j(4—y2+4iy)idy

BA y=0

}/3 !
= [4)/ — ? + Zi}/Zl
0

. 1 .
=l(4—§+2L)
11i
=—2+T
110 24+ 11i
Hence I=§_2+T= 3

(iii))  We now evaluate I along the contour OCA.

I = fzzdz+ J.szz

oc ca
Along OC,x = 4 then z = iy and dz = idy.

z%2 = i%?y? = —y? yvaries from0to 1

1 1
y? i
2 — 2 P — _ _
fz dz-f yidy l[Bl 3
0 0

oc

Along CA,y = 1thenz = x + iy = x + i and dz = dx and x varies from 0 to 2.
z2 = (x+10)>=x%—1+2ix.

1 2
53
f22d2=f(x2—1+2ix)dx= l?—x+ile
CA 0 0
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8 .2
=§—2+4l=§+4l

i 2 2+ 11

Hence I=—§+§+4l= 3

Note: In this problem, we find that the complex line integral is independent of the path of

integration. The reason for this will be learnt later on.

EX.16. Evaluate

1+i

f (x—y+ix?)dz
0

along the line fromz=0toz =1 +1.

Solution:
Y A
Pl 1)
©,1) 17
F
5\
X
o > A(l, 0) "
Fisurc 19

Let z = x + iy,thendz = dx + idy

1+i 1+i

Nowf (x—y+ix2)dZ=f (x —y + ix?) (dx + idy)
0 0

= f(x —y + ix?) (dx + idy)
opP

The equation of OP is y = x,then dy = dx and x varies from 0 to 1. Therefore

1+i 1
f (x—y+ix?)dz= f(ixz) (dx + idx)
0 0

1

= f(ixz) (1+i)dx

0
1
=(—1+i)fx2dx
0
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=(—=1+1) l%l

_Slki_ 11
-~ 3 ~ 373!

EX.17. Evaluate

1+i

Of (x%2 —iy)dz

along the paths (a) y = x (b) y = x2.

YA\

21, 1)

V=X
y=x

(@) ) X
Figure 20

Solution: (a) Along y = x,dy = dx, x varies from 0 to 1.

1+i 1+i

f (x?2—iy)dz = f (x%2 —iy) (dx + idy)[since z = x + iy; dz = dx + idy]
0 0
1
= f(x2 —ix) (dx + idx)
0

- f(xz —ix) (1 + D)dx
0

x3 x2
=(1+1)I?—170

5 1

ol

6 6
(b) Along y = x2,dy = 2x dx and x varies from 0 to 1.

1+i 1+i

f (x2—iy)dz = f (x%2 —iy) (dx + idy)

1
= f(xz —ix?) (dx + i2x dx)
0
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=(1—i)fx2(1+2ix)dx

5 1
=—=41i—-

x3  x*
SN SN ol
(143+%0 6 '6

EX.18. Evaluate j z? dz where the ends of C are A(1,1) and B(2,4) given that
c

(i) C is the curve y = x?2, (ii) C is the line y = 3x — 2.

Solution: (i) Along y = x2,dy = 2x dx and x varies from 1 to 2.

c

- j Z2 dz = f(x + l:V)Z (dx + ldY)
AB
= f (x% — y? + 2ixy)? (dx + idy)
AB

f{(xz —xHdx — 2x3dx} + iJ{Zx(xZ)dx — (x% —x%)2x dx}
1 1

=—?—6i

(i) Along y = 3x — 2,dy = 3dx

f z2dz = f (x + iy)? (dx + idy)
AB

c

= f (x?2 —y2 + 2ixy)? (dx + idy)
AB

= f{xz — (B3x—=2)2 +2ix(3x — 2)}(dx + i3dx)
AB

= -~ -6

Note: The values of the integral along the two curves y = x2 and y = 3x — 2 are the same

which implies that fC f(z) dz is independent of the path joining any two points. For proof

refer to Cauchy’s theorem.
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EX.19. Show that
f(Z +1)dz=0
C

where C is the boundary of the square whose vertices are at the pointsz =0,z =1,z=1+1i
and z = i.

YA
Solution: Letz = x + iy (1)
G
Then dz = dx + idy (2) (0, 1) rd (1,1)
G W
Laj@+1mz=h+5+g+u (3) TG
c ~ )
r g X
(0, 0) G (1, 0)
I, = j(Z+1)dz= f(x+iy+1)(dx+idy)
Figurc 21
Cy Cy
Along C,,y = 0,dy = 0,dz = dx. Also x varies from 0 to 1.
1 1
'I_f( +1)d_(x+1)2 _4 1_3 4
th= D= | S5 257373 O
0

Along C,,x = 1,dx = 0,dz = i dy and y varies from 0 to 1.

vl = f(Z+1)dz= f(x+iy+1)(dx+idy)
Cy C;

1 1
=f(1+iy+1)idy=if(2+iy) dy
0 0

2 . 2 1 _1 4
:iF_%?ll: ;l (5)
0

Along C5,y = 1,dy = 0,dz = dx. Also x varies from 1 to 0.

sl = f(Z+1)dZ= f(x+iy+1)(dx+idy)

:f(x+i+1)dx=[x;+(i+1)xl

3 .
=5 (6)

Along C,,x = 0,dx = 0,dz = i dy and y varies from 1 to 0.
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ol = f(Z+1)dz= f(x+iy+1)(dx+idy)

Cy Cy

=j0(iy+1)idy= f(i—y) dy
0

l—+1yl =%—i (7)

Adding (4), (5), (6), (7), we get
I=11+12 +13 +I4
3 —1+4i 3 1

=E+ > —E—l+§—l=0

EX. 20. Evaluate f sin zdz along thelinez =0toz =i.
c

Solution: Let z = x + iy,thendz = dx + idy
Givenz=0toz =1i.
l.e,x+iy=0+0itox+iy=0+1i
i.e.,x=0,y=0tox =0,y =1.i.e.,(0,0)to (0, 1).

Now f sinzdz = f sin (x + iy) (dx + idy)
C C
Along C,x = 0,dx = 0 and y varies from 0 to 1.

1

:-fsinzdz=fsin (iy).idy

(o 0

_; [—COS. (iy) ]1

=—cosi+1=1—cosi

EX.21.Evaluate fC e?dz, Cis|z| = 1.

Solution: Put z = e

, 1z] =1
Then dz = i ei®dg /' \
2T }x
i . 0
f e?dz =f e¢’ iefde \/

(o 0

Pute® = x,thenie®df = dx Figure 92
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When 6 =0,x =1
When 6 = 2m,x =1

1
Hence] ezdz=jexdx= 0.

(o 1

EX.22. Prove that

dz ]
f = 2mi
zZ—a

Solution: The equation of the circle |z — a| = r can be written as

where C is the circle |z —a| = .

z—a=re? thendz =rie?do
Also 9 varies from 0 to 2.

21

dz rie®do ,
= = 2mi
z—a re
c

0

EX.23. Evaluate

f log z dz,where C is the unit circle|z| = 1.

Cc
Solution: The equation of the circle |z| = 1 can be written as
z=1¢e9 thendz =ie'?do
Also 0 varies from 0 to 2.

21

-'-flogz dz=f log (e'?).ie®dg
c 0

2
= f i0.ie'9df (- log e* = x)

0

2n
= — f 0e®de
0
= — [9 (#) -1 (%9)]2” [Using Bernoulli’s formula]
IZneiz” . l
=—|———+e®?" -1
i
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21 .
= _[T+1_1] (- em™ =1)

2m .
= —T = 2mi

EX.24. Evaluate

2+i

f (2)? dz along the line x = 2y.

Solution: Let z = x + iy
Thendz = dx +idy and z = x — iy
(2)? = (x — iy)?
=x2—y% - 2ixy

Ya

Al2, 1)

2+i

f (2)? dz = f(x —y? = 2ixy) (dx + idy)

LY

Along 04, x = 2y then dx = 2dy Figurc 23
2+i

f(Z)2 dz—f(4y —y? —4iy?) (2dy + idy)

=(2+1) f(3y2 —4iy*) dy

31

—(2+l)[y —41—
0

=e+n(1-%) =i@-d

(GO

EX. 25. Evaluate f [(x% + y?)dx — 2xydy] along(i)y = x (ii)x = y?(iii)y = x2.

(0, 0)
Solution: (i) Along the curvey = x,dy = dx andxvaries from 0 to 1.
1 1 1
[(x2 + y?)dx — 2xydy] = f[(xz + x2)dx — 2x%dx] =0
(0, 0) x=0
(ii) Along the curve x = y?,dx = 2y dy and y varies from 0 to 1.
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1D

1
[(x% + y?)dx — 2xydy] = f [((y* + y*)2ydy — 2y3dy]
(o, 0) =0

1
— f 2 5 dy = l
= y-ay = 3
y=0
(iii) Along the curve y = x2,dy = 2x dx and x varies from 0 to 1.
@ 1 1
[(x? + y?)dx — 2xydy] = j[(x2 + xH)dx — 4x*dx]
(0, 0) x=0
1

4
— Yyt -
f(x 3xY)dx = G

x=0

2.5 Cauchy’s Integral Theorem:
If f£(2) is analytic at every point of the region R bounded by a closed curve C and if

f'(2) is continuous throughout this closed region R, then

J-f(z)dz = 0.

Proof: Let f(2) = ulx,y) +iv(x,y) =u + iv.
Since z = x +iy,dz = dx + idy.

Hence f f(z2)dz = f (u + iv) (dx + idy)
C C

= f(udx - vdy) +1i f (vdx + udy) (1)

Since f'(z) is continuous, the four partial derivatives
du du Jdv q dav
6x'(')y'6xan dy
exist and are also continuous in the region R enclosed by a curve C. Hence we can apply

Green’s theorem, namely

(Pdx + Qdy) = — - — dx dy
J | Ge=5)

to each of the two line integrals in the right side of (1).
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Hence (1) becomes

jf(z)dz—ﬂ —a—Z—a—u dxdy+1ff 3—7;—2—; dx dy (2)

But the function f(z) is analytic and so u and v satisfy the Cauchy-Riemann equations,

namely
du OJv ou dv
x = @and@ = — FP
Hence the integrals of each of the double integrals in the right side of (2) are zero

throughout the region R.

Hence j f(z)dz=0
C

Note: 1. The French Mathematician E. Goursat was the first to point out that the above
Cauchy’s theorem can be proved without making use of the hypothesis that f'(z) is
continuous. Consequently, the revised form of the theorem, usually known as the Cauchy-
Goursat theorem, is stated as follows:

If a function f(z) is analytic at all points interior to and on a closed contour C, then

f f(z)dz = 0.
Cc
1. We have seen that the line integral
f (Pdx + Qdy)
Cc
will be independent of the path of integration if Z—; = g—g.

Now if f(z) = u + iv is an analytic function,

f f(z2)dz = f (udx — vdy) + i f (vdx + udy)
c c c

The two integrals on the right side will be independent of the path of integration if
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du OJv du av )
Pl Eand@ = — a—xrespectlvely.
But these are the well known Cauchy-Riemann equations, which are necessarily
satisfied if f(z) = u + iv is analytic. Hence if f(z) is analytic in a simply connected region

R, then the line integral of f(z) is independent of the path joining any two points of R.

EX.26. If C is the boundary of the square with vertices at the points z =0,z =1,z=1+1i

and z = i, show that

f(3z+1)dz= 0.
Cc
Solution: Given f(z) =3z+ 1

Since f(z) is analytic everywhere (and in particular on and within the simple closed
contour C).

Hence by Cauchy’s theorem, it follows that

jf(z)dz= 0
C

i.e., | 3z+1)dz=0
/

EX.27.1f C is any simple closed curve, evaluatef f(2)dzif f(z)=
c

(a)sin z (b)cos 3z (c)e??(d)z* + 2 (e)sin 3z + 8z3
Solution: All these functions are analytic everywhere and hence in particular on and within

any simple closed curve C. Hence, by Cauchy’s theorem
f f(z)dz=0
Cc

for each one of the given functions.

2.6. Extension of Cauchy’s Theorem (Cauchy’s theorem for multiply connected region):
Cauchy’s theorem can be applied even when the function f(z) is analytic over a

multiply connected region R.
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Y A A ¥ G
B g
LY
o % " Figure 24 (b) ks
Figurc 24 (a) =

Let f(z) be analytic in the annular region R between two closed curves C;andC,.
By introducing the crosscut AB, the annular region is converted into a region bounded by a
single curve.

We apply Cauchy’s theorem to the connected contour C;ABC,BA and so

! f(2)dz =0

where the path C is a combined contour indicated by arrows: (i) along C; in the anticlockwise

sense (ii) along AB (iii) along C, in the clockwise sense and (iv) along BA.

i.e., | f(2)dz+ | f(z)dz+ | f(z)dz+ | f(z2)dz=0 (D
[ frow o |

But the integrals along AB and BA are cancel.

Therefore
ff(z)dz+ff(z)dz=0 (2)
Cy Cz

provided each integral is traversed in the positive direction shown in fig. 24(a). In (2), we can

reverse the direction of integration round C, and transpose that integral. Then, we get

| r@az= | r@a 3)
C C,

where each integration is now done in the anticlockwise direction as shown in fig. 24 (b). The
result (3) is known as the important principle of the deformation of contours:

The line integral of a single valued analytic function f(z) around any closed curve C;
is equal to the line integral of the same function around any other closed curve C, into which
the first can be continuously deformed without passing through a point in which f(z) fails to

be analytic.
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If £(2) is analytic in a multiply connected region bounded by the exterior contour C
and the interior contours C;, C,, ....., C,,. The integral over the exterior contour C is equal to
the sum of the integrals over the interior contours C;,C,, .....,C,. It is assumed that the
integration over all the contours is performed in the same direction and that f(z) is analytic

on all the contours.

EX.28. Consider the region 1 < z < 2. If C is the positively oriented boundary of this region

show that

f dz _ 0
z2(z2 +16)
c

Solution:

™

|z| = 1 and|z| = 2 are two circles with centre at (0, 0) and radii equal to 1 and 2
respectively.

The region 1 < z < 2 is the dotted portion in the figure.

Let C be |z| = 2, the outer circle and C; be |z| = 1, the inner circle.

The positively oriented boundary of the region is obtained by tracing |z| = 2 in anticlockwise

sense and |z| = 1 in clockwise sense.

. . dz .
The singular points of f(z) = m are z = 0 and z = +4i.

These three points are outside the region under consideration.
Hence, f(z) is analytic on and within |z| = 2 but on and outside |z| = 1.

Hence, by the extension to Cauchy’s theorem, we have

!f(z)dz= 0
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2z
> dz where C is |z| = 1.

EX. 29. Evaluate f
C

Solution: The point z = 2 lies outside C.

2z

Therefore the function > is analytic within and on C.

Z_
eZz

Z_Zdz=0

Hence by Cauchy’s theorem, f
C

EX. 30. Evaluate 3€ (z — a)™ dz, where C is a simple closed curve and the point z = a is
c

(1) inside € (i) outside C (n is an integer).

Solution: (i) Let C: circle z—a =re'®,i.e.,a is inside C.

2T
.(}g (z—a)”dzzj(r eie)n.ireiedé?
c
0

2m
— hJHJ.f eKn+U0 de (1)
0
i(n+1)0 127
P n+1[e

- | ifn=-1
T lim ihn #

rn+1 ]
=7 [e2(*Dm — 1],ifn # —1
Fn+l
b [cos2(n+ D) — 1],ifn = —1
=0,ifn # -1

If n = —1, then

jg (z—a)*dz = if de (from (1))
¢ 0

(ii) If n = —1 and If a is outside the circle C, then

dz
f P 0 (using Cauchy’s theorem)
. Z—

Since is analytic inside C.
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EX.31. Verify Cauchy’s theorem for the integral of z3 taken over the boundary of the
rectangle with vertices —1,1,1 +i,—1 +i.
Solution: The boundary of rectangle C consists of four curves c;, ¢,, c3 and c,. So

jZ3dz=jz3dz+fz3dz+fz3dz+fz3dz (1)

Cc Cc1 Cy C3 Cyq
Along c¢;: y = 0,dy = 0 and x varies from -1 to 1.
1

1
.'.fz3 dz = f(x+iy)3 (dx + idy) = jx?’ dx =0
1

C1 -1

Y
B(1,1) i
Caa,n
C!\'f +Cs
) L%
cc,0 o ¢ paoeg X

fisure 26

Along c,: x = 1,dx = 0 and y varies from 0 to 1.

1 1
f z3 dz = f(x + iy)3 (dx + idy) = f(l +iy)3 idy
0 0

C2
1
_ 5
= if(1+3iy—3y2—ly3)dy= ~2
0
Along c;: y = 1,dy = 0 and x varies from 1 to -1.

fz3 dz=f(x+iy)3(dx+idy)=f(x+i)3 dx

C3
-1
=f (x3—i+4+3ix?—-3x)dx=0
1

Along ¢,: x = —1,dx = 0 and y varies from 1 to 0.

0 0
" fz3 dz = f(x +iy)® (dx + idy) = f(—l +iy)? idy
1 1

Cy
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1
5
=if(—1+3iy+3y2—iy3)dy=z
0

Substituting the above four values in (1), we get

f 3dz=0 E+0+E—0
Z zZ = 4 4—
(o

Hence the theorem is verified.

EX.32. Verify Cauchy’s theorem for the function f(z) = 3z% + iz — 4 if C is the square with
verticesat 1 +iand — 1 £ 1.

Solution:
Y AN
Ci
CtL 1) + B (1, 1)
N
CE\’ O Cl/\ f X
&\
D(L-) AQ,-1)
Figurc 27

The boundary of square C consists of four curves c;, c,,c5 and c,. So

ff(z) dz = ff(z) dz+ff(z) dz+ff(z) dz+ff(z) dz (D
c c1 2 €3 Ca

Along c;: y = 1,dy = 0 and x varies from 1 to -1.
-1
f f(z) dz = f [3(x +iy)? +i(x + iy) — 4] (dx + idy)
c1 1
-1
=f [Blx+i)?+i(x+i)—4]dx =14
1
Along c,: x = —1,dx = 0 and y varies from 1 to -1.
-1

f f(z) dz = f [3(x +iy)? +i(x + iy) — 4] (dx + idy)

Cp 1
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-1
- f [3(=1 4 iy)? + i(—1 + iy) — 4] idy = —2 + 4i
1
Along c;: y = —1,dy = 0 and x varies from -1 to 1.
1
j £(2) dz = f[3(x Fiy)? 4+ iCx + iy) — 4] (dx + idy)
3 -1
-1
- f [3Ge — )2 + i(x — ) — 4] dx = 10
1
Along c,: x = 1,dx = 0 and y varies from -1 to 1.
1

f £(2) dz = f[3(x Fiy)? +iCx + iy) — 4] (dx + idy)

A -1
1
- f[3(1 +iy)? +i(1 + iy) — 4] idy = —2 — 4
-1
Substituting the above four values in (1), we get

fz3 dz=14—-2+4i—-10—-2—-4i=0
c

Hence the theorem is verified.

EX. 33. Show thatf (z + 1)dz = 0 where C is the boundary of the square whose
c

vertices at the pointsz =0,z=1,z=1+i,z=1i.

Solution:
Y A
co,1 < B (1, 1)
k4 F X
LY
o ? A(l,0) 'x
(0, 0)
Figurc 28

The boundary of square C consists of four curves 0A, AB, BC and CO. So

269



Complex Analysis

(z+1)dz= |(z+1)dz+ | (z+1)dz+ |(z+1)dz+ [(z+1)dz (1)
Jervaes Jerp i Jern i [ i |

Along OA,y = 0thendy = 0,z = x,dz = dx and x varies from 0 to 1.

f(z+1) dz=f(x+1)dx=;
04 0

Along AB,x = 1thendx =0,z =1+ iy,dz = idy and y varies from 0 to 1.
1 1
j(z+1) dz=f(1+iy+1)idy==ij(2+iy)dy=2i—%
AB 0 0
Along BC, y =1thendy = 0,z = x + i,dz = dx and x varies from 1 to 0.
0
f(z+1) dz=j(x+i+1)dx=—(%+i)
BC 1

Along CO,x = 0thendx = 0,z = iy,dz = idy and y varies from 1 to 0.

0
1
j(z+1) dz = j(iy+ 1)idy=§—i
co 1
Substituting the above four values in (1), we get
f( +1)d —3+2' ! (3+‘)+1 =0
Z zZ = > l > > l > L=
Cc

EX.34. Verify Cauchy’s theorem for the function f(z) = z2? + 3z — 2i if C is the circle |z| =
1.

Solution: Let C: z = e®®where 0 < 6 < 27.

f f(2) dz = f (% +3e% —2i) (i.e'?)d6
c 0

2m
= f (e3® + 3¢9 — 2ie'?) dg
0

2T
= fei”9d9=0ifn¢0
0

Hence the theorem is verified.
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2.7. Cauchy’s Integral Formula:
If £ (2) is analytic within and on the closed curve C of a simply connected region R,

and if a is any point in the interior of R, then

1 [ f(@
f(a)_Z_m'sz—adZ’

Where the integration around C is in the positive sense.

Proof:
Given that f(z) is analytic over a region R whose complete boundary is C.
Let a be any point inside R. Draw a circle C, with centre at a and radius r sufficiently

small such that C, lies entirely inR. Since the function f(z) is analytic everywhere within R,

the function % is also analytic everywhere within R except at the one point z = a. In
particular, ’ZC(TZ: is analytic in the region R’ between C and C,. Hence the contour C may be
deformed to the contour C,. So applying Cauchy’s extended theorem for the function /;(_—Za :
we have
A A
@, _ (@ "
Z—aQa Z—a
C Co
Y g

Figurc 29

For a point z on C,, we can put z —a = r e'?.

Thendz = r e®.id#.

Mdz _ Mr o0

zZ—a retf
Co Co

Therefore deo

=i ff(a+rei9)d9 (2)
In the limits, as the circle C, reduces to the point a, asr — 0.
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Hence the integral in the right side of (2) approaches

i | fla)dd =if(a) | dO =if(a).2m
J !

Substituting this value in (1), we get

f I@ 10— 2mi F(a)
’ Z—Qa

or f(a)—z—m f(_Zzl
c

(3)

The relation (3) is called Cauchy’s Integral Formula. It expresses the value of an
analytic function at an interior point of a region R in terms of its values on the boundary of

the region.

2.8. Derivatives of an analytic function at interior points of a domain:

From Cauchy’s integral formula, we can readily obtain an expression for the
derivative of an analytic function at an interior point of R in terms of the boundary values of
the function. By definition, taking ato be interior point and f(z) as the analytic function, we

have

£(a) = lim fla+Aa) - f(a)

Aa—0 Aa

1 1f f(2) f(Z)
d

im — zZ —
Aa~0Aa |2mi) z— (a + Aa) 2mi ) z — a
c

applying Cauchy’s integral formula for both f(a + Aa) and f(a)

_ 1 1
_AlérBoE ﬁff(z) —(a+Aa) Z—a
c

11
= MmN ﬁcff(z){ Aa)(z—a)
. f(2)
_Zm cll—>0f (z—a—-Aa)(z—a) dz
f(2)
me (z - a)2 @
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Proceeding similarly, we have

p 2! f(2)
fa) = ~ 2mi ! (z—a)3 dz @
" _ 3 f(2)
f(@) == 2mi J (z — a)* dz )
and in general,
. @)
f@) = 27Tlf (z—a)"+1 )

This is called Generalization of Cauchy’s Integral Formula.

We have thus established the important fact that analytic functions posses derivatives
of all orders. Also we find that every derivative of an analytic function has a derivative and
hence, in turn, is also analytic.

It can also be noted that the results for the derivatives f'(a),f" (a),f"'(a) etc.,
obtained in . (1),(2), (3), ..... above can be obtained ordinarily by repeatedly differentiating

within the integral sign Cauchy’s integral formula with respect to the parameter a.

EXAMPLES
EX.35. Using Cauchy’s integral formula, find the value of

J‘ z+4 d
z24+2z2+5 d

Cc
where C isthecircle [z + 1 —i| = 2.
Solution: Given |z +1 —i| = 2,i.e.,|z— (-1 + )| = 2.
This is clearly a circle C with centre —1 + i and radius 2 units.

z+4 z+4 z+4
2242245 (Z+1)2+4 (z+1420)(z+1-2i0)

Consider the function

_z+4 1
f@= vz (1)

This function is analytic at all points inside C. In fact, it is analytic everywhere except at z =

—1 — 2i. but this point (=1 — 2i) is outside C. The point z = —1 + 2i is inside the circle C.

Hence by Cauchy’s integral formula, we have
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fla) = —— f(Z)

21 — a
c

Taking a = —1 + 2i, we have

f Zf (_Zl dz = 2mi. f (@)
Cc

j z+4 dz = 2mi
el Griv 20+ 1-200 T mi-f(a)
c

, f z+4 o _, . atd from (1)
ben Pt 25Ty rom (D)
Cc

_5 ( -1+2i+4 )
T\ I 2it1+2i

—> _(3+2i>_n(3+2,)
-\ T4 ) T2 !

1 73—z
EX. 36. Prove that

omi) Z=z0)7 dz = 3z,if C is a closed curve described
C

in the positive senseandz,is inside C. What will be its value when z, is outside C ?
Solution: By Cauchy’s integration formula, we have

. f(z)
fi(a) == an_].(z a)"+1

where a is a point inside C.

In this, take f(z) = z3 — z,a = zy and n = 2. Then

" (7)== 2! z3—2z
1"z C2mi) (z—2y)3
c

dz

1 z°—z f"(20)
“2mi) (z—zp)3 dz = 2 L)
c

Now differentiation gives, f'(z) = 3z — 1 and f"'(z) = 6z
Therefore f'"(z,) = 6z, and (1) gives

1 z3—z Uy = 3
2mi ) (z—zy)3 Z= 2%
c
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z3-z

(z-20)%

Therefore by Cauchy’s theorem,

If z, is outside C, take f(z) = This function is analytic at all points inside C.

73—z
[T

(z —2,)3

2

+ 4
3 dz where Cis(a)|z| =5 (b)|z|

EX. 37.Evaluate 3€
c

= 2 taken in anticlockwise
(or positive sence).
Solution:(a)|z| = 5 is the circle with centre at (0, 0) and radius 5 units.

Given function is analytic everywhere except at z = 3 and lie inside C.

z—3 dz = z—a
C

dz

% z2+4 f(2)
c

where f(z) = z%2 + 4,a = 3and C is |z| = 5 taken in anticlockwise sese.

Using Cauchy’s integral formula

f @) dz = 2mi f(a) = 2mi[z? + 4] ,-q—3
) z-a

= 2mi(9 + 4) = 26mi
(b)|z| = 2 is the circle with centre at (0, 0) and radius equal to 2.

The point z = 3 is outside this curve.

2
Therefore the function % is analytic on and within C:|z| = 2.

Hence, by Cauchy’s theorem

EX.38. Let C be the circle |z| = 3 described in positive sense.

Let g(a) = [,

lal > 3.

2z2

:Z‘Z dz (la| # 3) Show that g(2) = 8mi. What is the value of g(a) if

z

Solution: |z| = 3 is the circle with centre at (0, 0) and radius equal to 3units.
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. 2z2—z-2
Consider g(a) = f —dz
zZ—a
c
2722 —z7 -2

s is analytic everywhere except at z = a.
This point z = a may be (i) within the circle or (ii) on the circle or (iii) outside the circle.
Since |a| # 3, z = a is not on the circle.

222 —z-2
Case I: If z = ais within the circle,—ais analytic within C except at z = a.

Therefore take f(z) = 2z2 —z — 2;

222 — 7z —2
g(a)=dez

zZ—a
(o

z
- j zf (— Zldz = 2mi f(a) (by Cauchy’s integral formula)
C

=2mi (2z>? —z—2)atz=a
=2mi (2a® —a—2)
~g(2)=2mi (8—2—2) =8mi
Case Il: If |a| > 3, z = a is outside the circle |z| = 3.

2
z¢—z—12
Therefore Y _—a is analytic everywhere on and within C.

22—z —12
Hencef ﬁdz = 0 by Cauchy’s theorem.

c

EX. 39. Let C be a closed contour described in the positive sense.

z3+ 2z
Let g(a) = ( BE ——dz . Show that g(a) = 6mia if a is within C and g(a) =0

when a is outside C.

Solution: Case I: Let z = a be within C.

73 4 2z
(z—a)d
C

f (Zf—(zcz)3

Letg(a) = dz
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Using generalization to Cauchy’s integral formula, we get

fn( ) = n! f f(Z) dz

~ 2mi (z—a)n?
c

== ij G f(;))zﬂ dz where f(z) =23+ 2z

f'(z) =3z%+2andf"(z) = 6z

1 f@
6a = — mdz
i.e., j %dz = 6mia

i.e., g(a) = 6mia
Case Il Let z = a be a point outside C.

73 4+ 2z

Then the integrand in Gy dz is analytic on and within C everywhere.

Therefore by Cauchy’s th fz3+2zd_
ererore y auc y S eorem, (Z — a)3 YA
C

EX.40.Evaluate f
c

,where C is the circle|z| = 1.
2z—3

Solution: Cauchy’s integral formula is

f Zf (_Zi dz = 27i f (@) )
Cc

N j‘ _1f dz
W) 2,-372) 3
2

CZ

Here f(z) = 1,a = ; which lies outside of the circle |z| = 1.

f dz _0
) 2z—-3

c

277



Complex Analysis

dz
EX.41. Evaluatef ———,where C is the circle|z| = 2.
2z+3
C

Solution: Cauchy’s integral formula is

j 1@ = 2 f@) )

Z—a

Cc

N j dz _ 1[ dz
V) 22+372 3
C c Z +§
Here f(z) =1,a = —g which lies inside of the circle |z| = 2.

f dz_ _ lf dz = : 27‘[if(— %) [from (1)]

2z—3 2 32
C CZ+§

= i (1)(-.-f(z)= 1 :f(-%): 1)

=i

3224+ 7z+1 _ _
EX.42. Evaluatef ———dz,where C is the circle|z| = =
z+1 2

c

Solution: Given integrand is
f3Z2+7Z+1_f3ZZ+7Z+1
z+1 B z—(-1)
C
Here f(z) = 3z% + 7z + 1,a = —1 which lies outside of the circle |z| = ;

Therefore by Cauchy’s theorem, we have

.f322+7z+1_0

z+1
c

1
EX.43.Evaluatef ;dz, where C is the circle|z| = 1.
C

Solution: Given integrand is

1 e ?
dz = dz
ze? z—0
c C

Here f(z) = e %,a = 0 which lies inside of the circle |z| = 1.
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Hence by Cauchy’s integral theorem, we have

Z 0

22

z—1)(z—-2)

EX. 44. Evaluatej C dz, where C is the circle|z| = 3.

Solution: f(z) = e?Z is analytic within the circle C:|z| = 3 and the two singular points a =
1 and a = 2 lie inside C.

'.'!(Z—le)z(ZZ—Z)dZ=fezz(ziz_zil)dz

Cc
eZz eZz
dz — d
z—2 d jz—l d

Il
S —

c
= 27i f(2) — 2mi f(1) (by Cauchy’s integral formula)

= 2mie* — 2mi e? = 2mi (e* — e?)

CcOS TTZ
EX.45. Evaluate ( 7= 1) dz,around a rectangle with vertices 2 +i,—2 + i.

Solution: f(z) = cos mz is analytic in the region bounded by the given rectangle and the two

singular points a = 1and a = —1 lie inside this rectangle.

COSﬂ'Z
~ . %% = —f (——:) cos z dz
TI-.-"-\
_1j‘cosnz d 1J‘cosrtz d - fi o
—2) 71 Y%72) 21 ¥ .
¢ ¢ 2 do] 1 |2 7
9_; 2.
= %{Zni cos(1)} — %{Zni cos t(—1)} = 0 [By Cauchy’s i
Figure 80
sin?z _ _
EX. 46. Evaluatef 7612, where C is the circle|z| = 1.
c\#7%

Solution: Let f(z) = sin?z is analytic inside the circle C:|z| = 1 and the point
a= % (0.5 approx.) lies within C.

Therefore by Cauchy’s integral formula, we have
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. 2! f(2)
f"(a) = =— (Z_a)gdz

21
C

sin?
f l—ngz yial l (sm z)

- (=5)

2T
~6

=mi (2 cos 2z) _n = mi
6

e VA
EX.47. Evaluatef ———dz, where C is the circle|z| = 2.
(z+1)*

Solution: Let f(z) = e?# is analytic within the circle C:|z| = 2. Also z = —1 lies inside C.

Therefore by Cauchy’s integral formula, we have

fru(a) — 3! f(Z) dz

271'l (z—a)*

e 2Z
J (z+ 1)* 1)4 [ 3 (e )l
8mi

i
=58 e* ],y = 5 -

dz,where C is the circle|z| = 4.

7-[2)2

e’ e’ . . .
Solution: CETDF = z T D2z — )2 is not analytic at z = +mi.

However both z = +mi lie within the circle |z| = 4.

eZ
EX.48. Evaluatef _
(z2 +
c

\ e” __A B C D

0W(z+ni)2(z—ni)2_z+ni (z+mi)? z—mi (z—mi)?
1

here A=—— ,C=——— ,B=D=———

where 2m3i 2m3i 472

f e? Qg = 7 f e? 4 f e’ 4
") (22 + m?)2 2= s z + mi z z—mi’
C c c

1 e’ e’
_F{fc (z+mi)? dz + fC (z—mi)? dZ} =

= e?

=i/r
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4z°+z+5 _ _ 2y
EX.49.1f F({) = f ?dz, where C is the ellipse (—) + (—) =1,
Cc

find the value of (a) F(3.5) (b) F(i), F'(—1) and F" (—i)

] 4z2+z+5
Solution: (a) F(3.5) = j ﬁdz
) .

Since { = 3.5 is the only singular point of 4z% + z + 5/(z — 3.5) and it lies outside the
ellipse C, therefore, 422 + z + 5/(z — 3.5) is analytic everywhere within C.

472+ z+5

—Y dz=0,i.e.,F(3.5) =0

Hence by Cauchy’s theorem, f
c

(b) Since f(z) = 4z% + z + 5 is analytic within € and { = i,—1 and — i all lie within C,
therefore,

by Cauchy’s integral formula

1 (@
f(c)—%lz_{dz

_ 4z°+z+5
| e
i.e., F(Q) = 2mi (40%+ { +5)
ThenF’'({) = 2mi (8¢ + 5)andF" ({) = 16mi
Thus F(i) = 2n(i — 1)
F'(—1) = —14 wi andF" (—i) = 16mi

dz = 2mi £ ({)

z3—sin 3z
(=-3)°
2

using Cauchy'’s integral formula

EX.50. Evaluate fC dz,where C is the circle|z| = 2

Solution: f(z) = z3 — sin 3z is analytic inside the circle C: |z| = 2 and the singular point
a= % lie inside C.

By Cauchy’s integral formula, we have

f"(a) = dz

2mi
c

2! f f(2)
(

z—a)d
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2

z3 —sin 3z s d
. _ e () . 3 o
- f —————dz=mif (2) =mi—— [2® — sin3z] _n

q)
Tl E

=i [6z +9sin3z] _n
2

[3z2 —3 cos 3z] =
2

= 3mi(m — 3)

zZ
EX.51. Evaluate f 3 dz,where C is any simple closed curve enclosing the point

ze
(z+a)?
Cc
Z = —a.
Solution: Let f(z) = ze?. Then f(z) is analytic and the point - a lies inside C.

By Cauchy’s integral formula, we have

. _ 2! f(z)
frla) = 27ric (z—a)3 dz
%dz =i f"(—a) €]
c

Now f(z) = ze?
Then f'(z) = ze? + e*
f"(z) = ze? + 2e* = (z + 2)e*
W f'(—a)=(—a+2)e™
Substituting the values of f(z) and " (—a) in (1), we get

f 2 d =Q-a)mie™®
(Z+a)3 Z = a)TlLe
C

sinmz? + cos nz? _ _ _
EX.52. Evaluate dz,where C is the circle |z| = 3 using

(z—-1D(z-2)

Cauchy's integral formula.
Solution: Let f(z) = sinmz? + cos mz? is analytic within the circle |z| = 3 and the singular

points a = 1, 2 lies inside C.
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f (z —jlc)(g -2) dz = ! [ﬁ_ z i 1]f(z)dz

Cc

@ dz — Mdz

z—2 z—1
c c

= 2mi f(2) — 2mi (1) (using Cauchy's integral formula)

= 2mi[(sin 4w + cos 4m) — (sinmw + cos )] = 4mi

, sinz? + cos mz? ,
i.e., dz = 4mi

(z—-1(z-2)

Z

EX. 53. Using Cauchy’s integral formula, evaluate | c mdz,

1
where C: |z — 2| =5

Solution: The integrand has two singular points at z = 1 and z = 2 of which only z = 2 lies

inside C.

f(z) = ﬁis analytic on and within C. Y 4
£
Herea =2andn = 1. 7R
. f \
Therefore by Cauchy’ s integral formula o:._:,[\ s
(@ et
2 , e
f'(a) = f > dz, we get

2ni) (z—a)
C

Cf DG [% (= 1)L=2

= —2mi

2

z2+1

EX.54.Use Cauchy’s integral formula to evaluatef dz,where C: |z —i| = 1.

Cc
Ya
z%-1

dz = c E;:BZZIESdZ

2_
Solution: We have [ 22+1

The integrand has two singular points at z = i and z = —i.

Among these only z = i lies inside C.
2 o "

zc—1
P is analytic on and within C.Here a =i. 1

Therefore by Cauchy’ s integral formula

Let f(z) =




Complex Analysis

1
f(a) = o f zf(—ZZz dz, we get

C

j z dz = 2mi f(a) = 2mi [

= —2T.
z2+1 T

Zz—ll
C

z+1
zZ=1

z2+1

EX. 55. Using Cauchy’s integral formula, evaluate

Solution: The integrand has two singular pointsat z = 0 and z = — %

Both lies inside the circle |z]| = 1.

11 2
W 2z+ 1)z 2z+41

j z2+1 d—fz2+1d ij2+1d
T ) zQ2z+1) Z= z d 2z+1 d
C C

c

N

= 1.

= 2mi [f(O) - 2f (— é)] where f(z) = z2 + 1, using Cauchy’s integral formula

= —3mi
) ) cosh mz _
EX. 56. Using Cauchy’s integral formula, evaluate | ———— dz, where C is|z|
z(z2+1)
c
. cosh iz _ cosh iz
Solution: we have |, o 42 = Je promys—— .

The integrand has three singular points at z = 0, %i.

=2

_ ) cosh iz 1 11 1 1 &
By parital fI‘aCtIOHS,Z(Z 0G0 "7 7= 27+ /“-—\]\: .
Take f(z) = coshmz. \'—/
Figure 88
coshtz f(2) 1(f@ 1(f()
h .f z(z2 + 1)dZ B f sz _E.f z— idZ _Ef z+ idZ [from(1)and (2)]
c c c ¢

Herea = 0,1, —i.

Therefore by Cauchy’ s integral formula f(a) = % ) c indz, we get

Z—

j‘ cosh tz

1 1
2z =2 |f(0) =2 f(D) =5 f(=D)| = 4mi

c
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5z> —4z+3 X\ 2
EX.57.If F(a) = f ——— dz, where C is the ellipse (—) + (X) =1,
Z—a 3

(o

find the value of (a)F(4.5) (b) F(2),F'(i),F"(—2i).

] 5z2 —4z+3
Solution: We have F(a) = f 7dz
c
_ 5z2 —4z+3
(a) Taking a = 4.5, we get F(4.5) = f ———dz
z—45
c

Now, the point « = 4.5 lies outside the ellipse C.

 5z2—4z+3 L
Hence the function — 25 I analytic within and on C.

5z2—4z+3
Therefore, by Cauchy's theorem,j ﬁdz =0
) :

i.e., F(45)=0
(b) Let f(z) =522 —4z+3
Since f(z) is analytic within C and a = 2, i, —2i all lie within C, therefore, by Cauchy’s

integral formula

1 (f(2)
f(a)=ﬁcfz_adz
2mi f(a) = %dz=F(a)

c
or F(a) = 2mi f(a) = 2mi (5a% — 4a + 3)

F'(a) = 2mi(10a — 4) and F"(a) = 2mi(10) = 20mi
Thus F(2) = 2mi(20 — 8 + 3) = 30mi

F'(i) = 2mi(10i — 4) = —4n(5+ i2) and F"(—2i) = 20mi

222 —z-2
EX.58.Find f(2) and f(3) if f(a) = f ﬁdz where C is the circle |z| = 2.5

Cc
using Cauchy’s integral formula.
) _ 222 —z—-2
Solution: Given f(a) = f —dz

Z—a
c
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Q) a = 2 lies inside the circle C:|z| = 2.5
Let ¢p(z) =2z%2 —z—2

¢(2) iz
—a

1
By Cauchy’s integral formula, ¢p(a) = o f ~
c

= 27i ¢p(a) = %dz = f(a)

Cc
= f(a) =2mi ¢p(a) = 2mi (2a? —a — 2)
f(2)=2mi (8—2—2) =8ni

272 —7 -2

(ii) Taking a = 3, we get, f(3) = f sz
c

Now, the point z = 3 lies outside C. Hence the integrand is analytic within and on C.

222 —z-2
= By Cauchy’s theorem, f (3) = j sz = 0.
c

EX. 59. Using Cauchy's integral formula, evaluate dz where C is the ellipse

J‘
2

Solution: Given ellipse is 9x2 + 4y? = 36 1. e,z

f(z) = z* is analytic within the ellipse C: 9x2 + 4y? = 36 and the two singular

y?
+ 3z = 1.1ts centre is (0, 0).

points a = —1,a =i lie inside C.

Consider T D=2
Let : .=A+B.+ C. (1)
z+1D)(=z-0? z4+1 z—-i (z—-1i)?
Then1=A(z-)?+Bz+1D)(z-i)+C(z+1) (2)

=(A+B)z?+ (-2IA—iB+B+C)z+(—A—iB+C)
Putz =i in (2), we get

1
1=C(+1 C =
@+ =C=97
Putz = —i in (2), we get
1
1=A(-i—1)? =24=—-
Ci=D° =A=Gy

Comparing constant term,
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1 1
—A—iB+C=1 =iB=-A+C—-1=- ~1
. : * A+02 1+1

i -1

5>iB=—— orB=—
N I VI N C Y.

Substituting the values of 4, B and C in (1), we get
1 1 1 -1 1 1 1

CtDGz—02 (+02z+1 A+2z—i 1+iGz=102

Hence

z d
! z+D)z-0)2Y

B 1 j z4 4 1 f z4 dy + j z 4
“a+02) 1Y T a+0) =i Y1) G-z
C

(1+ TR 2mi. f (1) — (1i Tk 21l f(L)+— 2mi. f' (i)
(Using Cauchy’s integral formula)
e 0w
CUTa+Dr A+ 1+
o 1 43
= om (1+i)2_(1+i)2+1+il

—> _(—41’)_ 8 41—
-y Ty !

INFINITE SERIES IN THE COMPLEX PLANE

2.9. Series of Complex Termes:

Most of the definitions and theorems relating to infinite series of real terms can be

applied also to series whose terms are complex. Consider the infinite series
@)+ )+ f3(2) + -+ fu(2) + - €Y
whose terms are functions of the complex variable z.

Let S,,(z) denote the sum of the first n terms of the above series. Then, if S, (z)
tends to a finite limit S(z) as n tends to infinity for all values of z in a region R, then the
series is said to converge or to be convergent and to have the sum S(z). R is called the
region of convergence of the series. The difference S(z) — S,,(z) is clearly the remainder

after n terms of the series to be convergent, it is necessary that
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Ai_r)gloSn(z) —-S(z)=0
A series which is not convergent is said to diverge or to be divergent.
Now, the absolute values of the terms of (1) form another series
If@D|+ 2@+ @]+ + (2] + - (2)
If the series (2) is convergent, then the series (1) is said to be absolutely convergent.
If (1) converges but (2) is not convergent, then it means that the series (1) is not absolutely

convergent. It is only conditionally convergent.

2.10. Taylor’s Series: Let f(z) be analytic at all points within a circle C with centre at a and
radius r. Then at each point z inside C,

(z —a)2 (z - ) (z —a)"

3
f@O=f@+f(@.c-a)+f"(@).——+f"(@.—7—+ -+ (@) ——

+ oo
This is known as Taylor’s series for the function f(z).

Proof: For any point z in the interior of C, we can write Cauchy’s integral formula as

f()——ff( 2) 42 (1)

2l
N 1 1 1 1 @
OWZ’—Z_(Z’—a)—(z—a)_(z’—a)(l_Z_a)
z'—a
Also we have the identity
1—a™
l4a+a?+a’+-+a"t= :
l1—«a
where a is a complex number, not equal to 1.
e, 1+a+a*+a+-+a" 1+ o 1 3)
Y l—-a 1-a
In equation (2), we substitute for
- Z_a . -
———¢q - taking @ = —— in equation (3).
1-= z'—a
Z —a
Then (2) gives
1 1 zZ—a Z—a\2 z—a\"1 1 Z—a\"
= 1
z'—z z'—a +Z’—a+(z’—a) * +(z’—a) +1_Z,_a(z’—a)

Therefore
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f@) _f@) |, G-afe) G-a¥G) | G-a' )
z'—z z'—a (z' —a)? (z' —a)d (z' —a)"
N (z—a)"f(z")
@D —ay

We divide throughout by 27i and integrate each term anticlockwise around C.

Therefore (1) becomes

f(Z') f(Z’) (Z - a) fz)
f()_Zl,[ 27TlCZ—a f(z—a)z
z-—a)" ' f(@) ,, @—a)n f(z") ,
+ 21i J (z' —a)" dz’ + 21i J (z'—2)(z' —a)" dz )
But we know from Cauchy’s integral formula that
1 fi) | B
Z_THJ z’—adz = f(a)
1 f(Z,) 1 g1
27riC (z' —a)? dz' = f'(a)
1 f(z') Iy’ — f"(a)
Zm (z' —a)d Y

j’ f(@) i M@
27Tl (z' — a)" C (n—-1)!

Hence we can substitute these in the first n integrals on the right side of (4).

Therefore (4) becomes

— 3
f(z):f(a)"‘f'(a)-(z—a)+f"(a).(Z 2k +f”’()(Z D
iy EmO " f@") :
+ "7 (). (n—1)! t f(z,_z)(z,_a)ndz (5)

The difference between f(z) and the sum of the first n terms is

_ (z—a)" f(z")

27Tl (z' =2)(z' —a)" dz
c

and this can be shown to approach zero as n tends to infinity. Hence as n — oo, the limit of

the sum of the first n terms in the right side of (5) if f(z).
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Therefore f(z) is represented by the infinite series

F@ = @+ f@.-a) + @ S . 22

= f@+ Z %fﬂ(a) ©)

This is Taylor’s series. It represents the function f(z) at all points interior to any circle
having its centre at a, and within which the function is analytic. The largest circle which can
be drawn around z = a, such that f(z) is analytic throughout its interior, is called the circle
of convergence of the Taylor’s series of f(z). The radius of this circle is called the radius of
convergence of the series.

Putting a = 0, (6) gives

f&) == O+ Y =)

e, f(2) == fO) +2f @+ f @+~ ()

This is known as Maclaurin’s series.

2.11. Standard Expansions: We have seen that when f(z) is analytic at all points within the
circle C, the Taylor’s series of f(z) is convergent within that circle. The maximum radius of
C is the distance from the point a (the centre of C) to the singular point of f(z) which is
nearest to a, since the function is to be analytic at all points inside C.

The following are standard expansions which can be derived by using Maclaurin’s

theorem:

2

z
(De?=1+— 1 +§+ -when|z| < o

3 Z5

(2) smz-z—§+g— --when|z| < o

2 Z4-

(3)cosz = 1—?+E— --when|z| < o

3 5

z3 z
(4)5mhz-z+§+§+ -when|z| < o

2 4

z¢ z
(5) cohs z = 1+§+E+ -when|z| < o

1
(6)E: 1+z+z?+--when|z| <1
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2.12. Laurent’s series: In most applications, we may require the expansion of a function
around points, where, or in the neighbourhood of which, the functions are not analytic.
Taylor’s series is not obviously applicable in such cases and we use a new type of series
known as Laurent’s series. This series enables us to expand a function within an annular
ring bounded by concentric circles, provided that the function which is being expanded is
analytic everywhere between the circles. The function may have singular points outside the
larger circle and also inside the smaller circle. In Laurent’s expansion of such a function,
there will be positive and negative powers of z — a. The expansion is given by the following
theorem.
Theorem: If f(z) is analytic throughout the ring shaped region R, bounded by two
concentric circles C; and C, with centre a, then at any point z in the region R, f(z) can be
represented by a convergent series of positive and negative power of z — a.

e, f(z2)=ayta(z—a)+a,(z—a)>+-+a,(z—a) + -

b b, by,

(o] (o] bn
= Z a,(z—a)" + Z—(z — o
n=0 n=1
1 f(z") )
wherea,, = 27rif 7 — dz''n=0,1,2,.....
C

1 z'

andb,, = f&) dz',)n= 1,2,3,.....

" 2mi) (z/ —a) "t
c

each integral being taken counterclockwise around any curve C, lying within the annulus and
encircling its inner boundary.

Proof: Let f(z) be analytic in the annular region R between two concentric circles C;
and C,. By making a crosscut joining any point of C; to any point of C, the annular region is
converted into a region bounded by a single curve. Taking z to be an arbitrary point of the

annulus, we have by Cauchy’s integral formula,

o .

1 ! b, \';,j.
f(z) = 5 Mdz’ ”\F\ B

z'—z B
C1ABC,BA

T~ C1
I
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f(z ’)

Zm B£ z' —z
f(z ’)
Zm z' —z

(since the integrals along AB and BA are cancel)

1 f(Z’) 1 f(Z’)

27‘[l z' —Z 27‘[l z' —Z
C1 CZ

where the integrations along C; and C, are both in the anticlockwise direction

1 f(z") gy L fz) ,

=2m (z—a)—(z—a) 271'l (z—a)—(z—a)

1 f(z") 1 .1 f(z") 1 )
= — ——a |4z +5= ; dz
2ni ) (z'—a) |1 - 2l ) (z—a) 1_%2—-a
Cy z'—a Cy 7 —a

(1)

In each of the integrals in the right side of (1), let us apply the identity

n

1
—=14+a+a*+a®+-+a" 1+
l1-«a 1—«a

which we used in deriving Taylor’s series.
Then (1) becomes

IOy U ACOM PO Sl AL At (S Al

2rni ) (z' —a) z'—a
c

n

N 1_1__a a7

1 f(z") zZ—a (z'—a\’ z —a\""" [z —a\" 1
+o— 1+ + +oe + —|dz’
2mi ) (z—a) zZ—a zZ—a z—a z—a) {_Z —a
C;

Z—a

_ 1 f@) o z-ma fG&) ., @-a®( f@E)
_Zﬂic (Z,_a)dz + i ) (z’—a)ZdZ + o C (z’—a)3dZ 4

N (z—a)*! f(z" ! (z—a)" f(z")

27l (z' —a)m z 27Tl (z'—a)"(z' —2)
Cl Cl

dz’
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+27Tl(Z ff(Z’) dz' +mff(2’) (Z —Cl)dZ
+mff(Z’)(Z —a)z dz'
oo Wff(z’)(z —a)dz -
1 fE@HE -a™
+ 27Ti(z—a)"cf (z—2") dz )
=ayt+a;(z—a)+a,z—a)’+-+a,(z—a)*+R,
b, b, ba . ;
+z—a+(z—a)2+m+(z—a)"+ 2 )
wherea,, = > lj @ f(Z,))nH dz',n=0,1,2, 4)

1
— I r_ n—1 I —
b, = —me fEZ)EZ —a)"tdz',n= 1,2,3, ...
C

f(z")
e., by me(z Sodzin =123, (5)
_(z—a)" f(@) ,
Ry = 21i ; (z' —a)"(z' — 2) dz

1 f@)Ez' —a™
andR; = 2mi(z — a)™ Cf (z—-2") dz

It can be proved that

lim R, =0and lim R, =0

n—-oo n—-oo
Hence f(z) is represented by the infinite series
f@)=ay+a,(z—a)+a,z—a)*+ - +a,z—a)" +
b b b
LI 2 4y
z—a (z-—a)? (z—a)"

(6)

where a,, and b,, are given by formulas (4) and (5).
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Since f(z) is analytic throughout the region between C; and C,, the paths of
integration C; and C, can be replaced by any other curve € within this region and encircling
C,.

Note 1: The coefficient

1 f f(z)

a, = - dz'
" 2mi) (z/ —a)nt?
C

n
cannot be replaced by fn—(?) as we did in Taylor’s series, since f(z) is not analytic

throughout the interior of C; and hence we cannot apply Cauchy’s general integral formula.

Note 2: In most cases, the coefficients of Laurent expansion of a given function are not
found by using the above theorem. They are got by using various algebraic manipulations
depending on the nature of the function. In other words, the Laurent expansion of a function

over a given annular is unique.

EX.1. Obtain the Taylor series expansion of f(z) = i about the point z = 1.

Solution: Atz = 1, f(2) is analytic.

The point z = 0 is the only singular point and is at a distance of 1 unit from z = 1.
Hence, the Taylor’s series expansion of f(z) = i about z = 1.

Putz—1=wthenz=w+ 1.

11 .
f(Z):E:H——w:(1+W) !

=1-w+w?—-w3+--forlw| <1
=1-(z-D+(EZ-1?-(E-1)°3+ -forlz—-1| < 1

This is the required expansion.

EX.2. (i) Expand eZas Taylor’s series about z = 1.
(ii) Find the Taylor’s series expansion of e* about z = 3.
Solution: (i) We want the Taylor’s series expansion of e around z = 1.

Putz—1=wthenz=14+w.
L eZ = eltW = o oW
2 3

=e 1+W+T+§+'" forallw
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=el1+(z—1)+(z_1) it +l

2! 3!

— (z —1)"
This can also be written ase? = e + e Z %iflz — 1| < wi.e.,forall z

n=1

(ii) Proceeding as in (i), we obtain

2 3
zZ — p,3+w _ ,3 ,w _ ,3 R -
e‘f=¢e =e’.e —el1+w+2!+3!+ l

(z-3)*? (z-3)°
2 T3 ¢

=el1+(z—3)+ ---liflz—ll<00i.e.,forallz.

EX.3. Within what circle does the Maclaurin’s series for the function tanh z converge to the
function.

sinh z

l i . = =
Solution: f(z) = tanh z osh 7

The function is not analytic whenever cosh z = 0

] +T[i +3Tl’i .
i.e.,z=+—,+— etc.
2 2

We note that f(z) = tanh z is analytic at z = 0 and the singular points + % are the nearest to
z = 0 and are at a distance of% fromz = 0.

Hence, the Maclaurin’s series expansion of tanh z will be valid for the region |z| < %

and

EX.4. Give two Laurent series expansion in powers of z, for the function f(z) = 707

specify the regions in which those expansions are valid.

1
Solution: Case 1.22— == (1-2)71t

1-2)
1
=5A+z+z*2+2°+-)
Z
using the binomial theorem and taking |z| < 1

1 1
=—=+-+1+z+2z°+2°+--
VA VA

=z24+z '+ 2%+ 20+ 22423+

[ee]
— E Zn—2
n=0

Clearly the series is valid in the region 0 < |z| < 1.
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Case 2. If |z] > 1, then |§| < 1. So we write

1 1 1

This series is valid in the region |§| <1l,i.e.,|z] > 1.

EX.5. Obtain the expansion of the function ZZ_—Zl in (a) Taylor’s series in powers of z — 1 and

give the region of validity (b) Laurent’s series for the domain |z — 1| > 1.

Solution: (a) Let f(z) = ==

z2

Then Taylor’s series for f(z) in powers of z — 1 will be

fr(

Doy
n.

f@=f+ )
n=1

Z—1_1

Now f(z) = 2

—% and f(1) = 0.

Differentiating n times,

(Dl (D™ (n+ 1)!
fn (Z) = Zn+1 + ZNn+2

Therefore f*(1) = (=1)" n! + (—1)™*(n + 1)!
=D 1+ (—D(n+ 1)]
= (D" nl(-n)
=(—1D)™Inln

D" nln

(z—-D"
n!

Hence f(z) =0 + z =

— i(_l)nﬂ n(z—1"
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f(2) is not analytic at z = 0. Hence the above Taylor’s series is convergent inside a circle
with centre at z = 1 and radius <1. i.e., in the region |z — 1| < 1.

(b) To get a Laurent’s expansion in the region |z — 1| > 1, we note that ﬁ < 1.

Hence expand f (z) in powers of —.

z—1 z—1 z—1

z2 =(Z—1+1)2=[(Z_1)(1+ 1 )]2

Z 1

f2) =

1 2 3 (-1
_Z_1[1—2_1+(Z_1)2_...+m+...l
1 2 3 (=" n

1 G- G- teoor t

=32 (D" n(z—1)"" and thisisvalid in |z — 1| > 1.

EX.6. Find the Laurent expansion of the function
7z—2
(z+1)z(z-2)

f(2) =

Inthe annular 1 < [z + 1| < 3.

Solution: Putz+ 1 = u,thenz = u — 1.

Therefore
7(u—1) -2 7u—9
f(2) = =
uu—-1Dw-3) u(u-1Dw-3)
_ 3,1 2
" u u—-1 u-3
3 1 2
u(i-g) 3(1-3)
3 1 1\t 2 uy-1
= +u(-0) —30-3)
= 3+1<1+1+1 L. ) 2(1+ +u2+ 3+
u o ou u u? ud 3 3 32 33
—<2+1+1+>21++2+3+
S\ u w2 oud 3 3 32 33

2 1 1
‘(_z+1+(z+1)2+(z+1)3+'">
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2 1+Z+1+(Z+1)2+(Z+1)3+
3 3 32 33
Clearly this series is valid in the region |i| <1and |§| <1

e, |ul>1and |Ju| < 3,ie,1<|ul <3
i.e.,,intheannulus 1 < |z + 1| < 3.

z—1
EX.7.Expand f(z) = p—— in Taylor's series about the point (i) z = 0 (ii) z = 1.
z—1 z+1-2 2 1
lution: (i = = =1-——=1-2——=1-2(1+2)""
Solution: (1) f(2) = 77 =—— Z+ 1 1+z (1+2)

=1-21—-z+2z2-23+--)if|z| < 1
=—-1+4+2(z—2z>+2z3--)if|z| <1

— 14 zZ(—nnzn if 2] < 1
n=1

(ii) To expand f(z) about z = 1.

Putz—1=w,thenz=1+w
z—1 w ow w W wy 1
z+1_1+w+1_2+w_2(1+%)_5(1+5)
-2 ) () e fr] <
2 3 4
() -G e <

n

C -1
= > - (ZT> if|z — 1] < 2
n=1

Hence f(z) =

1

RPE with centre at — i.

EX.8.Find Taylor’'s expansion for the function f(z) =

Solution: By Taylor’s theorem

(z — a)? (z—a)"

F() = f(@) + (2 = f (@) + 5 F"(@) + =+ ——— (@) +

Put a = —i, then

S f@=fED+@E+HOf' (D) + %f”(-i} + -+ (z :!i) fr(=i) + - (1)
1
Here f(z) =m
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. . (n+ 1)!
ff(z2) =(-1) A =pnee

I T I R )
f(_l)_(1+z)2_§andf ) =(1 a=pne

Substituting in (1), we get

(z+W% D"(n+1)! o (z+ D"
(1+z)2= Z (1-pnz Z( 1)(J’l)( in+2

z+D)™ 1
A-D"(1-1i)?

- %+ Z(—nn (n+1)

(z+D™ 1
(1 =D (=20)

—+Z( D" (n+ 1)

. (z+i)"
=2+ Z( D"t D

EX.9. Obtain the Taylor expansion of e (**2) in the powers of (z — 1).
. C (z—a)"
Solution: By Taylor’s theorem f(z) = Z Tf" (a)

Taking a = 1 and f(2) = e(**9), we get

e(142) — Z ﬂel+1 [+ f(2) = e0#9)] = ¢? Z (z—-1)"
n! n!
n=0 n=0

Which is the required Taylor’s series.

EX.10. Obtain the Taylor’s series to represent the function
z? —1

,in th i < 2.
Z1DGET3) in the region |z|

z2 —1
Solution: Let f(z) = ZrDGz13)
3 . : ,
=1+ 12 743 (Resolving into partial fractions)
3 8
=1+

2(1+§)_3(1 +3)
= 1+%(1+§)_1 —§(1+5)
Expanding by binomial series
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3 z z* Z3 8 z z* Z3
f@=1+5(1-5+p-g+|-3(1-3+5 -5+

4 8 379 27
3 e (D0 8o (=D
_1+§Z o % _52 gn L
n=0 n=0
3w 3 8
=1+§Z(_ )n 2n+1_3n+1] "
n=0

which is the required Taylor’s series.

EX.11. Find the Taylor’s series expansion of cosh z about z = mi.
Solution: Let f(z) = cosh z
Put w=2z—mi. Thenz=w + mi

f(z) = cosh (w + i) = cosh w cosh mi — sinh w sinh mi

, e +e ™ 2cosm
But cosh i = cos i |or =

2 2
e —e ™ 2sinm
and sinh i =i sinmw|or = =
2 2
w2 w
f(z) = —coshw = — [1+?+ﬂ+ lforallw

oo ©o
2n!
n=0 n=0

which is the required Taylor’s series.

Another Method:

( ) B . e? +e 2 B ez—m’+m’ + e—z+m’—m’
f(z) =coshz = 5 = 5
1 o1 . )
= _eTl gz-Ti 4 Ee—m. e—(z—m)
Ie G-t 10 (=D - m)”
B 24 n! 2 n!
n=0

_ Z(z —mi)?"

EX.12. Expand log (1 — z) when |z| < 1 using Taylor series.
Solution: Let f(z) = log (1 — 2) &~ f(0)=1log1=0
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Also f,(Z) _ 1__1Z f’(O) =-1
—1
f'(z) = m ~ f"(0)=-1
f'"(z) = (1:—22)3 =~ f""(0) = —2 and so on.

By Taylor’s theorem about z = 0 IS

2 3
F(2) = FO) +2f'(0) + 37 7 (0) + 37 £/ (0) + -~

7?2 73
=0-zog gt

z% Zz3
=—G+7+?+”>

which is the required Taylor’s series.

2z3+1
EX.13.Find Taylor’s expansion of f(z) = 717 about the point (i) z =i (ii) z = 1.
Solution: Gi ()—2Z3+1—2 2+ZZ+1 Resolving int tial fracti
olution: Given f(z) = i, z 2+ D (Resolving into partial fractions)
=2(z—-1)+ + !
-V z+1 z(z+1)

S 2z 1) b
= e\ z+1 z z+1

1 1
:Z(Z—1)+E+Z+—1 (1)
Differentiating (1) ‘n’ times,
1 1
Fr@) = DMt 4 ] @
1 1
Fr©) = D" | + gy 3)
, B = (z—a)"
By Taylor’s theorem, f(z) = f(a) + ;Tf (a) 4)

(i) To find the Taylor’s series about z = i

Putting a = i, we get

F@ =1+ Y L= gy

301



Complex Analysis

___.|_ Z( D(z—-i)" [ — (l n 1)n+1 ,using (3)
—%—§+(z—1)<3+2)
(ii) To find the Taylor’s series about z = 1
Singularities of f(z) are given by z = 0 and z = —1. Draw a circle with centre at z =
1 and radius 1. Then within the circle |z — 1| = 1, the function f(z) is analytic. Thus f(z)

can be expanded in a Taylor’s series within the circle |z — 1| = 1, which is the circle of
convergence.

From (2), we have

£ = 0 [+ ]

M) =Dl

1 1 _ 1
1n+1 + 2n+1] = (_1) n: (1 + 2n+1)
By Taylor’s theorem,

fz)=f1)+ Z ﬂf”(l), using (4)

e S 1)
=2+ ¢

le

le

~or(1+ 2n+1) (z—1)"

EX.14. Expand f(z) = sin z in Taylor’s series about z = %.

Solution: By Taylor’s theorem,

(z - ) (z - )

fO=f@+zZ-a)f' (@) +——f"()++——f"(a) + - €Y)

Puta = % in (1), then

Ny ey, D) Ly D)
f@=rG)+E-)r @+ —=Z=r@++—7-r@+ @
Now f(z) =sinz f(z)z

f'(z) =cosz f’(z)z
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f"(z) = —sinz f”(z)=—i

4 V2
1
f""(z) = —sinz f (%) =-5 and so on.

Substituting in (2), we get

f(z)=i+(z—f)i+(z_i(-i)+ﬂ( =)

2 YT T2 RT3 T
) ) 1 s 1 % 1 T3
tL.e, San—ﬁ[l‘l‘(Z—Z)—z(Z—Z) —E(Z—Z) +]
EX.15. Obtain the Taylor’s series expansion of f(z) = Z(Ze;) about z = 2.
e’ e?72 g2
lution: Gi = =
Solution: Given f(z) G D G2tz —2+3)
e?2 1

2[1+557] 314757
-1 N

o Z-Z(1+Z_2> (147 2) lid when |
—6.e . > 3 valld wnen

zZ—2
|<1and |T|<1

B2 S| [Seresy]

e? z—2 (z-2)? (z-2)3
:_I_ n T2 T3 +---l><

6

I z—2 (z-2)? (z-2)3
1- - X

2 4 8
[1_2—2 (2_2)2—(2_2)3'*‘"']

3+ 9 27

e? z—2 (z-2)? z-2 (z-2)? (z-2)*
— — ol x
[1 2 T4 T 2 2

z—2 (z—-2)*
Il— g +l

e? z—2 (z-2)? z-2 (2-2)°
=1+t +"'IX[1_ 3 "9 +l
o2 Z_2+(z—2)2+z—2_(z—2)2+(2—2)2_(2_2)3+...l

6 3 9 2 6 4 12
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_e2 1+Z—2
6 6

7
_ _ 2
+ 36 (z—-2)*+

EX.16. Let f(z) =

1
1-2)(z-2)’
find Laurent’s series expansion in the annulus region 1 < |z| < 2.

Also find the Laurent’s series expansion in |z| > 2.

- 1 _1
Solution: Let f(z) = (1-2)(z-2) = (z-1D(z-2)
(z-2)-@-1) 1 1

z-1D(z-2) z—1 z-2
Laurent’s series expansion in the annulus region 1 < |z| < 2.
|z| = 2,]z| = 1 are two concentric circles with centre at O and radii equal to 1 and 2
respectively. In 1 < |z| < 2, f(2) is analytic

f(z)=Z1_1= Lo, 1

-1 z—2 Z(l—%) 2(1_%)
3

SR A

Here the first expansion is valid if E| < 1,i.e.,if |z| > 1 and the second expansion is

valid if |5| <1,i.e. if|z] < 2.

1 1 1 1 1 z z z
Hence,f(z)=(—+—+—+Z—+--->+(§+?+2—3+2—4+---)

(o] 1 .
= Z an Zn, Wh,ere an = { 2n+1 ) lf n= 0, 1, 2,
1' lfn = _11_21_3, ™

The expansion is valid if both |z| > 1 and |z| < 2 are true, i.e., if 1 < |z| < 2.

n=-—oo

Laurent’s series expansion in the annulus region |z| > 2.

1 1 1 1
f(Z):Z_ - _ = 1 + 2

1 1 1 1 1 2 /2\% 2\ Y
el L 2 () e () | Y
Z Z Z Z Z Z Z

2
< 1and |—|<1
Z

(1= 2
:Z% i.e.,if |z > 1and |z| > 2
n=1

n+1
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o (1-2")
Hence, f(z) = ZW if |z| > 2.
n=1

1
EX.17. Expand f(z) = (z-1)(z-2)

1 _ 1 1
z-1D(z-2) z-2 z—-1

z = 1,z = 2 are the singular points of f(z).

Solution: Given f(z) =

(i) The function f(z) is analytic in the ring shaped region 0 <7, < |z —1| <1, < 1.

Putz—1=w vcz=w+1 =2z—-2=w+1-2=w-1
1 1 1 1
f@ == — - ——

w—1 w w w-—1

1
=—w—[1+w+wz+---]ifw<1andw¢0

1 oo
=— —Z(z—l)"if0<|z—1|<1
n=0

z—1

=— Z(Z—l)" ifo<|z—1| < 1.

n=—1
(i) Given1 < |z| < 2i.e.,1 < |z|and |z| < 2 or |§| < 1and |§| <1

1 1 1 1
f(Z)_Z—Z_Z—l__2(1_5)_2(1_1)
Z

2

1 -1 1\
U
:_1 1+E+(E)2+(E)3+...]_§ 1+1+;_2+Zl3+...]

2 2 \2 2 z
= 1[1+Z+Zz+23+ ] [1+1+1+ ]
2 2 4 8 z 72 z3

EX.18. Expand f(z) = (26_212)3

as a Laurent’s series. Also find the region of convergence.

aboutz =1

(z—1)3

We want the Laurent’s series expansion of f(z) around z = 1.

Solution: f(z) =

Putz—1=w ~z=w+1

,inthe region (i) 0< |z—1|<1(i) 1< |z]| <2.
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e?z eZ(1+W) , ew
@O =G~ =W
__I1+(z w) + (ZW) (Z;) +

= ezzg(wn‘ﬂ ifw=#0

n=0

Cx)zn .
=ezzm(z—1)”‘31fz—1>0

n=0 '
z%2—-6z-1

EX.19. Find the Laurent’s series expansion of the function f(z) = Do

in the region 3 < |z + 2| < 5.
Solution: By partial fractions

72 —6z—1 1 1 1
Z-1DGz—-3)z+2) z-1 z-317+2
1 1 1
= 7+2-3 z+2-51z+2
1 1 1

Tern(1-.2,) s(1-L%) i+

=(Z-I1-2)(1_Z+2> %(1_2_;2) +Z-]i:2
:(z-ll-Z)Z(zi2> %Z(Z-l_z) 12

|<1and| |<1 = 3<|z+2|<5.

-1

w  +

3
valid for |
zZ+2

7z-2

(z+1)z(z-2)
(OR)

EX.20. Find the Laurent’s series of f(z) = inthe annulus 1 < |z + 1| < 3.

7z —2
(z+1)z(z-2)

as Laurent’s series.

about the pointz = —1 in theregion1 < |z + 1| < 3

Expand f(z) =

7z — 2
(z+1)z(z-2)
Putz+1=w Thenz=w-1
7w—1)-2 7w —9
& = e - Dw=1=2 ww=Dw=3)

Solution: Let f(z) =
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3 1 2 ) .
_—W+W_1+W_3,bypart1alfract10ns
B 3 1 2
T w 1\ 3(1_W

w(i-3) 3(1-%)

3 1 1\t 2 wy~1
=—Z4+-(1-=) -2(1-=

W+W( W) 3( 3)
= 3+1(1+1+1+ ) 2(1+ +W2+
owow w o w2 3 3 32
—( 2+1+1+ ) 2 1+W+W2+
- w w2 w3 3 3 32
I S S SR z+1+(z+1)2+
Coz4+1 (z+1)? (z+1)3 3 3 32

The above series valid for

L < tand
1 an

z+1
T|<1 > 1<|z+1|<3.
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THE CALCULUS OF RESIDUES

2.13. Singular Points of an Analytic Function:

All the points of the z-plane at which an analytic function does not have a unique
derivative are said to be singular points. If z = a is a singular point of the function f(z)
such that there exists a circle with centre at a in which there are no other singular points of
f(z), then z = a is called an isolated singular point of f(z). This means that there is some
neighbourhood of the singular point a of the function f(z) throughout which it is analytic,
except at the point itself. For instance, the function i is analytic everywhere in the complex
plane except at z = 0; hence the origin is an isolated singular point of the function. The

function ===

21) has three isolated singular points, namely z = 0 and z = +1.

z(z2%-

2.14. Types of singularities:

Let f(z) be analytic within a domain D, except at the point z = a, which is an
isolated singularity of f(z). We can draw two concentric circles of centre a, both lying
within D. The radius r, of the smaller circle may be as small as we please and the radius r; of
the larger circle may be of any length, subject to the condition that the circle lies within D. In
the annulus between these two circles, we can expand f(z) in a Laurent’s series in powers of
z — a; this expansion will contain both positive and negative powers of z —a. Let this

expansion be

[ee)

=Y anl-ar+ Y by

n=0
=aq+taqz-—a)+a;z-a)* ++b(z—a) P+ b(z—a) P+ (D)
The part
Zan (z—a)"
n=0

is called the analytic part while the part

containing negative powers of z — a is called the principal part of f(z)at the singular point
Z = Q.

We consider the following cases:
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Case I: Let all the coefficients b,, in the expansion (1) be zero i.e., there is no principal part in
(1). The remaining terms are the Taylor series expansion and the function f(z)can be made
analytic by suitably defining its value at a. We then call z = a a removable singularity of

f ().

Case II: Let the expansion (1) contain an infinite number of negative powers of z — a. In this
case, the point z = a said to be an essential singularity of f(z).

Case I11: If the principal part of the expansion (1) contains only the single term Zb_—la, then the
singularity at a is known as a simple pole or pole of order one. If the principal part contains a
finite number of negative powers of z — a, and if b,, is the last non-zero coefficient in the

principal part, then a is said to be a pole of order m. In such case, m is clearly the largest of

the negative exponents. Poles of orders 1,2, 3, ........ are usually called simple, double,

Note: Let f(z)have a pole of order m at z = a. Then Laurent series takes the form

o)

b, b, b,
f(z)=;an(z—a) +Z_a+(z_a)2.|...._|_m
m[zan(Z—a)m+“+b +bp1(z—a)+ -+ b(z—a)™ !
GO

where @(z)represents the series inside the bracket.
Now @(a) = b, and this is not equal to zero as f(z) has a pole of order m.
Hence if a function

?(z)
(z—a)m

where @(z) is analytic everywhere in a region including z = a such that @(a) # 0,

f(2) =

and if m is a positive integer, we can conclude that f(z) has an isolated singularity at z = a

which is a pole of order m.
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Example 1. Find the nature and location of singularities of the following functions:

zZ—Sinz 1 1
(i) —— (i) @+ Dsin (i) —————
z z—2 cosz—sSin z

Solution: (i) Here z = 0 is a singularity.

z—sinz 1 z3 z°5 Z7 _z z3 Z°
Also T—; zZ — Z—§+§—ﬂ+”' —5—54'%—"‘

Since there are no negative powers of z in the expansion, z = 0 is a removable singularity.

1 1
(ii) (Z+1)sinz_2=(t+2+1)sin? wheret =z — 2

—(t+3){1 1 1 }
- t 3!1t3  5I¢5

_(1 1 4 1 )+(3 1 + 3 )
N 31t2  5lt4 t 2t3 G5!ItS

L3 1. 1.1
t 6t 2t 120t

L3 1 1
-2 6(z-2f 2(z-2)+..

Since there are infinite number of terms in the negative powers of (z-2), z=2 is an essential

=1

singularity.

1 . . .
(iii) Poles of f (Z) = ——— are given by equating the denominator to zero,
C0Sz—sSin z

i.e.,, by cosz—sinz=0ortanz=1or z = /4. Clearly z= /4 is a simple pole of f(z).

Example 2. What type of singularity have the following functions:

1 i) & (iii) el/:
z

(I) l—ez (2_1)4

Solution:
(i) Poles of f(z) = 1/(1 - €?) are found by equating to zero 1-e? =0 or e? = 1 = g"
wz=2n4(n=0, A4, £, ...)
Clearly f(z) has a simple pole at z = 2.
2z 2(t+1) 2
(i) ¢ ¢

:—Aoe

e J—
(z-1)"  t* t

{1+3+ @)r, @y, @, @, }

2t

where t = z-1

eZ
T4

t 1 2! 3 4l ol
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(1 2 2 4 2 4
=€ —4+—3+—2+—+—+—+...
t ot 3t 3 15

) 1 2 2 4 +g+4(z—1)+
(z-1" (z-1° (z-17 3(z-1) 3 15 7
Since there are finite (4) number of terms containing negative powers of (z-1),

. Z=11isapole of 4" order.

. el/z 1 1 1 1 274
i f(Z)=—5 =S+ —— =+t =2+ 2+ T+,
W) @) 2’ 22{ 1z 272 37 } 2

Since there are infinite number of terms in the negative powers of z, therefore f(z) has
an essential singularity at z =0.

2.15. Residues: Let the Laurent expansion of a function f(z) around an isolated singularity
z=abe
b, b,

f(z)=ao+a1(z—a)+a2(z—a)2+---+Z_a+(z_a)2+---

In the expansion, b, the coefficient ofﬁ is called the residue of f(z) at the point

z = a. This is written as

b, = Res. f(z),-4
But, we know already that

1
b, =ﬁ!f(z)dz

where C is a curve surrounding z = a.

Hence%f f(2)dz = Res.f(z),-,
c

orf f(z)dz = 2mi {Res. f(z) -4} (D

c

It may sometimes happen that Laurent expansion for f(z) around z = a can be easily
got by algebraic manipulation. In that case b, can be calculated and hence we may compute

the integral

f f(z) dz using the formula(1).
c
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2.16. Cauchy’s Residue Theorem: If C is a closed curve and f(z) is analytic within and on

C except at a finite number of singular points within C, then

f f(z)dz =2mi(ry, + 1, + -+ 1,)
c

where 14,75, ..., 1, are the residues of the function f(z) at the singular points.

Proof: Let f(z) be a function analytic within and on the boundary of a region R at all points
except at the points z;, z,,..., z,. Around each singular point, we can draw a circle so small
that it encloses no other singular point. Then these circles, together with the curve C from the
boundary of a multiply connected region in which f(z) is everywhere analytic. Applying
Cauchy’s integral theorem to the function f(z) extended to the multiply connected region,

we have

1 1 1 1
ﬁcff(z)dz+%cff(z)dz+%cf f(z)dz+---+ﬁcff(z)d2=0 (D

In the integration in the combined contour, it is clear that the integration round C is in
the anticlockwise direction and the integrations around C;, C,, ..., C, are in the clockwise
direction. Hence in (1), we can reverse the direction of integration around C,, C,, ..., C, and

change the sign of these integrals. Then we have

1 1 1 1
ﬁj-f(Z)dZ:E_]-f(Z)dZ-I_EJ‘f(Z)dZ++ﬁff(2)dz (2)
C C1 Cy Cn
where are the integrals are taken in the anticlockwise direction.

1
Butﬁ f f(Z) dz = R€S-f(Z)z=21 =n
Cy

1
Similarlyﬁ f f(2)dz = Res.f(z),-,, = r,and so on.
C;

Hence (2) gives
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1
2_mff(Z)d2=T1+r2+"'+rn
(o

i.e.,f f(z)dz =2mi(ry; + 1, + -+ 1)
c

EXAMPLES

VA
2_-3z+42
VA VA
22-32+2 (z-1(z-2)

Hence z = 1 and z = 2 are two simple poles.

EX. 1. Find the poles and residues on

Solution: Let f(z) =

To find the residue at z = 1, we expand the function in a Laurent series in powers of z — 1.

We can split f(z) into partial fractions.

We have
1 2
f(z)__z—1+z—2
To expand in powers of z — 1, we write
1 2
A e R g
1
=——+4+——whereu=2z-1
u u-—1
12
u 1-u
1
=———2(1—-u)?
u

1
=—Z—2(1+u+u2+u3+--~)

1
=——-2[1+@Z-D+(E-1)*+-]
z—1
Coefficient of ﬁ = —1 and hence residue at z = 1 is —1.
To find the residue at z = 2, we expand f(z) in a Laurent’s series in powers of z — 2.

We have

() = N 2 B 2 1
==t =2 7=2+1
2 1
=————whereu=2z-2
u 14+u
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=i—[1—(Z—2)+(Z—2)2—(Z—2)3+"']
z—2

Coefficient of i = 2 and hence residue at z = 2 is 2.

z
EX. 2. Obtain the Laurent expansion of the function

(z—-1)%
in the neighbourhood of its singular point and hence find its residue.
o7
Solution: Let f(z) = m
z = 1 is a pole of the second order for the given function.
ez ez—1+1
o=~ w-1
eu+1
= puttingz—1=u
_ete
uZ

.. 1 . 1 .
Coefficient of = i.e.,of — is = e.
u z—1

Therefore the required residue=e.

1
z2-1"

EX.3. Find the poles and residues of

Solution: Let f(z) = 221_1 = (2—1)1(Z+1) = %(ﬁ - ﬁ) using partial fractions.

Poles of f(z) aregivenby (z—1)(z+ 1) =0, i.e.,z = 1.

These are simple poles.

To find the residue at z = 1, we expand the function in a Laurent series in powers of z — 1.
To expand in powers of z — 1, we write

()_1 1 1 )_1(1 1 ) h _ L
flz _2(2—1 z—1+2) 2\u ut2)Vheren=z
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_ 1 u u u
2u 4 8 16 32
1 1 z—1 (z-1)?
=——+ + —
4 2(z-1) 8 16

.. 1 1 . .1
Coefficient of — = and hence residueatz =1 is >

To find the residue at z = —1, we expand f(z) in a Laurent series in powers of z + 1, we

have
()_1( 1 1 )_1( 1 1) b N
@ =\oa 2 7+1) T 2\u=z o) Whereu ==
_ 1 1 1
o4\ %) 2u
1 u\~?! 1
=——_(1=2) ——
4( 2) 2u
1 1+u+u2+u3+ 1
4 2 4 8 2u
1 1+Z+1+(Z+1)2+(Z+1)3+ 1
4 2 4 8 2z+1)
Coefficient of — = — <.
zZ+1 2

1

Therefore residue at z = —1 is -

z

——— as a Laurent series about z = —2 and hence find the residue
(z+1)(z+2)

EX.4. Expand f(z) =

at that point.
Z
(z+1)(z+2)

Here z = —1 and z = —2 are two simple poles.

Solution: Given f(z) =

To find the residue at z = —2, we expand the function in powers of z + 2.

We can split f(z) into partial fractions.

z _ 2 1
(z+1)(=z+2) z+2 z+1

We have f(z) =
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To expand in powers of z + 2, we write

() = 2 1
&= s v -1
2 1
= +
z+2 1—-(z+2)
2 1 2
=4 =—+ (1 —-uwwhereu=2z+1
u l—u u

2
=a+(1+u+u2+u3+---oo)
2
=——+14+E+2)+(z+2)*+ -
z+2

Coefficient of Z%z = 2 and hence residue at z = —2 is 2.

2.17. Evaluation of residues: The calculation of residues by the use of series expansion, as
illustrated in worked examples 1 and 2 is often tedious. Hence alternative procedures are
available to determine residues. We now consider them.

(i) Let £ (2) have a simple or first order pole at z = a.

We can then write

by
Z—a

f@=ay+a,(z—a)+a,(z—a)? +-+ (D

By definition, b; = {Res. f(2)},-1
Multiplying (1) by z — a, we have,
z-a)f(z)=ay(z—a)+a,(z—a)* +-+ b,
Taking limit of both sides as z - a, we have
lim(z — a)f(z) = by
z5a
Therefore{Res. f(z)},-, = Li_r)rcll(z —a)f(z)

(ii) Often, it will be necessary to calculate the residues of a function f(z) of the form f(z) =

P(z)
Y(a)'

where ¥ (z) has simple zeroes and hence f(z) simple poles.
Let z = a be a simple pole of f(z). Then ¥(a) must be =0.

{Res.f(2)},=q = ii_)n;ll(z -a) ’f’(é))

[0(a) + (z —a)®'(a) + —....]] (by Taylor'stheorem)

- ii_r)rcll(z - a) [P(a) + (z—a)P'(a) + -
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(z—a)d(a) + (z—a)?0'(a) + -

= Ll_r)r(ll P @+ (since ¥(a) = 0)
_ 0(a)
~¥(a)
(iii) Suppose f(z) has a second order pole z = a. Then we have
b b,
_ _ —a)? + .-
f(z)=ay+a,(z—a)+a,(z—a)*+ +z—a+(z—a)2 (1)

b, is the residue at z = a and it has to be found.
Multiply both sides of (1) by (z — a)? , we get
z-a)f(z)=ay(z—a)’+a,(z—a)d+a,(z—a)*+ -+ b (z—a)+ b, (2)

Differentiating both sides of (2) with respect to z, we get
d
e [((z—a)? f(2)] = 2a0(z—a) + 3a,(z— a)? + 4ay,(z—a)® + -+ b, 3

Take the limit of both sides of (3), as z — a.

d
Thenb, = lim -~ [(z — a)? f(2)]

Similarly let f(z) has a pole of order m at z = a. Then we have
by b, b
Z—a+(z—a)2+ +(Z—a)m
Multiplying both sides of (4) by (z — a)™ , we have
(z—a)™f(z) = ay(z—a)™+ a;(z — )™ + a,(z — a)™*2 + -
+b(z—a)™t+b,(z—a)™ %+ -+ by, (5)

Differentiate both sides of (5) with respect to z, m — 1times, we get

f(2)=ay+a,(z—a) +a2(z—a)2 4ot

(4)

m-—1
dZm—l

Take the limit of both sides of (6), as z — a, we get

[(z—a)™ f(z)] = b;. (m — 1)! + terms containing (z — a) (6)

lim -2 [z — &)™ £2)] = by. (m — 1)
orb, = 1 lim " [(z=—a)™ f(2)]

(m—1)!zsadzm1

EX. 5. Find the poles and residues ofm.

z B z
z2-3z+2 (z-1(z-2)

Here z = 1 and z = 2 are simple poles of f(z).

Solution: Let f(z) =
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Then {Res. f(z)},-, = ii_r)r%(z - 1.f(2)

. VA
=limz-D.- o e
= lim—— = —1
_-293}(2 —'2) -
{Res.f(2)};=, = ygg(z —2).f(2)
. VA
=G -20He-2
= lim—— = 2
- ;Eg(z-— 1)-_
ze?
EX. 6.Find the residue of———atz = a.
(z—a)
. ze?
Solution: Let f(z) = m

Here z = a is a pole of order 3 for f(z).

Then {Res. f(2)},-4 = %il_r)r(llj—; (z—a)d. f(2)

_11_ dz( 7)
T 2:0adz2 C

T2 adz e T

1 1
= Ellm(zez + 2e%) == Eea(a +2)

z—-a

. ) z2-2z
EX.7. Evaluate the residues at the poles of the function f(z) = EETEY
7% -2z 7% -2z

Solution: Given that f(z) =

Z+12z2+4) (z+D2@z-20)(z+20)
For the given function, z = —1 is a pole of the second order and z = 2i, —2i are two simple
poles.

Then {Res.f(2)},-_1 = 211@1% z+12%f(2)

_ d(+1)2 z2 -2z
— o a Y (z+1)2(z2+4)

i d z? -2z
2 dz (z24+4)
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— lim (z%2+4)(2z-2)-(2%2-2z) 2z _ 14
T o1 (z2+4)2 T

{Res.f(2)};=01 = Zlgrgi(z —-20).f(2)

~ lim (2 — 20) z2 -2z
Tk T Y G E D2 - 20)(z + 20)
i z%2 -2z
=% (z+ 1)2(z + 2i)
— i z%-2z _ 7+
= G2z 25
{Res. f(2)}z=—zi = lim (z+20).f(2)
= lim (z+20) z - 2
T (z+ 1)2(z - 2i)(z + 2i)
_ z2 -2z
=Nz + D2z = 20)
_ z2 -2z 7=
Y (z+1)2(z—-2i) 25
z
EX. 8. Determine the poles of the function (i) o5 7 (ii) cot z.

Solution: (i) The poles of f(z) =

are given b
cos z & y

cosz=20

T
l.e.,z=02n+1) E,n being zero or an integer

T
i.e.,z=(02n+ 1)§,n =0,+1,+2, ..

Hence these are simples of f(z).
(ii) The poles of f(z) = cot z are given by sin z = 0
i.e.,z=nn,n=0,+1,+2,...

Which are simples of f(z).

i — @ — H ¢ (2o)
We know that residue of f(z) = 7 o Az=200s 7o
CoS Z cos nmi
Residue of f(z) atz = nmwis = ( ) = =
C0S Z/ yopy  COS NT

1
EX. 9. Find the poles of the function f(z) = ZrDGET3) and the residues

at these poles.

Solution: The given function f(z) has two simple polesat z = —1 and z = —3.
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| o 1
Residue of f(2) atz = ~1is lim {(z+ Df(2)} = lim —— =7

1 1

Also the Residue of f(z) atz = =3 is lim {(Z +3)f(2)} = Jim, z+1_ 2

2

z
EX.10.Find the poles of the function f(z) = Z— DGz —22

and the residues
at these poles.

Solution: The given function f(z) has two simple pole at z = 1 and another pole of order 2
atz = 2.
Residue of f(z) atz = —1 s
lim{(z = Df(2)} = lim——— =~ =1
71 z~1(z—2)2 1
Also the Residue of f(z) atz = 2 is

d d [ z?
ygzlg{(z—Z)zf(z)}—hrgE< é >

(z—-1)(2z) — z%.1

=£1_r)r21 (z—-1)?
i z2 -2z
zl—r>r21 (Z— 1)2

2

z
EX. 11. Determine the poles of the function f(z) = 120G = 12 and the residues

at each pole.

Solution: z = 1 and z = —2 are the zeros of denominator of order 2 and 1 respectively.

~ z = 1isapole of order 2 and z = —2 is pole of order 1 of f(z).

_ _ z? 4
[Res f(2)],=—; = ZILYPZ{(Z +2)f(2)} = 21_1)1113m )
d d z? 5
—1: _ _ 2 — - —_ —
[Res f(2)],-1 —£1_r)r} P {(z-1*f(2)} = lm} dz( 2> 5
EX. 12. Find the residue of —~-— at its pol
.12. Find the residue o (Z_l)3alspoe.
Solution: Let £(z) = —2*
olution: Let f(z = =1

Poles of f(z) are obtained by putting the denominator equal to zero.

z = 1is apole of f(z) of order 3.
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We know that if f(z) has a pole of order m at z = a then,

m-—1

[Res f(2)],=q = = ! ),Z_)a; —{(z - )"f(2)}

Herea=1,m =3

1 d?
[Res f(2)],1 = 5;lim——{(z = D*f ()}

1 d? . 1. d . ,
ZEH}_d 2(ze ) =§£IIEE(Z€ +e )
] 3e

= Ey_r)r}(zez +e? +e%) = >

1+ e?

EX. 13. Find the residue at z = 0 of the function f(z) = — .
Ssinz+zcos z

Solution: The residue of f(z) atz =0 is

) ) 1+e* ) 1+e”
lim{zf (z)} = lim z. — = lim z. S 7
z—-0 z-0 SIinNzZ+2zZcosz z-0 7 ( c + cos z)
) 1+e* 2 . sinz
= lim — ==-=1 ( lim = 1)
70 (Sln Z . cos Z) 2 7250 7
z

An Alternate Method:

0

Residue atz = 01is = llm{(z —0)f(=2)}= llm
-0 Sinz+zcos z

z(1 + e?) ( 0)

_ 1 ze? + (1+e%)(1) - 'Hosbital rul
790 cosz +2 (=sinz) + cos z (using L'Hospital rule)

_0+1+1
14041

1 2z
EX. 14. Find the residues of the function f(z) =

at the poles.

Solution: z = 0 is the singular point of f(z)

4z 8z
| 1-e% [1+1,+2,+3,+ ]
Expanding f(z) = pra pr
_ 2,2, 412 4 ]
T BT 2732737157

. 1 . . .
z = 0 is a pole of order 3, because — s the highest negative power of (z — 0).

The residue of f(z) atz=10is —g.
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23

(z-1*(z—2)(z—-3)

EX. 15. Find the residue of f(z) = atz = 1.

Solution: Let ¢p(z) = z= 2;; — 3),50 that f(z) = %.

Here z = 1 is a pole of order 4.

Residue of f(z)atz=1is

Residue of f(z) atz = 1is = [Res f(2)],-1 = ¢ 3$1)
z3 8 27
But ¢(z) = -z =3) =z+5— p— + p— (on resolving partial fractions)
27
N P
16 54
e e ERR PRk
48 162
A R CEET
¢"'(1) = 48 Lo = 308
16 8
(Res f(@)],y = 22 = 2 303102

EX.16. Find the residue of

ZZ

z¥+1

f(z) =

at these singular points which lie inside the circle |z| = 2.

2

Solution: Let = ——
olution: Let f(z) T

Poles of f(z) are obtained by putting the denominator equal to zero.
i.e., z*+1=0o0rz*=-1
or z=(—1)Y* = (cosm+isinm)/*
_ cos (Znn + n) +isin <2nn + n)
4 4
The four values of z are

7'[+_ T 37T+.  3m 57T+. _ 5m q 7TI.'+. I
cos o +isin o, cos =+ isin o=, cos - +isin - andcos - +isin
1 1 1 1 1 1

1 1 ,
ﬁ-l_lﬁ' _ﬁ-l_lﬁ' _ﬁ_lﬁ and ﬁ_lﬁ

i.e.,
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1+i —1+i —1—1 1—-1i
or

7z vz e Mg

Hence the simple poles of f(z) are it

7 and all these lies within the circle |z]| = 2
with centre 0 and radius 2.

2

Now let f(z) = z __ 9(2)

741 Y@
o
_ ZE + [Res F(2)]yes, = %
[Res f(2)], 1 = j<(_11ill>> = (_%) - zﬁ211+ D _:v_ii
[Res f(2)],_1-c = ; élilz) Y (_%) = 2@(11 D ZE

z2 -2z
EX. 17.Find the residue of (i) CES ) (ii) tan z at each pole.

Solution: (i) Let f(z) = 7" 2z
olution: (i) Let f(z ST DD
Poles of f(z) are —1,i and — i.

Observe that —1 is a pole of order two and the poles +i are or order one.

[Res f(2)],——1 = ﬁ zl—i>rzl1 %(Z + 1)2f(Z)] _ Zlim [d <ZZ_—ZZ>

]

—>-1 E z2+1
_ (22 +1)(2z-2) - (2> -22)(22)| 1
_Z_l)rfll- (z2 +1)2 l__f
[Res £ ()]~ = liim[(z ~ ) (2)]
i z%2 -2z B i —2i 142
SO GEr )| T Gr DG+ 4
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[Res f(2)]z-—i = liim[(z + Df ()]
i z? -2z B (=i)? —=2(-0) _1-2i
T AN+ D2z - i)l T (—i+02(=2) 4

sinz
(ii) Let f(z) = tanz = .

0S Z

Poles of f(z) are given by cos z = 0
s
i.e. z=02n+ 1)§,Where n=0,4+1,+2,43, ...

All these poles are simple poles of f(z).
Denoting each pole by ‘a’, we have

[Res f(2)]z=q = liim[(z — a)f (2)]
— liim (z—-a)f(2) (= %)

z-a  COSZ
(z—a)cos z+ sinz

= liim - (L — Hospital Rule)
Z-a —sinz

=-1

Hence residue of f(z) at each of the poles is —1.

3z+1
z+1@2z-1)

EX. 18. Find the poles and residues of

3z+1
(z+1)(2z-1)

The poles of f(z) are givenby (z+1)(2z—1) =0

Solution: Let f(z) =

i.e., z+1=0 or 22—1=0i.e.,z=—1,§

f(2) has two simple poles at z = —1 and %

Residue at z = —1 is given by
[Res f(@)]y=s = Jim (z + Df ()
3z+1 2

:z—1>r£112z—1_§

Residue at z = % is given by

[Res f(2],_1 = limy (2~ 3) f(2)

2 =
z-3

= % lin}(Zz -1Df(2)

z-5

2
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EX.19. Find the poles of f(z) and the residues of the poles which lie on imaginary axis if
z%2 + 2z
(z+ 12(z%2+4)
z%2 + 2z 3 z2+ 2z
(z+1)2%(z2+4) (@E+1)2%(z+20)(z—-20)
Poles of f(z) are obtained by putting the denominator equal to zero.
=~ Poles of f(z) are z = —1,-2i, 2i

Obviously z = —1 is a double pole and z = +2i are simple poles.

f(2) =

Solution: (i) we have f(z) =

Now we have to calculate the residues at z = +2i.
To calculate residue of f(z) at z = 2i
[Res f(2)] =2 = Zligll,(z - 20)f(2)

_ z% + 2z A+
- G0z +2)| T Qi+ 124D
i—1 1-i 1-7i

i(—3+4i) 4+3i 25
To calculate residue of f(z) at z = —2i
[Res f(2)],=—zi = Zggi(z +20)f(2)

i z%2 + 2z A4
= AN Gr D2z =20 @i+ D2(—4D)
i+l —1-i 1(7+_)

T i(—3+4) 4+3i 25"

EX.20. Find the poles and residues at each pole of tanh z.
sinhz e”—e™* e*—1
coshz e?+e? e??+1
Poles of f(z) are given by e?? + 1 =0
i.e.,(e?+i)(e?—i)=0

Solution: Let f(z) = tanhz =

I T
or e2=1i,—i ore?=e'2,e "2

T T

or z=i—,—i—
2" 2

s
z =i - are simple poles of f(2).

325



%1 $(2)
e +1 Y¥(z)

Now, let f(z) =

i
Residue of f(z) atz=i= is =

2 ;T
v (i7)
e?” —1 lezz — 1]
2
(e?2 4+ 1) . Zze* z=i
T
1[1 _ —22] _(1 _ —in) =1
3 e~?%] _ =3 e
»(-i%)
Residue of f(z) at z = —i— is —
v (-iz)
e?” —1 lezz — 1]
= = 2
%(622 + 1) . ze™ z=—ir
Z=—1=

sin®z

EX. 21.Find the poles and residues at each pole of f(z) =

sin®z

Poles of f(z) are obtained by putting the denominator equal to zero.

Solution: We have f(z) =

Poles of f(z)arez = % is a double pole.

To calculate residue of f(z) at z = g

Residue of f(z) at z =g is = @ _1 Di ll_)r‘% [%{ z ——) f(Z)}]

= lim [d— (sin? Z)] = 11m 2 sin z. cos z]
Z—>—

Z—)g

21 T V3
= li_)r%(sin 27) = sin (?> = sin§ ==

Complex Analysis
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) ] cot z coth z
EX.22.Find the poles and residues at each pole of —

cot z coth z

3 are given by z = 0 which is a pole of order 3.

Solution: The poles of

cot z coth z cos z cosh z

N =
ow z3 z3sin z sinh z
z% z* 7% z*
1 1_ﬂ+ﬂ_m][1+ﬂ+ﬂ+”]
~Z3 z3  z5 z3  z5
Z—§+5|—"'][Z+§+—!+"]
z%2 z* Z? z4 z® 7% z¢
(1Yt ettt
Tz z* 76 74 76 78 z6  z8
22+ 3Tt ST 3T @BN2 " 351 T ST T3

73 2 1
Y R I
_i 1 67 + =i 1 67 +
z3\ ,_1 z5 _1 .,
A 902 + 1 902 +

z—2
EX.23. Evaluatef ———dz ,where C is the circle|z| = 2.
z(z—1)
c

z—2
z(z—1)

The given function has two simple polesat z = 0 and z = 1.

Solution: Let f(z) =

These lie within the circle |z| = 2.

By Cauchy’s Residue theorem,

f f(z)dz = 2mi X sum of the residues of f(z)at the interior poles.
c

Hence we have to calculate the residues at z = 0 and z = 1.

Residue atz = 0is = lir‘% z.f(2)
VAl

. z-2 .
=limz. =lim=—=2
z—0 z(z-1) z—02z—-1

Residueatz = 1is = lin}(z —-1).f(2)
VAl
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. z-2
=lim—=-1
z-1 Z

z—2
Hencef—dzz 2mi X (2—1) = 2mi
z(z—1)
C

4 — 3z 3
EX. 24.Evaluate dz ,where C is the circumference of the circle|z| = =.
z(z—1)(z-12) 2

c

4 — 3z
(z—1D(z-2)

The given function has three first order poles at z = 0,z = 1 and z = 2. Of these,

Solution: Let f(z) = .

only z = 0 and z = 1 lie within the circle |z| = 2

Hence it is enough if we calculate the residuesat z = 0 and z = 1.
Residue of f(z) atz =01is = lirréz f(2)
zZ—
i 4 -3z
N zl—r>%z'z(z - 1(z-2)
i 4 -3z
T (z-1D(z-2)
-1 x =2
Residue of f(z) atz =11is = lirrll(z —1).f(2)
VAd

] 4 — 3z
- £1_r)r11(z— 1)'2(2— 1)(z-2)
- 4-3z
N y—rﬁlz(z— 2)
1
“1la-p_ !

Therefore by Cauchy’s Residue theorem, the value of the given integral
= 2mi X sum of the residues of f(z)at the interior poles

=2mi (2—1) = 2mi

EX. 25. Evaluatef tan z dz ,where C is the curve|z| = 2.
c

. sinz
Solution: Letf(z) =tanz = .

0S Z
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The poles of f(z) are givenby cosz =0

T
i.e.,z=02n+1) E,n being zero or an integer.

Of the many poles, z = ~and , z = — are the only poles lying inside the given

contour |z| = 2. Hence it is enough if we calculate the corresponding residues.
) T ] sinz
Residue of f(z) atz = — Sis = lim_
z- 2, (cos 2)

sin z

75 —% —sin z

T sin z
Similarly Residue of f(z) atz = Eis = lim
z "EE (cos 2)

sin z

Z_,g—sinz

Therefore by Cauchy’s Residue theorem, the value of the given integral
= 2mi X sum of the residues of f(z)at the interior poles

=2mi (—1 — 1) = —4mi

dz
EX. 26. Evaluate f m ,around the closed contour|z — i| = 2.

1 1
(z24+4)2 (z-20D)2(z + 2i)?

and this has a pole of order 2 at each of the points z = 2i and z = —2i.

Solution: Let f(z) =

|z —i| = 2 is a circle with centre at iand radius 2 units.
The pole z = 2i is inside this circle and z = —2i is outside.
So it is enough if we find the residue at z = 2i.

Residue at z = 2i is

. d( - 1
~ L idz YT Y @202z 1 2002

S d 1
N 2+ 202
) -2
-2 1
T (40?3 321
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2z—1
z(z+2)(2z+ 1)

EX.27. Evaluate 7€ dz where c is the circle |z| = 1.

c
2z—1
z(z+2)(2z+ 1)

Solution: Here f(z) = has three simple polesatz = 0,z = —2 and z

But the only poles z = 0 and z = —% lies inside the circle |z| = 1.

Now, the residue of f(z) atz =0 is

2z—1 _
(z+2)2z+1) 21 2

[Res f(2)]z=0 = lim 2z f(2) = lim

Also the residue of f(z) at z = —% is

2z—1 2 8

1Z(Z+2)=___3_§
4

2 - = - =
VAnd 2 VAnd 2

[Resf(2)] _ 1= liml(Zz +1) f(z) = lim

zZ=

By Residue theorem, we have

f}g 2z—1 dz =2 ( 1+8)_13 ]
2z+2)2z+ DT T3 T3

Cc

EX.28. Evaluate jg tan z dz where c is the circle |z| = 2.

C

. sinz
Solution: Here f(z) =tanz = .

0S Z

The poles of f(z) are given by cos z = 0

i
i.e.,z=+(2n+ 1)5,71 =012...

T
Out of these only z = if(i1'570) lies inside c: |z| = 2
N Sin z sinz+(zi%).cosz
R = lim (z+ > = i =1
[Res f(Z)]z=i% z—»T% (z + 2) = Z_I)T% =

By using residue theorem, jg tanzdz =2mi (—1—1) = —4mi

c
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1
EX.29. Evaluate fmdz where c is the circle |z — i| = 2.
c
Solution: H (z) = ! has double poles at z = +2i.0f th 1 1
olution: Here f(z S CEYE as double poles at z = +2i. ese poles only z

= 2i

lies inside c.

Again

1 dz = 1 d
)£(ZZ+4)2 Z‘f(z+2i)2(z—zi)2 z

1
Since 1202 is analytic in ¢, apply Cauchy’s integral formula for derivatives

+ 2i)

. 7€ 1 p _2mid [ 1 ] o
) @+ 427 T 1 dzlz+ 202l _,, " 16
C

ZCOoS Z _ _ , N
EX.30. Evaluate f 7dz where cisthecircle (i) |[z—1| =1 (ii) |z]| = 2.
c \Z— 7
Zcosz

Solution: (i) Let f(2) = TG
(z-3)

z= g is a pole of order 3 of the function f(z) and it lies within the given circle.

[Res f(z)]zzg =G _1 D1 linEl L?Zi—ll {(Z - %)3 f(Z)}l
2

- 7>

1 [d2
=—l1_)rrg1 @(zcosz)

_11_ [d( ) )]
—Zzl_)rr%l 5, (cosz—zsinz
=§li_)rr21(—zcosz—25inz)=—1

2

By Residue theorem,
Z COS Z
f —————dz = 2mi X sum of the residues of f(z) at the interior poles

: (#-32)
= 2mi(—1) = —2mi
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cothz _
—dz wherecis |z| = 2.

EX. 31. Evaluate f

C

Solution: Let ()_COch_ cosh z
olution: Let f(z) = z—i (z—1i)sinhz

The poles of f(z) are given by (z — i) sinhz =0

i.e.,z = i,tnmi,n being zero or an integer. Thus out of the many poles, z =i and z = 0 are

the only poles lying inside the given circle |z| = 2. Hence it is enough if we calculate the
corresponding residues.

[Res f(2)]z=i = lim[(z = Df (2)]

= lzlf)r} [(Z - D%} = lzlirzl cothz = cothi
[Res F(D]e0 = 2D where f(z) = — 012 _ 8

—w(0) (z—i)sinhz W¥(z)

B [ cosh z ] 1
~ lz=1D coshz+ sinhzl _, i

By Residue theorem,

coth z ] ) _ )
f Py dz = 2mi X sum of the residues of f(z) at the interior poles
C

1
= 2mi (coth i— T)

eZz
EX.32. Evaluate f Z-DGz-2 dz where c is the circle |z| = 3.

C

eZz

z-1(z-2)
z = 1and z = 2 are simple poles of f(z) and both poles lie inside C.
Now we have to calculate the residues at z = 1 and z = 2.

[Res ()], = liml(z = Df )]

Solution: Let f(z) =

eZz 82
1 _ _ 2
_y—{rllz—Z_l—Z_ €
and [Res f(2)],=, = ylrzl[(z - 1Df(2)]
eZz 84
= lim = = et
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By Residue theorem,

f(z—l)(z—Z)dZ

= 2mi X sum of the residues of f(z) at the interior poles

= 2mi(—e? + e%)

EX.33. Evaluat 1227 i where cis the circle x? 4 2 = 4
. . pvaluate (22+3)(Z—1)2 Z wnere C 1S e Clrcle x y = 4,

Cc

12z -7

Solution: Let f(z) = 2z +3)(z— 1)

For the given function, z = 1 is a pole of second order and z = —% is a simple pole.

Now we have to calculate the residuesat z = 1 and z = — %

d
[Res f(2)]2=1 lim—{(z — D*f(2)]

1
- (2—1)!2 1d
12z—-7
- z—>1 dz (2z+3) 3)

and [Res f(z)]z 3= limg[(Zz +3)f(2)]

=72 Z_)_E
_ o 1227
Z—>—— (Z - 1)2

By Residue theorem,

122-7
2z+3)z—-12%
Cc

= 2mi X sum of the residues of f(z) at the interior poles

=2mi(2—-2)=0

eZ
EX.34. Evaluate f (Z—dz where C is the circle |z| = 4.
c

2 + 7-[2)2
eZ
(z2 + m2)2

For f(z),z = +im are double poles which lie inside c.

Solution: Let f(z) =

[Res fNamir = gy i 7= G = 102/
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= tim O[] T
= Sz (z+in)2l  4nm3
and  [Res f(2)],=in =

d
oA, g [+ @)

_ i d[ e’ ]_—i+7r
= o dz (z—im)2l  4n3

By Residue theorem,

eZ
j (G dz = 2mi X sum of the residues of f(z) at the interior poles
c

= 2mi

<i+7r —i+n)_i

413 + a3 ) w

sin z
EX. 35. Evaluate f ~cos 7 dz where c is the circle |z| = m by Residue theorem.
C
. sinz
Solution: Let f(z) =
ZCoS z

The poles of f(z) are givenby z cos z = 0

T
i.e. z=002n+1) > n being zero or an integer.
_ 04 T 3n
i.e. zZ= It
Of the many simple poles, z =0, z = g and z = —g are the only poles lying inside the

circles |z| = . Hence it is enough if we calculate the corresponding residues.

Nowlet f(2) = zsci:)lszz N Z‘)'EZ Then (@) = cosz = zsinz
0 0
[Res f(2)],=0 = ;,),((0)) -1~
¢(z) 1 _ 2
R = T mT T q
[Res f(Z)]Z=7 v (g) _% T
¢(-3) -1 _2
R m = T I x
[ esf(Z)]Z=_§ wr (_%) _% A

By Residue theorem,
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sinz
f dz = 2mi X sum of the residues of f(z) at the interior poles

Zcosz
C
2 2
=2mi(0->+) =0
T T
z
EX.36. Eval h is the circl
36 Vauatej(z_l)(z_z)zdzw ere c is the circle
c

1
|z—2| = 3 by Residue theorem.

Solution: Let f(z) =

Z
(z—1(z-2)*
The poles of f(z) are given by (z —1)(z —2)? = 0,i.e.,z=1and z = 2
z = 1lisasimple pole and z = 2 is a pole of the second order.

Of these, only z = 2 lie within the circle |z — 2| =-.

Now we have to calculate the residue at z = 2.

[Res f(Dams = g lim [~ 2]

=i d( z )=1li d(1+ 1 )— 1
TNz —1) T 2z z—1)

By Residue theorem,

z d
f(z—l)(z—Z)z z

= 27i X sum of the residues of f(z) at the interior poles

= 2mi(—1) = —2mi

2.18. Evaluation of Definite Integrals:

One of the important applications of the theory of residues consists in the evaluation
of certain types of real definite integrals. These integrals often arise in physical problems. It
must be observed that a definite integral that can be evaluated by the use of Cauchy’s residue

theorem may be evaluated by other methods although not to easily. However, there are some

simple integrals like fooo e™** dx which cannot be evaluated by Cauchy’s method. We shall

now consider some integrals which can be evaluated by applying the residue theorem. These
integral are evaluated by making the path of integration a suitable contour in the complex

plane. This process is called contour integration.
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2.19. Integration round the unit circle:
An integral of the type fozn f(cos 6,sin 8) d6, where the integrand is a rational

function of cos 6 and sin 6 can be evaluated by putting e?® = z.

ei0+e—i0_z+% .Q_eiO_e—iG_Z_l
2 2 SMPET T T

Then cos 6 =

. dz
Also e?i d6 = dz and so d6 = —

2T
Hencej f(cos 8,sin 0) d6 = f F(z)dz
0 C

where F(z) is a rational function of z and C is the unit circle |z| = 1.

Butj F(z)dz = 2mi ZR

c

where Y, R denotes the sum of the residues of F(z) at its poles inside C.

EX.37. By integrating round a circle of unit radius, show that

2T
cos 36 T

5—4cos0 d0_12'
0

Solution: Let z = e, Then dz = e®i d6 = iz d6.

dz Z+ 1
Therefore d6 = Eand cos 0 = Z
. . ;1
eL.39 + e—L.39 VA +Z—3
30 = =
coS > >
Let C be the unit circle |z| = 1.
The given integral | is
1
_ f (#+5) az
N N1 iz
C 4 (Z + E)
21|5— 5
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=f z°+1 dz
v 223[5—22—2] iz

3 1f z®+1 J
~2i) z3(5z—22z2-2) z
C

1f z°+1 J
2i) 23z2—5z+2) Y
C
1f z°+1 J
2i) 222z-1Dz-2) %
C

=5 [ r@a D)
C

The poles of f(z) are:

(i) z=0,apole of order 3 (i) z=Zand (i) z = 2.

Of these only z =0 and z = i are inside the unit circle. Hence we have to calculate
the corresponding residues.

Residue of f(z) at z = % is

(z-3)@ +D GRS 65

Z‘f‘% 232z - 1) (z—-2) ZT‘% 223(z—2) 24

It will be easier to get the residue at the multiple pole z = 0, by expansion of f(z).

f@) = ZS(zZZj :)tz -2 Q EZ;)ZJ)F(Z:T)z 2)
GESS
26-2(1-3)
<3 ep)a-2 (-3
=%(z3+%>(1+22+422+---)<1+5+i+ >
=%<Z3+%>(1+22+422+"')<1+—+i+ >
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—1(3+1>[1+SZ+ 2(1+1+4)+ ]
RAREE 2 T4 4

Coefficient of i in the right hand side product

L1 (1+1+4) 21
= - x1x(= =
2 2 8

Hence by the residue theorem,

j f(z) dz = 2mi X sum of the above two residues

(o
_ ( 65+21)_ i
—M\T2478) T 76
Hence substituting in (1),
/= 1 i L
20 6 12
EX.38. Evaluate by contour integration
2T
j S0 o asb>0
a+ bcosb a '
0
Solution: Let z = e and C be the unit circle |z| = 1.
Then dz = e d§ = iz d6 or df = %
1 1
Z+ E Z — E

cos @ = and sin 8 =

20

The given integral I is
2

- (r-3)  a

b(z+%) iz
——£

C
4i%2 la +

f (z2 -1)%.2 dz
b\ iz

_4,2 o

v —4z (Za + bz + Z)

1 (z2 —1)2

2i) z%(bz? + 2az+b) dz
c

T2

1 f (z2 —1)2

) Zha—pe-a

where p and q are the roots of bz + 2az + b = 0.
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1

L M

iC

The poles of f(z) are:

(1) z =0, adouble pole (ii) z=pand z =q.
Solving bz? + 2az + b = 0, we have

B —2a +V4a? — 4b?

g 2b

_—azxva®-b?

a b

_—a++va*—-b* —a—+Va*—b?

a b ’ b

B a+\/a2—b2 a +Va?—b?

b b " b b
As a > b,% > 1 and the root —%— a”-b” is numerically greater than 1.
Hence the pole z = —= + azb_bz alone is inside the unit circle. We can take this as p,
and the other pole z = —% + azb—bz asq.

Also pq = product of the two values of z = 1.
We have now to calculate the residues of f(z)atz = p and z = 0.
Residue at z = pis

I p)(z® —1)?
T w22 bz -p)z— Q)

@ -1* @ -p9)?  p*(p—q)F
p2bp—q) bp*le—q) bp*(p—q)
_p—q_l[—a+m_ —a—ml

b b b b
_1l|-a++vVa*—-b*+a+va*—b?
b b

2va% — b2

b2
Residue at z = 0Ois

339



Complex Analysis

_ lim d z%(z% - 1)?
250 dz z2(bz? 4+ 2az + b)
i (bz? + 2az + b)2(z% — 1)2z — (z?> — 1)?(2bz + 2a)
= (bz?% + 2az + b)?
2a
b?
Hence by residue theorem,

j f(z)dz = 2mi X sum of the above two residues

C
2Va?—-b%z 2 4
= 2mi X (Clb—zb ba> m [\/az bz — a]

Hence substituting in (1),

EX.39. Show by the method of residues, f \/(% (a>b>0).

a+b cos 6

2
Sh thtft d = 2m (a>b>0)
OFSHOWHIAL | ¥ bcos8 vaz—pz '

T 21

N f do _1f a6
OrHom: Wehave | @+ bcoso 2] a+bcoso
J 0

(1)

Let ¢ be the circle |z| = 1.

Z+1 z2+1

) dz
Put z = e?,sothatdd = — and cos 6 = Z—
iz 2z

21

j‘ dae f 1 dz
2
a+bcosb _I_b[z +1]

0

2
bz? + 2az + bdZ

1
bz? + 2az + bdZ

= %f f(z)dz
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Now, the poles of f(z) are the roots of bz% + 2az+ b = 0, S0

_ —2atvV4a*—-4b* —atva®—-Db?
B 2b B b

VA

are the poles.

—a + va? — b? —a—vVa? - b?
‘= b £ = b

Since a > b > 0, we have |B| > 1. But the product of the roots is 1.

i.e.,|laB| > 1sothat|a| < 1.

Thus, z = «a is the only simple pole lies inside ¢ and so

1
f@ = e —oe—p
[Res f(2)],-q = lim(z — @) ()
2 1
=limG - =R
S S N S
izoab(z—B)  ib(z—a)
2 1 1

‘?blzml‘im
b

2T

Th f do _ ( 1 )_ 2T
s a+tbcosd ivaz —b2)  aZ = b2
0

T

H .[’ do _ T (F D]
ence a+bcosf gz _p2 rom (1)

0

Note: 1. In place of a and b whatever the values we take with a > b > 0, we can solve the
integrals.

2. Similarly we can prove

21

j‘ do _ 2m
a+bsin® gz _—p2
0
A

) ) do 4
3. Taking a = 3 and b = 2 in the above example, we getf 3T 2c050 ﬁ

0
T

4. Observe that f

0

do _ T
a+bsin® gz _—p2
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2T
do
valuate by contour integra 1onf e
0
1
- . i0 A ] Z_E Z2—1
Solution: Write z = re’®,then dd = — andsosin = —% = ———,
1z 21 2iz
2T
j S _j 1 42 where c:lz| = 1
2—sin@ ,_ (A1 —»Where c:|z| =
’ ¢ 2iz

f 2iz dz
4iz—z2+1 iz

C

1
N [ —
fzz—4iz—1dz

C

1
z2 —4iz—1

—Z.f f(z) dz,where f(z) =

Now, the poles of f(z) are the roots of z2 — 4iz — 1 = 0.

4i+(40)%2+4 4i++V/-16+4
l_,/(zl) + _ L_\/Z + =(2i\/§)i

Denote a = (2 +V3)iand g = (2 —v3)i and « and S are the simple poles.
Observe that af = —1 and |a| > 1so |B]| < 1.

The roots are z =

Therefore, S is only pole lie inside unit circle c.
1 1

Now, Res f(z)],—p = = —

[Res f(op = =2 = —5 75,

By Residue theorem, we have

ff(z) dz = 2mi (—2\%) = —%

H f dae _ 2( n)_Zn
ence, 2—sinf V3/ 3

0

T

do T
EX.41. Show that = fi > 0.
oW fa2+sin29 warl ¢
0 Vs Vs
Soluti Writ I—f d6 —f 2d6
otution: Write == | 42 +sin20 ) 2a%+ (1 —cos 26)

0 0
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PUt20 = ¢; 2dO = d¢

21

z—f a¢
) 2a%2+1-cos¢

0

Put z=e?; dqb—%
uoz=en iz
1—] ! 7 |zl = 1
= el 71\, Where cilzl =
¢ 2z

_1] 2z dz
i) (4a?+2)z—22-1" 2z
c

= —%f f(z) dz

Now, the poles of f(z) are given by

L (4a? +2) +/[-(4a% +2)]2 — 4

5 =2a?’+1)+2aya?+1
Leta = (2a® + 1) + 2ay/a? + 1land B = (2a% + 1) — 2a+/a? + 1

Observe that |a| > 1 and since a8 = 1, we have || < 1.

So p is the only pole lies within c.
[Res f (@), = lim(z ~ ) f(2)

) 1 1 1
= lim =

=fz—a B-a —4ava? +1

By Residue theorem, we have

1 T
I:——_. 2T . =
l —4ava? +1 ava?+1
T
Note: f de _ T
ote: a?+cos?0 gvaz +1

0

21

EX.42.Sh thtf 6 _2m
FHé-Snowtha 2+cosf 43
0
2T
Soluti Ltl—f d
olution: Let ] = T cos D

0

On the unit circle |z| = 1, we have
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0 dz 1 1 z2+1
z=e' ,d9=,—andcosé)=—(z+—>=
iz 2 A 2z

Substituting these values, we get
/= j 1 dz _ 2] dz
- z2+1 iz i) z244z+4+1

Where c is the unit circle |z]| = 1.

The integrand f(z) = a1 has simple poles given by
—44++V16 -4

Of these only z = —2 + /3 lies inside c.
[Res f(2)],-_4, 3 = lim 3{2 —(-2+V3)} f(@

z-—2+3

1 1
= lim [ ]z
z-—2+3lz+ 243 2v/3

By Residue theorem, we have

2
I = 7 2mi X (Sum of the residues of f(z) at the poles within c)

B

2
= 2mi.—
i

>
ol

2

EX.43. Use the method of contour integration to prove that
21

j‘ de _ 2atm D<aq<1
14+a%2+2acosf 1—a?’ a
0

Solution: Let z = e® and C be the unit circle |z| = 1.

. dz 1 1 z2+1
Then dz = e'?i d® or d® = — and cos 6 =—(Z+—> =
iz 2 A 2z

The given integral I is

_f 1 dZ_1J‘ dz
N 22410z i) az2—(1+ad)z+a
C1+a2—2a ZZ C ( )

The poles of the integrand are given by

(1+a®)+J(1—a?)? 1

i.e.,—and a.
2a a

Of these poles only z, = a liesinside C (~+ a < 1)
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Residue at z = a is

1
=lim(z — a) T
Zma (Z — —) (z—a)
I 1 a
= lim
z5a 1 az—1
(1) a
By Residue th L S
y Residue theorem, = i —— R
2T
EX.44. Evaluat f do i idue th
.44. Evaluate G _35m0) using residue theorem.
0

Solution: Let z = e¢'® and C be the unit circle |z| = 1.

. dz 1 1 z2 -1
Then dz=e“"ideorde=,—andsin9=__(z__)= _
iz 21 z 2iz

Substituting these values, we get

I_f do _j dz
) (5-3sin0)? z2—1
0

2[5 -3 (55 )]

dz
= f . . 4i%z?
iz[10iz — 3(z%2 — 1)]?
c

_ 4_.[ zdz
" | (322 —10iz - 3)?
C

z
(3z2 — 10iz — 3)2 (1)

= 41'.[- f(z) dz, where f(z) =
c

Now we have to evaluate f f(z)dz

The poles of f(z) are givenby  3z2—10iz—3 =0

_10i ++V-100+36 _ 10i + 8i
N 6 6
10i + 8i _ 10i — 8i i

L.e., Z:ngl and Z=T:§

Out of these two poles only the pole z = éof order 2 lies within the circle |z| = 1.

Residue of f(z) atz = é is = ﬁiﬂ%% l(z — %) f(z)l

_ 1 d [1 @3 2 z ]
T otdz 97T Y GBzr = 10iz - 377
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e df1 _iN2___z
- lzliril dz [9 Bz -1 (32—02(2_3")2]
3

5

_1 d[l VA ]_
— M azloz =302 T " 256

2ok
3

Thus by Residue theorem,

j f(z) dz = 2mi X (Sum of the residues)
c

_5 ( 5 )_ 107mi )
~ "\ 7256/ T T 256 )
10mi

H I=4i(—=—
ence l( 256

) [From (1) and (2)]
A T
- E)f(5—3sin6?)2_3_2

21 21

de dae 21
EX.45. Show thatf j

a+bsin ) at+bcosf az—b»p
0 0

,a>b>0
2

using residue theorem.

2T

Solution: Let I=f
0

dae
a+bsinf

Let z = e® and C be the unit circle |z| = 1.

. dz 1 1 z2 -1
Then dz = e'?i df or d® = — and sin 6 = —_(Z——) =
iz 21 A

2iz

I—f dz_j‘ 27i dz
B b 1\ iz ) 2iaz+b(z2=1) iz
¢ aty(z-3) c

_Zf dz _Zf dz
J bz? + 2iaz — b b) Zz+2b—aiZ—1

=2 [ @ duwbere () = 27 + S i -1 = ——
=7 f(z)dz, where f(z) =z L iz CETICET))
c
2ai
wherea+ﬁ=—7anda,8=—1

2a
The poles of f(z) are given by z% + 71’2 -1=0
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Let the poles of f(z) be

a=1(~a+ @ —b?) and f = 1 (~a~a? - b?)

Out of these poles z = a lies within the circle |z| = 1.
Residue of f(z) at z = a is

[Res f(2)]z=q = lim[(z — a)f (2)]

_ 1 1
=ll—>n¢lx (Z_a)(z—a)(z—ﬁ)]_a—ﬁ
~ 1 _ 1

J(a+ B)? — 4ap \[—;ng 4
b b

V—4a% + 4b? 2ia? — b?
Thus by Residue theorem,

_mb
2iva? —b?  a?—b?

ff(z)dz = 2mi.
c

H 1_2.[’ ) d _2 h
ence [ = f(z Z—b.m
c
2T
.[’ de _ 2T
a+bsin0_\/a2_b2
0
2T
dae 2T

Similarly we can prove that f

a+bc059:w/a2_b2'

0

21 21

j‘ de _f do _ 2m
a+bsind ) a+bcos® /g2 —p2

0 0
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2.20. Evaluation of certain real integrals between the limits —co and oo:
We shall now prove the following theorem:
Let Q(z) be a function satisfying the following conditions:
(@) Q(z) is analytic in the upper half of the z-plane, except at a finite number of
poles.
(b) Q(2)has no poles on the real axis.

(c) Let |z Q(z)| = 0 as |z| —» oo through the values of z such that 0 < amp z < 7.
Then j Q(x) dx = 2mi X sum of the residues ofQ(z)at its poles which lie on theupper

half plane.
Consider a semicircle with centre at z = 0 and with radius R sufficiently large so as to
include all the poles of Q(z) which lie in the upper half plane as shown in the figure.

Then by Cauchy’s residue theorem, we have

j Q(z)dz = 2mi X Z residues of Q(z)at all poles withinC; + C,

C1+C,

R
f Q(z)dz + f Q(z)dz = 2mi X Z residues (D
“Rr Ca

Now ,in f Q(z)dz,put z =R e
G2

Thendz =R e idf =iz db

Therefore

fQ(z) dz| = f|Q(z) iz] d6 = le(z)zlde @
C, 0 0

Now, by condition (c) of this theorem,

Let |zQ(z)| =0as|z|i.e.,R — oo.

Hence if R is large enough, we can find an arbitrary small positive quantity § such
that [z Q(2)| < 6.
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Cz

'

Q
2 d
=
M

Figure 2

Then, from (2), we have the inequality

s
f Q(z)dz| < J6d9
C, 0
i.e.,< 6m,i.e., < avery small quantity
This means that f Q(z)dz=0asR — oo.
C2

Hence taking limits in (1), as R — oo, we have

f Q(x)dx = Zniz residues

Note 1: In problems it will be easier to directly show that f Q(z)dz » 0asz -
C;

instead of applying the theorem.

Note 2: The theorem will be specially useful in the case when Q(z)is a rational function.

Note 3: In particular, if Q(z) = % such that the degree of the denominator is greater than

that of the numerator by at least two and g(z) has no poles on the real axis, the conditions of
the theorem are automatically satisfied. Hence we have the following important result:
If p(z) and q(z) are real polynomials such that the degree of g(z) is greater than that

of p(z) by at least two and if g(z) = 0 has no real roots, then

[ee)

p(2) . : p(2) .
—— dz = 2mi X sum of the residues of ——at its poles in the upper half of the
Ja@ 10
z — plane.
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r dz
EX. 46. Evaluate by contour integration f .
x* + a*
0
. . dz
Solution: Here we consider prampri Q(z)dz
C C

where C is the contour consisting of the semicircle C, of radius R and C; is the segment

of the real axis from —R to R as shown in the above figure.

R
Then j Q(x) dx + f Q(z) dz = 2mi Z residues of Q(z)in the upper half plane (1)
-R

Now |z| = R onC,
And |z* + a*| = |z|* — a*
i.e.,>R*—a*

1

Therefore <
z* 4+ a* R* — a*

1
Hence jQ(Z)dZ = jmdz
C;

C;

1
< | gl

G
m.R
<
= R4 — g4

and this approaches zero as R — oo,

Therefore f Q(z)dz = 0 in the limitas R — o
C;

Hence taking limit in (1), as R — oo, we have

f Q(z)dz = 2mi Zresidues of Q(z)(2)

To get the residues of Q(z), we solve the equation z* + a* = 0.
i.e. 7% = —q%* = qel™ g%el3™ gteldT gtel’™
li31T li51t li71t

1.
Therefore z = aed™, aes”", aed”", aes

Of these four poles, the arguments of the first two points only lie between 0 and .

Hence the first two alone are in the upper half plane.
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1 1,
Residue of Q(z) = Gtz = aes™is

+a
1
= lim —
z—»ae%i” 4z°
1L'7T i
i Z ae4 e4
= m = = —
Z_)ae%in' 4Z4 _4‘a4 4‘613

. . . 1 —i37-
Similarly Residue of Q(z) = e atz = ae*”"is

1, (e-1n) N P
e4l Vs el A 477.' eln.e 4_lTI.' e 4_lTL'
4q3 4a3 4q3 4q3

Sum of the two residues

1. 1.
- _ eZ”T + e_Z”T _ 1 %in _ —%in
T T4 T ad T aa3\f €

1 T

Hence substituting (3) in (2), we get

f()d—z-x L w2isin©
Q(z)dz = 2mi 13 LSLTl4
m 1
R

o)

f 1 dz = T
z4 4+ a* Z_aS\/E

Since 41 - Is an even function of z, we have
z*+a
f 1 dz = ZJ' 1 dz = s
Z+at T et T vz
—00 0
1 s
Therefore Z4+—a4dz = NG

0

[ee)

EX.47.Evaluate f

0

dx
(x%2 + a?2)?’
) . 1 . .
Solution: Since ———— is an even function of x, we have
(xZ + 2

a?)
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dx 1 r dx L
bf (x2 +a2)?2 E_f (x2 + a2)? (1)

Here we consider j —_—
( 2 + a2)2

f f(2)dz

where C is the contour consisting of the semi-circle C; of radius R together with the
part of the real axis from - R to R.

The integrand has two poles of order 2 at z = ia and z = —ia. But z = ia only lies inside
the semi-circle of the contour C.

By Residue theorem,

j f(z)dz = 2mi X (sum of the residues)

= 2mi X [Res f(Z)]z ai

1
— 2
= 2mi X zh—>r£11 dz {(Z ai) (z—ai)2(z + ai)z}

= 2mi X li d{ 1 }
mi zl—>r£11dz (z + ai)?

—2
A G ap

-2 L
(2ai)?  2a3

= 2mi X

R
e,ff(x)dx+ ff(z)dz=%
“R Cr

I

.[’ dx 4 j‘ dz _ 5
& (x%2 4+ a?)? (z2 4+ a?2)?2  2a3 )
-R Cr

N .[’ dz - f |dz|
ow (ZZ + aZ)Z - |(ZZ + a2)2|
Cr Cr

- fRdH s |z%2 4+ a?| > |z|*> = |—al|? and z = Re®®
~ (R?%2 — g?)2 = dz = Re'®.id0 = izdf, |dz| = RdO
0
_ Rm
- (RZ _ a2)2

and this—> 0asR — o
) dz
. j-m—)OasR%%
Cr

Hence by making R — oo, equation (2) becomes
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T

@
(x2+a?)?2  2a3

,[(x +a2)2 123 , from (1)

X
Note: Evaluate jm

using Residue theorem.

T
Putting a = 1 in the above problem, we get f m e

r dx s
EX. 48. Using the method of contour integration, prove that J =
0

x6+1 3°
. . . . dx 1
Solution: Since integrand is an even function, we have J ) EJ
—00 0
Consider f 1 f f(z)dz
c

where C is the contour consisting of the semi — circle Cy of radius R together with the

real axis from - R to R.

1
The poles of f(z) = prs are the roots of the equation z® + 1 = 0.

+1

1
ie, z°41=0 = z=(-1)8
1
z=(cosm+ +isinm)e
1
= [cos 2nm + ) + +i sin 2nm + )6
Cn+1mr . @n+ D= )
=C0S ———— +isin B — (by DeMoivre's theorem)

wheren =0,1,2,3,4,5.

i(2n+1)n
or z=e¢e 6 wheren =0,1, 2,3,4,5.

or z = ein/6, eSin/6' e,5i7r/6' e7i1r/6' e9i1r/6' ellin/6

of these poles only z = e/, ¢3i7/6 5%/ Jjes inside the semi-circle.

. 1 0
L _ in/6 =_
[Res f(2)],_,inse = Z_l)Lli’glt/s [(Z e'” )26 +1 <_ 0)
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. 1 li : !
= lim [ﬁ] (By L'Hospital’s rule)

Zz—ell/6

1
_6e

—5in/6

1 ..
Similarly [Res f(2)],_,3in/6 = ge—5m/2

1 .
and [Res f(2)],_sin/e = ge‘25lﬂ/6

hence by residue theorem, we have

j f(z)dz = 2mi X (sum of the residues at he poles within C)
c

— % X [e—SiTc/6 + e ~5im/2 + e—25irr/6]

Tl 5@ 5m 5@ 5m 25m 25w
=—X [(cos— —1 sm—) + (cos—— l sm—) + (cos—— l sm—)]

3 6 6 2 2 6 6
2mi
E
R
i.e., ff(x)dx+ ff(z)dz=2?n
R Cr

But ff(z)dz —>0asz=Re?andR —» o
Cr

3 21
Hence ff(x)dx =3

o)

] f dx 2T Jo‘o dx T
i.e., =— or = —
0

x6+1 3 x64+1 3

—00

2

X T
EX.49.P that dx =
rove tha f (x%2 4+ a?)(x? + b2) x a+b

(a>0,b>0,a+b).

Solution: To evaluate the given integral, consider
2

VA
_f CETOICETS Cf fla)dz

where C is the contour consisting of the semi-circle Cy of radius R together with the part
of the real axis from - R to R.
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ZZ

(z2 +a?)(z? + b?)
But z = ia and z = ib are the only two poles lie in the upper half of the z-plane.
[Res f(2)]z=ia = Jim (z — ia)f(2)

The poles of f(z) = are z = tia, z = +ib.

2

. . Z
=l — 0 G

. z2 3 —a? 3 a
o Z+i)(Z2+b?)  (a+ia)(—a®+b2)  2i(a? — b?)

Also [Res f(2)]z=ip = lim (z — ib)f (2)

. . Z2
G =) @ + 57
_ 72 B —b? 3 —b
T b (z+ib)(Z% +a?) (b +ib)(a? —b?)  2i(a? — b2

By Cauchy’s Residue theorem, we have

f f(z)dz = 2mi X (sum of the residues at he poles within C)
C

] a b
Cf f(z)dz = 2mi [Zi(az 55 — 2i(a? = bz)]

_ [a—b]_ T
-r a?—b%2l a+b

R
is .
i.e., ff(x)dx+ ff(z)dz=m But ff(z)dz —>0asz=Re?andR - o
—R Cr Cr

Hence f fx)dx = f T a0 dx = P

o)

EX.50. Prove that f

— 00

x2

(x2+1)(x2+4)

dx using residue theorem.

Solution: To evaluate the given integral, consider

2

VA
_f D+ Cf fla)dz
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where C is the contour consisting of the semi-circle Cy of radius R together with the part

of the real axis from - R to R.

ZZ

(z2+1)(z? +4)

But z =i and z = 2i are the only two poles lie inside C.

[Res f(2)],=i = lzigg(z —Df(2)

The poles of f(z) =

are z = +i,z = +2i.

2
. . Z
=lmG -0 Dz s o
_ z? -1 -1
lim - = — =—
~i(z+i0)(z2+4) (G(+i)(-1+4) 6i

Also [Res f(2)]z=2; = lim (z — 20)f(2)

2
. . Z
=G - DD
_ z? —4
= lim <~ = . <~ ==
z-2i(z2 4+ 1)(z+2i) (—4+1)(Q2i+2i) 3i

By Cauchy’s Residue theorem, we have

f f(z)dz = 2mi X (sum of the residues at he poles within C)
c

) f (D)dz =2 _[—1+1 m
- f(z)dz = 2mi ol 731l T3
c

R
is .
i.e., ff(x)dx+ ff(z)dz=§ But ff(z)dz —>0asz=Re?andR - o
—R Cr Cr

oo S xz T
Hence _f f(x)dx = _f (x2+1)(x2+4) dx = §

dx
1+ x2°

EX. 51. Evaluate by contour integration f
0

. ) ‘ dx
Solution: Consider f T4 2 —ff(z)dz
C

0
where C is the contour consisting of the semi-circle Cy of radius R together with the part
of the real axis from - R to R.
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The integrand has simple poles at z = +i. The pole z = i isinside € and z = —i is
outside C.

[Res f(2)],=; = lzif}(z - f(2) = lziiI}m =5

Hence by Cauchy’s residue theorem,
1

j f(z)dz = 2mi X2_i= s

c

i.e.,l flx)dx + C[ f(z)dz=m

But jf(z)dz —0asz=Re?andR - o

Cr

Hence ff(x)dx= fﬁdx=n

x2—x+2 4 _5m
Xt +10x2+97* T 12°

EX.52. Prove that f

Solution: To evaluate the given integral, we consider
z2—z7+42 z2—z+42
f d =f dZZJ.f(Z)dZ
c

74+ 1022497 (22 + Dz +9)
C C

where C is the contour consisting of the semi-circle Cy of radius R together with the part
of the real axis from - R to R. Observe that the integrand has simple polesatz = i,z =
+3i.Butz =i and z = 3i are the only poles lie inside the semi-circle of the contour C.

By Residue theorem, we have

[ £z = 2miflRes F(N)oei + Res f(Iumsi)

c

= 2nmi [12131_1(2 — ) (2) + lim (z = 30) f@]

_ ol z2—7z+42 i z2—z+42
A T D2+ 9) T ANz + Dz + 30)
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| vz 9r-3it2
TG D@ +9) T2 + D@Gi+ 30)
_, _—i+1+—3i—7]_5n

s BT —48i |~ 12

; 5
jf(x)dx + jf(z)dz - %
-R CRr

| [ 51 |
Taking R — oo, f flx)dx = 2 where Illm j f(z)dz =0

o)

H j x2—x+2 4 _5m
ence X+ 10x2+97 T 12

2

EX. 53. Use the method of contour integration to evaluate J —
( 2 + a2)3

Z2

Solution: Let f(z) = (Y DE

Consider f f(z)dz where C is a closed contour consisting of the upper half Cy of a large circle
C

|z| = R and the real axis from —R to R.
Poles of f(z) are given by (z? + a?)3 =0 orz? = —a? = z = +ia
Evidently z = ia is the only pole of order 3 lie within C.

To getresidue at z = ia, put z = ia + w in f(z). Then

(i@t w) = (ia + w)? _ w?—a?®+ 2iaw
flia+w) = [Ga+w)2+a?]3 (W2 + 2iaw)3
_Wz—a2+2iaw[ W]_3
(2iaw)3 2ia
1 w? —a? + 2iaw 3W+ 6w?
T 8i a3w3 2ia  4i%a?
B w? —a? + 2iawr 1 3 3 ]
N —8ia3 w3 2iaw? 2a’w

1
Hence residue = coefficient of;

- T 8iad [1 t3- 3] 16La3

Hence by Cauchy’s Residue theorem, we have
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f f(z)dz = 2mi X sum of the residues within C

jf(x)dx + j f(z)dz = 2mi X 161ia3
“R Cr

T

j(x dx+ j( +az)3 " 8al D

ow | [ 72 f 1212
VMl @ray @ =) Gy
Cr

2

< mf Rd6 [~ z = Re',|dz| = Rd6]
0

R?m _
=mandthls —->0asR — o

z=0asR >

. j z d
") (22 4 a?)3
Cr

X T
Hence by making R — oo, equation (1)becomes f mdx =8

dx

EX. 54. Evaluate 21 (2 1 4)2 using residue theorem.
0

. : dz
Solution: Here we consider f T Y J. f(2)dz
0 c

where C is the contour consisting of the semi-circle Cy of radius R and the segment of
the real axis from - R to R.

For the function f(z), z = +3i are two simple poles and z = +2i are two poles of
second order. Of these four poles, only z = 2i and z = 3i are inside C.

L lim [z~ 202(2)]

[Res f(2)],=2i = 2-1)z-2id

1
— lim — ]
5 dz (22 + 9)(z + 2i)2
y —2(2z% +2zi+9)| _ 3i
25 |2+ 9)2(z + 20)3 | ~ 800
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[Res f()z-a; = lim[(z ~ 30f )]
li 1

P (z+30)(z2 +4)2
_ —i

~ 150

Hence by Cauchy’s Residue theorem, we have

j f(z)dz = 2mi X sum of the residues within C
c

3i i ) T )

R
i.e., jf(x)dx+ ff(z)dz=27n><(800—150 = 1300
-R CRr

Hence by making R — oo, equation (1) becomes

ff(x)dx+ lim jf(z)dz - %go

when R - o, |z| - oo, f f(z)dz=10

Cr
Th f ()dx = —~
us fx)dx = 1200
) j’ dx _Im
t-e (2 + 92 +4)2 1200
Zf dx _ 71
or (2 +9)(x2 +4)2 1200
0

o)

.[’ dx _ 71
or (X2 +9)(x2 + 4)2 _ 2400
0

o)

EX. 55. Prove that f

— 00

x2—x+2 4 _57T
Xt +10x2+97 T 12°

Solution: To evaluate the given integral, we consider

(00} oo

j‘ 72 —z+42 iy — )
24110224977 ) @2+ D2+ 9)
0

dz = | f(z)dz
/

—o00
where C is the contour consisting of the semi-circle Cy of radius R together with the part

of the real axis from - R to R. Observe that the integrand has simple poles at z = +i and
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z = 13i. But z =i and z = 3i are the only two poles lie inside the semi-circle of the
contour C

For the function f(z), z = +3i are two simple poles and z = +2i are two poles of
second order. Of these four poles, only z = 2i and z = 3i are inside C.

Hence by Cauchy’s Residue theorem, we have

j f(z)dz = 2mi X sum of the residues within C
c

= 2mi{[Res f(z)],-; + [Res f(2)],=3:}

= 2mi [lzi_r)rl;(z —Df (@) + lim (z - 30) @]

P z2—z+2 i z2—z+2
T D@2+ 9) | 28z + Dz + 30)
_ omi x 10 5w
A8 T 12
R
. 51 .
i.e., ff(x)dx+ ff(z)dzzﬁ (+ onreal axis z = x)
-R Cr

r 5t
Taking R — oo, f flx)dx = 2 where }%im f f(z)dz =0

[ee)

H f x2—x+2 J _5m
e ) v r102 49 T 12

Note: Instead of proving separately that f Q(z)dz = 0 at R —» oo, we can remark that

C;

Q(=z) satisfies the conditions of the theorem 8 and start directly from equation (2).
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2.21. Evaluation of certain improper integrals involving trigonometric functions:
Consider the product e™#Q(z) where m > 0 and Q (z) satisfies the conditions of the
theorem in 8.
Now |eim?| = |eimx+)]
= [eim*.e=my|
= e My
<1,fory>0

Therefore |e™Q(2)| = [e™*|.1Q(2)|

<Q(2)

Since j e™2(Q(z) - 0 whereC,is the semicircle of the above figure, it follows that

C2

Cjz e™m?Q(z) =0

Hence the conclusions of theorem 8 can be applied for e™#Q(z).

So we have the following result:

o]

f e™2Q(z) dz = 2mi Z residues ofe™#(Q(z)at its poles in the upper half plane.

On taking the real and imaginary parts of this result, we see that by this method we can

evaluate integrals of the type

f f(x) cos mx dx and f f(x) sin mx dx

[ee)

cos mx

EX. 56. Evaluate by contour integration f ———dx
a®+x

0

Solution: Here we consider

f(gile:fQ(z)dz

a? + z2
C C

where C is the contour consisting of the semicircle C, of radius R and C; is the segment of

the real axis from —R to R as shown in the above figure.
R
Then f Q(x)dx + f Q(z)dz = 2mi Z reidues of Q(z)in the upper half plane (1)
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Now |z| = Ron C,.

|z% + a?| = |z|* — a®

> R? —qa?
Theref: 1 < !
erefore <
z2+a?l ” R? —a?
|eimzl — |eim(x+iy)| — |eimx_e—imy|
= e¢™™ < 1since y > 0 in the upper half plane.
Therefore || = |eim|
z24q? "lz2+a2
1
R2 — a2
mz
Hence f 2T o2 dz| < f 2 > |dz|
Cz Cz
n.R
< RZ — a2

and this approaches zero as R — 0.
Therefore f Q(z)dz = 0 in the limit R — oo,
G

Hence taking limits in (1), as R — oo, we have

f Q(x)dx = 2mi Z reidues of Q(2)(2)
To get the residues of Q(z), we solve z? + a? = 0.

This gives z = +ia. The only pole in the upper half of the z-plane is ia.
. o (z—ia)e™
Residue at z = ia is = lim
zoia  z% + a?

eimz
= lim -
z-iaZ + ia
eim.ia e~ ma
= = 3
ia+ia 2ia 3)
Substituting (3) in (2), we get
r e"™mM*
dx = 2mi X =—eg ma
f Q(x)dx miX———=—e
eimx T
i e., f mdx = Ee‘m“ (4)
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Equating the real part of both sides,

[ee]

cos mx T
——dx=—e ™
az+x
—o0
Since 2™ is an even function of x, we have
a’+x?
(o] [oe]
cos mx cos mx T
———dx = ———dx=—e™ ™M
az+x az+x
— o0 0
(o]
cos mx T
Therefore ——dx=-—e ma
a‘ +x 2a
0
[ee]
cos ax ~
EX.57.Prove that > dx =me %,a = 0.
x4 +1
— 00

Solution: We know that cos ax is the real part of e'®*.

elaZ
z2+1

.~ We consider the function f(z) =

Now, the poles of f(z) are given by z = +i, but z = i is the only pole lie in the

upper half of the z-plane.

iaz e~ a
Res f2)): = imGe = 0 @) =l = 5
elClZ e_a
J— . _ —-a
Thusfzz_l_le—an(Zi)_ne (1)

c

where C is the contour consisting of the semi-circle Cy of radius R together with
the part of the real axis from - R to R.

On the semi-circle Cg, z = Re'?
Observe that éim f f(z)dz=10
Cr

~ From (1), we get f f(x)dx = me™*

[00]

cos ax
x2+1

dx = me™@

Now, equating the real parts, we get f

— 00

364



Complex Analysis

[00]

CoS x

EX. 58. Evaluate m dx.
0

Soluti 'Ltjo Y d —f (x)d
olution: Le Gzt 1) x=| f(x)dx
0 0

N () = COsX__ oo etx
where f(x Sy R .0 oz 1 12
Consider the integral
eiz
jf(Z)dZ=fde (1)
C C

where C is the contour consisting of the semi-circle Cy of radius R together with

the part of the real axis from - R to R.

From (1),f f(z)dz = ff(x)dx + j f(z)dz (onthereal axis, z = x) (2)
C -R Cr

Now the poles of f(z) are givenby z2 + 1 = 0,i.e.,z = +i
Of these poles only the pole z = i of order 2 lie inside the upper half of the plane
(i.e., the circle C).

1 d
[Res f(@)],= = —5;1im | 2~ 0% @)|

d [ eiz l

— 1 el Y
P (S e T ey

S m|Gror T "z

d| e“ l o
By Residue theorem, we have

f f(z)dz = 2mi X sum of residues of f(z) at the poles within C
C

-n(-5)-3

As R — oo, for any point z on the semi-circle Cg, |z| = o,i.e., f(z) - 0
|llim f f(z)dz—- 0 (4)
Z|—>o0
Cr
From (2), (3) and (4), we get
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_jof(x)dx = g

/4

j(x2+1)2d"=2

i.e.,

Equating real parts both sides, we get

[ee]

3

coS X D =
(x2+1)2 x_e

f cos x d T
—_—ax = —
(x2+1)2 2e
0

oo

X sin mx _ _
EX. 59. Evaluate f4—dx using residue theorem.
x*+16
0
) _ _ z sinmz
Solution: Consider the integral j 11 dz = j f(z)dz

c
where C is the contour consisting of the semi-circle Cy of radius R and bounding
diameter - R to R.

We know that sin mz is the imaginary part of e,

Zeimz
z4¥+ 16

Poles of f(z) are given by z* + 16 = 0

Take f(z) =

i.e., z¥=—-16=16(cosm + isinm)
or z* = 2%cos 2n+ Dm +isin 2n + Dn]
Cn+1r @n+Dm
or z=2|cos————+isin————| wheren=20,1,2,3
T T 1
Ifn=0,21=2>cosz+lsmz] <T+1T> V2 +iV2
[ 3 R¥ 4 1
Ifn=1,zy =2|cos—+isin— =2(——+l—>=—\/_+l\/_
L 4] 2 V2
[ 5t 517 1
Ifn=2,z, =2|cos— +isin— =2(———l—>_ —/2 -2
T 4] 2 V2
[ 7 71 1 1
Ifn=3,z, =2|cos— 4+ isin— =2(——i—> V2 —iV2
! 4 4 | V2 2
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.TT .31
Of these poles, only the two poles z; = 2e's =2 +ivV2and z, = 2e'+ = -2 +iV2

lie within the circle C.
Hence we have to calculate the corresponding residues.

[Res f(2)]z=z, = lim (z = 2)) f(2)

7 eimz 0
= Zli_gll(z —7;) 116 (= 6) .Applying L Hospital’s rule
. (z—2z) {e™ + z.im.e"™?} + ze'm?
= lim
Z—2Zq 473
7, eimz gimz eim(V2+iv2)

4zi 4z 42+ i2)

emVZmmZ  gmmi2gimV2 j o=mV2(cos my2 + i sin my2)

8(1+i)2  8Qi) -16
Similarly [Res f(2)];=,, = le_)rgl (z—2,) f(2)

(1)

gim(—V2+iv2)
a(V2+iV2)

i e ™2(cos mv2 — i sin mv/2)
B 16

(from (1))

By Residue theorem,

f f(z)dz = 2mi x sum of residues of f(z) at the poles within C
c

lie ™2 (cos myVZ + isinmy2) ie ™?%(cos my2 — i sin mv2)
= 2mi 16 + 16

= 2mi (—Le‘mﬁ> [(cos mv2 + i sinmv2) — (cos mV2 — i sin mv/2)]

16

i

= ge‘mﬁ(Zi sin mv/2)

i
= iZe‘mﬁsin mv2
R
/[
i.e., ff(x)dx + f f(2)dz = iZe‘mﬁsin mv2 (2)
-R CRr

On the semi — circle Cg, z = Re'?, we observe that f f(z)dz > 0asR — oo.

Cr
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From (2), we get

f fl)dx = i%e‘m‘ﬁsin mv2

xeimx T
jx4+ 16dx —'%

— 00

e ™2gin mV2

Now equating the imaginary parts, we get

[oe]

X sinmx T
f x4+—16dx = Ze‘mﬁsin mx/f
X sin mx T
i.e., f m X = Ze‘mﬁsin mv2
0
X sin mx T
or f mdx = ge‘mﬁsin m\/f

0

oo
am

Not fxsinmxd T ~ i (am)

ote: | ——dx=—e sin |—=
x* + a* 2a? V2
0

EX.60. Show by the method of contour integration that

o)

cos mx
(x%2 4+ a?)?
0

. cos mx
Solution: Let ( T f fx)dx
cos mx eimx
where f(X) = m = Real part of m

mz

Consider the integral f f(2)dz = f_( 2_|_a2)2

where C is the closed contour consisting of the semi-circle Cy: |z|

-R toR.

s
dx = (1+ma)e ™ (a>0,b>0)
4a3

= R and real axis from

f f(z)dz = ff(x)dx + f f(z)dz  (onreal axis z = x) (D
C -R Cr

Evidently llm @1 a2 =
Z -a
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. eimz .

Hence Ill_r)glo f mdz =0or 1%1_1)130 f f(z)dz=0 (2)
Cr Cr

Now the poles of f(z) are given by z2 + a? = 0,i.e.,z = +ia

Of these poles only the pole z = ia of order 2 lie inside the circle C.

[Res F(2)]yeia = W lim [ - za>2f<z>]

= lim

z-ia

d eLmZ
lE (z + ia)?

(z +ia)?. im.e™ —e™? 2(z + i)

z-ia (z+ia)*

_ e™?(z + ia)[im(z + ia) — 2]

i (z + ia)*
_ e™[im(z+ia)—2] e ™ (1+ma)
~ o (z +ia)3 B 4a3i

By Cauchy’s Residue theorem

f f(z)dz = 2mi X sum of the residues

R
I
i.e., ff(x)dx + f f(z)dz = el (1 +ma)e ™*, from (1)
-R Cr
Making R — oo and noting (2), we get

f fx)dx = %(1 + ma)e ma

me
f T aZ)Z =53 (1 + ma)e ™4

equating real parts from both sides,

o)

cos mx
——dx
(x%2 4+ a?)?

— 00

T
ﬁ(l + ma)e ™4

o)

cos mx ma
or 2 md 2a 3(1+ma)e
0
cos mx ma
or 2+ a)? dx =1 (1 + ma)e~
0
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cos x _ _
EX. 61.Evaluate f ———dx (a > 0) using residue theorem.
x2+a

iz
Solution: Let =—
olution: Let f(z) o

Considerj f(z)dz where C is the closed contour as shown in the figure.
c

Poles of f(z) are given by z? + a? = 0 or z = *ia.
But z = ia only lies inside C.

[Res f(2)]z=ia = )im (z —ia)f (2)

eiz 1
j— —-Qa

= lim — = o
zoiaz +ia 2ia
= By Residue theorem,

f f(z)dz = 2mi X sum of the residues
c

o1 me™%
=2miX—e % =
2ia a

—-a

R

i. e.,l flx)dx + C.I[; f(2)dz =

R
eix eiz Te™ @
i.e. —dx+f—dz=
’ ,fxz + a? z%2 + a? a

-R CRr

e

Making R — oo, we get

w . .
elx n.e—a ] ) elZ
ﬁdx = since lim ﬁdz =0
x%+a a Row ) z%2+4a

Equating real parts, we get

[ee)

f CcoS X e ¢

x2 + a? a

— 00
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8. LECTURE NOTES

Solutions of Algebraic and Transcendental equations:

1) Polynomial function: A function f(x) is said fo be a polynomial function

if f(x) is apolynomialin x.
ie, f(x)=apx"+a x4 A x +ay,
wherea, =0, the co-efficients ay,a,.......... a, are real constants and nis a

non-negative integer.
2) Algebraic function: A function which is a sum (or) difference (or) product of

two polynomials is called an algebraic function. Otherwise, the function is

called a transcendental (or) non-algebraic function.
Eg: (i) f() =cie™ + e =0 () f() = e =2 +3=0

3) Root of an equation: A number « is called aroot of an equation f(x)=0 if

f (a)=0.We also say that & is a zero of the function.

Note: The roots of an equation are the abscissae of the points where the graph

y = f (x) cuts the x-axis.

Methods to find the roots of f (x) =0

Direct method:

We know the solution of the polynomial equations such as linear equation
ax + b =0, and quadratic equation ax? +bx+c =0,using direct methods or
analytical methods. Analytical methods for the solution of cubic and

quadratic equations are also available.
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1.1.

Bisection method:

Bisection method is a simple iteration method to solve an equation. This method is
also known as Bolzano method of successive bisection. Sometimes it is referred to
as half-interval method.

(i)

(il

(il

(iv)

(V)

Suppose we know an equation of the form f (x)=0 has exactly one real
root between two real numbers x,, x, .The number is chosen such that
f(x,) and f(x)wil have opposite sign.

Let us bisect the interval [x,, x ] into two half intervals and find the mid

point x, = X°J2rxl If f(x,)=0 then x, is aroof.

If f(x) and f(x,) have same sign then the root lies between x, and xa.
The interval is taken as [x, x,]. Otherwise the root lies in the interval[x,, x,] .

Next calculate x 3, x4, x5---,until two consecutive iterations are equal.
Then we stop the process after getting desired accuracy.

This method is known as Bisection Method

PROBLEMS
1). Find a root of the equation x*-5x+1=0 using the bisection method in 5 -
stages
— .3 _ f(0)>0
Sol Let f(x) =x°—5x+ 1. We note that F(1) <0 and

. One root lies between 0 and 1

Consider x,=0 and x, =1

By Bisection method the next approximation is

X, =

o t% _Lios1)=05
2 2

= f(x,)=f(0:5)=-1375<0and f(0)>0
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We have the root lies between O and 0.5

Now x, = 0+20'5 =0.25

We find f(x,)=-0.234375<0 and f(0)>0
Since f(0)>0, we conclude that root lies between x, and x,
The third approximation of the rooft is
Xo+Xx3 1
x4 === =-(0+025) = 0.125
We have f(x,)=0.37495>0
Since f(x,)>0and f(x)<0, theroof lies between

X, =0.125 and x, =0.25

Considering the 4t approximation of the roots

X+ X,

X; = - 1(0.125+0.25)=0.1875
2

f (x)=0.06910>0, since f(x)>0 and f(x,)<0 the root must lie between

x5 = 0.18758 and x3 = 0.25

Here the fifth approximation of the root is

X, =%(x5+x3)

- 1(0.1875+0.25)
2

=0.21875

We are asked to do up to 5 stages
We stop here 0.21875 is taken as an approximate value of the root

and it lies between 0 and 1
SINMPT-UNIT-I



2) Find a root of the equation x* -4x—-9=0 using bisection method in four stages
Sol Let f(x)=x>-4x-9
We note that f(2)<0 and f(3)>0

.. One root lies between 2 and 3

Consider x, =2 and x, =3

By Bisection method x, =

%*% o5
2

Calculating f(x,)=f(2.5)=-3.375<0

-. The root lies between x, and x;

2543 275

The second approximation is x; = %(x1 +x,) = =

Now f(x3) = f(2.75) = 0.7969 > 0

. The rooft lies between x, and x,

Thus the third approximation to the root is
1
X, = E(x2 +X%,)=2.625

Again f(x,)=f(2.625)=-1.421<0
. The root lies between x, and x,

Fourth approximation isxs = %(x3 +x,) = %(2.75 + 2.625) = 2.6875
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1.2. False Position Method ( Regula - Falsi Method)

In the false position method we will find the root of the equation f (x)=0 Consider
two initial approximate values x, and x, near the required root so that

f(x,) and f(x) have different signs. This implies that a root lies betweenx, and x, .
The curve f(x) crosses x- axis only once at the Point x, lying between the

poinfs x, andx,. Consider the point A=(x,, f(x,)) and B=(x, f (x)) on the graph

and suppose they are connected by a straight line. Suppose this line cuts x-axis
atx,. We calculate the value of f(x,) at the point. If f(x,) and f(x,) are of

opposite signs, then the root lies between x, and x, and value x, is replaced by x,

Otherwise the root lies between x, and x, and the value of x, is replaced by

x,.Another line is drawn by connecting the newly obtained pair of values. Again

the point here cuts the x-axis is a closer approximation tfo the root. This process is

repeated as many times as required to obtain the desired accuracy. It can be
observed that the points

X,, X3, X, ....00TAINed converge to the expected root of the equationy = f (x)

The below graph shows how to execute Regula Falsi Method

y
1
(x1, 7 (x))
(%9, f(x0))
X0 Xy
xo \N
(x1, /(%)) (x0,./(xg))

To Obtain the equation to find the next approximation to the root
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Let A=(x,, f(x))and B=(x,f(x)) be the poinfs on the curve y=f(x) Then the

y—f(x0) — fOe)—fx) (1)

X—Xo X1—Xo

equation to the chord AB is

At the point C where the line AB crosses the x — axis, where f(x) =0ie, y =0

From (1), we get x=x0—fxi;);°(x())f(xo)— .............. (2)

(x)-

X is given by (2) serves as an approximated value of the root, when the interval in

which it lies is small. If the new value of x is taken as x, then (2) becomes

A v
A o S ()
f(xl)
X, e
O X0 X -
f(-xl)
(x1./(x1))
B = Ff(x)
(X =)
= %, — f
X2 XO f(X1)—f(Xo) (XO)
% (%) -%f (%)
= —>(3) e (3)
- fn) )

Now we decide whether the root lies between
X, and x, (or)x, and x

We name that interval as (x,x,) The line joining(xy, 1), (x2,y,) meets x — axis at x,

% (%)=%f(x)
f(xz)_ f (Xl)

is given by x, =
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This will in general, be nearest to the exact root. We continue this procedure fill

the root is found to the desired accuracy
The iteration process based on (3) is known as the method of false position

The successive intervals where the root lies, in the above procedure are named

as
(XO’ Xl)’(xll Xz)y(ng X3) eTC
Where x; < x;41 andf (xo), f(x;+1) are of opposite signs.

Xia f (Xi)_xi f (Xi‘l)

f(x)—f(x,)

Also x;,, =

PROBLEMS:

1. By using Regula - Falsi method, find an approximate root of the equation

x*—x-10=0 that lies between 1.8 and 2. Carry out three approximations

Sol. Let us take f(x)=x*-x-10 and x,=1.8,x =2

Then f(x,)=f(1.8)=-13<0 and f(x)=f(2)=4>0

Since f(x,) and f(x)are of opposite signs, the equation f(x)=0 has a root

petween x, and x,

The first order approximation of this root is

woox "%
SRTEVETER MY

2-18
4+13
=1.849

=1.8

x(—1.3)

We find that f(x,)=-0.161 so that f(x,) and f(x) are of opposite signs. Hence

the root lies between x, and x, and the second order approximation of the root is
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SIS

~1.8490 | 2-1849 x(-0.159)
0.159

=1.8548
We find that f(x,)= f (1.8548)
=-0.019

So that f(x,)and f(x,) are of the same sign. Hence, the root does not lie between
x, and x,.But f(x,) and f(x) are of opposite signs. So the root lies between

x, and x, and the third order approximate value of the root is  x, =x3 —
X1—X3
[l o)

18548 _ 2— 18548 (—0.019)
=1. ——————x (-0.
4+ 0.019

= 1.8557
This gives the approximate value of x.
2. Find out the roots of the equation x®* —x—4=0 using False position method
Sol. Let f(x)=x*-x-4=0
Then f(0)=—4,f(1)=-4,f(2)=2

Since f (1) and f(2) have opposite signs the root lies between 1 and 2

By False position method x, = Xo: ((Xl)_xlf (’;o)

X)) = (%
o (x2)-2(-4)
2-(-4)
=£=E=1.666
6 6
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f (1.666)=(1.666)" ~1.666—4
=-1.042

Now, the root lies between 1.666 and 2

| 1.666x2—2x(~1.042)

=1.780

& 2-(-1.042)

f (1.780)=(1.780)’ ~1.780— 4
=-0.1402

Now, the root lies between 1.780 and 2

_ 1.780x2—2x(~0.1402)

=1.794

. 2-(-0.1402)

f(1.794)=(1.794)’ -1.794 -4
=-0.0201

Now, the root lies between 1.794 and 2

. 1794x2-2x(-0.0201)
° 2-(-0.0201)
f (1.796) = (1.796)’ ~1.796 — 4 = —0.0027

=1.796

Now, the root lies between 1.796 and 2

_1796x2-2x (—0.0027)

=1.796
% 2-(-0.0027)

The rootis 1.796

1.3. Newton- Raphson Method:-

The Newton- Raphson method is a powerful and elegant method to find the
root of an equation. This method is generally used to improve the results obtained by

the previous methods.
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Let x, be an approximate root of f(x)=0 and let x, =x,+h be the correct root

which implies that f(x)=0. We wuse Taylor's theorem and expand
f(x)="f(x+h)=0

= f(x,)+hf'(x,)=0

f (%)
(%)

Substituting this in x, ,we get

=h=-

X =% +h

. X, is a befter approximation than x,

Successive approximations are given by

(xi)
X2y X3 weeveeven e Xy Where x; ., = x; — ffl(xi)
y
J(xp) 1
JS(x1)
S(x2) === J
nl | =
(0] / / x5 -0 "
i |
PROBLEMS:
1. Apply Newton — Rapson method to find an approximate root, correct to three

decimal places, of the equation x®-3x-5=0, which lies near x=2

Sol:- Here f(x)=x*-3x-5=0 and fl(x)=3(x2—1)

.. The Newton — Raphson iterative formula
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% =3%-5_ 2x°+5

ATk 1) 3(xi o)

i+1 i

i=012..(1)

To find the root near x=2, we take x, =2 then (1) gives

2x°+5 1645 21
= = =—=2.3333
& 3(x°-1) 3(4-1) 9

C2x°+5  2x(2.3333)°+5

3(x*-1) 3[(23833)" 1] - 22600

2

_2x3+5  2x(2.2806)%+5
T 3(x3-1)  3[(2.2806)2 — 1]

X3 =2.2790

2% (2.2790)% + 5

- =2.2790
3[(2.2790)% — 1]

X4
Since x, and x, are identical up to 3 places of decimal, we take x, =2.279 as
the required root, correct to three places of the decimal
2. Using Newton — Raphson method
a) Find square root of a number
b) Find reciprocal of a number
Sol. ) Square root:-

Let f(x)=x*-N=0, where N is the number whose square root is to be found.
The solution to f(x) is then x=vN

Here f '(x)=2x

By Newton-Raphson technique
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Using the above iteration formula the square root of any number N can be
found to any desired accuracy. For example, we will find the square root of
N=24.

Let the initial approximation be x, = 4.8

1 (48 N 24) 1 (23.04 + 24) 4704
1=\ T1g) T2 a8 ~ 96
- 4_9+2_4] _1(2401+24) 4801, oo
2 49) 2\ a9 98
v~ 1 4g0g, 24 |_1(239904124) 479904 _, o0
2 4898) 2\ 4898 9.796

Since x, = x,, therefore the solution fo f(x)=x*-24=0 is 4.898. That means,

The square root of 24 is 4.898

b) Reciprocal:-

Let f(x) =1— N =0 where N is the number whose reciprocal is to be found
X

1

. . 1 —
The solution to f (x)is then x = <. Also, fl(x)=—2

X
To find the solution for f (x)=0, apply Newton — Raphson method

GE-Y)

—1/x?

Xiy1 = X — = x;(2 = x;N)

For example, the calculation of reciprocal of 22 is as follows

Assume the initial approximation be x, =0.045
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- % =0.045(2-0.045x 22)
= 0.045(2-0.99)
= 0.0454(1.01) = 0.0454
X, = 0.0454(2—0.0454x 22)
= 0.0454(2-0.9988)
= 0.0454(1.0012) = 0.04545
X, = 0.04545(2 — 004545 22)
= 0.04545(1.0001) = 0.04545

x, = 0.04545(2 — 0.04545 X 22)
= 0.04545(2 — 0.99998)

= 0.04545(1.00002)
= 0.0454509

-. The reciprocal of 22 is 0.04545

3. Find by Newton's method, the real root of the equation xe* —2 = 0 correct to

three decimal places.

Sol. Let f(x)=xe*-2—(1)
Then f(0)=-2 and f(1)=e-2=0.7183
Soroot of f(x) lies between 0 and 1
Itis nearto 1.So we take x,=1 and f*(x)=xe*+e* and f'(1)=e+e=>5.4366

.. By Newton's Rule

: o f (%)
First approximation x, =x, ————=
(%)
1 0.7183 _ 0.8679
5.4366

o f(%)=00672  f'(x)=4.4491
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The second approximation x, = x, - ffl((xl))
X,

~0.8679- 2072

4.4491
=0.8528

.. Required root is 0.853 correct to 3 decimal places.

1.4.GAUSS JORDAN METHOD:

SYSTEM OF NON HOMOGENEOUS LINEAR EQUATIONS

An equation of the form a;X; + a,X, +...ccceeuuue. +a,X, =b wherex; xo..... Xn Qre
unknowns and Qi, Q2. an , b are constants is called linear equationin n
unknowns .

Definition: Consider the system of m linear equations in n unknowns xi, Xx2,....... Xn QS given
below:

Ay, Xy + 8, X s +a, X, =D

By, Xy + 8y Xy F s +a, X, =,

A, X F Xy F e, +a, X, =b,

By Xy 8, X, o, +a, X, =h,

................ bm are constants. An
Xn ) safisfying all the equations simultaneously is called a

The number gj's are known as coefficient and b, b,
ordered n-tuple (xi, x2
solution of system.

...........

Non-Homogeneous system:

If all biZ 0 i.e.afleast one bi# 0.
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Matrix Representation:

The above system of linear non Homogeneous equations can be written in Matrix form as
AX=B

Ay Qe a, | % b,
Ay Ay a, || X3 | = bz
aml am2. amn n bm

Augmented Matrix:

Itis denoted by [A/B] or [A B]is obtained by Augmenting A by the column B.

~[A/Bl= |ay, a, a,, b,
a

ml

By reducing [A /B] info its row echelon form the existence and uniqueness of solution
AX = B exists.

NOTE:

Given a system, we do not know in general whether it has a solution or not .If there is at
least one solution , then the system is said to be consistent .If does not have any solution
then the system is inconsistent.

CONGSISTENT: A system is said to be consistent if it has at least one solution

NOTE: Here rank is denoted by o

Gauss Jordan Method: In Gauss Jordan method augmented matrix [A/B] can be reduced
to identity matrix and column matrix by elementary row operations. Finally last column

gives solutions of given linear system.

The Augmented matrix [A/B] can be reduced as follows by elementary row

operations
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1 1 2 4 1 0 Oa
[A/B]=|2 -1 3 9|=|0 1 0p
3 -1 -1 2 0 0 1y
Then last column is the solution set of given linear system
For Non Homogeneous System, The system AX = B is consistent i.e it has a solution.

The system is inconsistent i.e. it has no solution.

NOTE: Find the rank A and rank [A /B] by reducing the augmented matrix [A /B] to
Echelon form by elementary row operations. Then the matrix A will be reduced to Echelon

form.
This procedure is illustrated through the following examples.
Example 1: Find whether the following equations are consistent, if so solve them

By Gauss Jordan method x+y + 2z=4; 2x -y +32=9; 3x-y-z=2.

1 1 2]||x 4
Solution: The given equations can be written in the matrix formas |2 -1 3 |[|y| =19
3 -1 -1}||z 2

i.,e. AX=B Use Gauss Jordan method

1 1 2 4
The Augmented matrix [A/B] =2 -1 3 9
3 -1 -1 2

Applying R2=>R2-2R; and R3—>Rs3-3R;
1 1 2 4

[A/B] =|0 -3 -1 1

0 -4 -7 -10

Applying  R3—> 3R3 - 4R
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1 1 2 4
[A/B] =|0 -3 -1 1
0 0 -17 -34

Since Rank of A=3 & Rankof [A/B] =3
Since the number of non-zerorows of matrix Ais 3
Since the number of non-zero rows of matrix [A /B]is 3
Rank of A= Rank of [A B]

i.e. p(A)=p(AB)

1 1 2 ||x 4

0 -3 -1]}lyl=|1

0 0 -17||z -34
= R3« R3/(-17)

1 1 2 ||x 4

0 -3 -1||y|=|1

0 0 1]|z 2

= R1«< R1-2R3 and R2—R2+R3
1 1 O0]|x 0
0 -3 0f|y|=13
0 0 1|z 2

Next perform R2/(-3) and R1—R1-R2
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X 1
y|=1-1
. |z 2
Then solution sef X=
~x=1, y=-1 ,z=2 sthe solution.

Example 2: Using Gauss Jordan method solve linear equations given below

X+2y+272=2;3x-2y-z2=5:2x-5y +3z=-4; x + 4y + 6z = 0.

Solution: The given equations can be written in the matrix form as AX = B

1 2 2 « 2
.13 -2 -1 5
le. y| =

2 -5 3 , -4

1 4 6 0
1 2
. 3 -2
The Augmented matrix [A/ B] = ) _5
1 4

Use Gauss Jordan method

Applying R2—>R2-3Rj; R3—>R3 - 2R3;
1 2
0 -8
A /B] =
(A8l = o
0 2

Applying R3z—>8R3 - 9R2;

12
0 -8

A/B] =

[ABL =10

0 O

Applying
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2 2
-1 5
—4

R+s—R4—R;

2
-7
-1

4

2
-1
-8
-2

R4—4R4 +R2 ,we get

2 2

-7 -1
95 -55
9 -9

R3—R3/55; R4—R4/9



1 2 2 2

0 -8 -7 -1
A /B] =~
A 78] 0O 0 1 -1
0O 0 1 -1
Applying Rs—>R4-R3
1 2 2 2
0 -8 -7 -1
A /B] =~
A /B] 0O 0 1 -1
0O 0 0 O

Since Rank of A=3 & Rank of [A/B] =3
Rank of A = Rank of [A /B]
i.e. p(A) = p(AB)

The given system is consistent, so it has a solution.

1 2 2 y 2

0 -8 -7 -1
We have y| =

0O 0 1 , -1

0O 0 O 0

12 0], 4
0 -8 0 _|-8
o o 1|7 " |21
0 0 ol 0

Next R2/(-8) and R1-2R2 then
10 0] 2
010 !
00 1|7 " |-1
00 ot 0
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~x=2,y =1 ,z= -1 Isthe solution.

1.5. Gauss Siedel Method:
Algorithm: Consider the linear system of equations as
(i) a) x+by+ciz=d;
Qox+boy+Coz=d>
asx+bay+czz=ds

(ii) If a1,b2, c3 are large as compared with other coefficients , then solve them for x,y,z
respectively .

The system can be written in the below form

X = i (di-bry-ciz)
Y = b—lz (do-a2x-C2z)
7= — (ds-asx-bay)

(iii) First iteration: We can calculate first iteration values in the following equations
X1 = — (di-bryo+ciz9)
Y1 = i (d2-apx1-c220)
7'= — (da-aax'-bay')

(iv) Second iteration: Formulas for second iteration

_ 1
X2 =— (di-bry'+cizl)
Y2= biz (d2-a2x2-c2z')

12= é (ds-asxz-bay?)

First take initial values zeroes as new approximation for an un known value found, it is
immediately used in next step. We continued these processes up to two successive
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iterations are approximately equal. This procedure is called as Gauss Siedal iteration
method.

PROBLEMS:

1. Solve by Gauss Siedal method 10x+y+z=12, 2x+10y+z=13 , 2x+2y+10z=14
Sol. Given equations are 10x+y+z=12----(1)
2x+10y+z=13----(2)
2x+2y+10z=14---(3)
From (1) x=— (12-y-2)
From (2) y=— (13-2x-2)
From (3) z = 1—10 (14-2x-2y)
First iteration: X = % (12-y0-z0)= 1—10 (12-0-0) = 1.2
Y= (13-2¢1-20) = — (13-2(1.2)-0)=1.06
7'= = (14-2¢-2y1) = — (14-2(1.2)-2(1.06)) =0.948
Second iteration: X2 = 1—10 (12-y1-z1)= 11—0 (12-1.2-1.06) = 0.999
Y2 = = (13-2x2-71) = — (13-2(0.999)-0.948)=1.005
72= — (14-2x2-2y?) = — (14-2(0.999)-2(1.005)) =0.999
Third iteration: X3 = = (12-y2-72)= — (12-1.005-0.999) = 1
Y3 = 1—10 (13-2x3-22) = 1—10 (13-2(1)-0.999)=1
75=— (14-263-2y%) = — (14-2(1)-2(1)) =1
Fourth iteration: X4 = % (12-y3-z3)= 1—10 (12-1-1) =1
Y4= = (13-2x4-28) = — (13-2(1)-1)=1
Z4= — (14-2¢4-2y4) = = (14-2(1)-2(1)) =1

Since third and fourth iterations are equal then desired set of solutions are
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X=1,y=1,z=1

2. Using Gauss Siedal method solve the linear system 20x+y-2z=17,3x+20y-z=-18,2x-
3y+20z=25

3. Solve éx+y+z=105,4x+8y+3z=155,5x+4y-10z=65 by Gauss Siedal method.

9. Practice Quiz

1. Newton'’s iterative formula for finding the Cube root of a number N is xn+1 = [b

g{mn l}
Q) *n

g[zxn Ag}
b) X

]

2. Iteration formula in Newton-Raphson method is

o]
f(x,)
Xpa =X, +
o " Fe)
., fx,)
b) n+l n fl(Xn)
1
Xn+1_xn +f (Xn)
c f(x,)
1
Xny = n_f (Xn)
d) f(Xn)
3. Which of the following is an algebraic equation ........... b ]
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al x> —logx-1.2=0
b) X +2X* +x+1=0
c)COSX = Xe*

d) xe*=1=0
4. Which of the following is a transcendental equation... [a ]

a) x* —logx=1.2
o) X° +2X* +x+1=0
C) X3_3X_5:O

d) X’ =5x+1=0

5. Using the false position method, the formula for the approximate root of the equation

f(x)=0is............. [a ]

- af (b)—bf (a)

TR
- bf (b)—af (a)

b) f(b)-f(a)
- af (b)+bf (a)

o) f(b)+ f(a)
. bf (b)+af (a)

q) f(b)+ f(a)

6. If the root of the equation x*-6x+4=0 lies between 0 & 1, then the first

approximation of the required root using Newton-Raphson method is....... [c ]

0)0.55555
0)0.4444

c)0.77777
d)0.66666

7. The nfh order difference of a polynomial of nth degree is [a ]
a) Constant
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8. LECTURE NOTES

Interpolation

Infroduction:-

If we consider the statement y = f (x)x, <x<x, we understand that we can find
the value of y, corresponding to every value of x in the range x, < x<x, . If the function
f (x) is single valued and continuous and is known explicitly then the values of f(x)

for certain values of X like Xy, X;,..cc..... X, can be calculated. The problem now is if we

are given the set of tabular values

XiX, X Xyorrene X,

Yi¥o Vi YoV
Satisfying the relation y=f(x) and the explicit definition of f(x) is not known,
then it is possible to find a simple function say f(x) such that f(x) and ¢(x) agree at
the set of tabulated points. This process to finding ¢(x) is called interpolation. If ¢(x) is

a polynomial then the process is called polynomial interpolation and ¢(x) is called

interpolating polynomial. In our study we are concerned with polynomial

interpolation

Errors in Polynomial Interpolation:-

Suppose the function y(x) which is defined at the points (x;,;)i=0,1,2,3———-n is
continuous and differentiable (n+1) times let ¢,(x) be polynomial of degree not
exceeding n such thatg,(x)=V,i=12---n—(1) be the approximation of y(x)

using this ¢, (x;) for other value of x, not defined by (1) the error is o be determined
Since  y(X)=¢,(x)=0 for x—xg,X,...x, we put
y(X) =4, (x) = Lz,.1(X)
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Where 7, (X) = (X=X )eeerenee. (x-x,)—>(3) and L to be determined such that the

equation (2) holds for any intermediate value of x such as x=x*, x, < x < x,
Clearly L= Y

We construct a function F(x) such thatF(x)=F(x,)=F(x'). Then F(x) vanishes
(n+2) times in the interval[x,,x,]. Then by repeated application of Rolle’s theorem.
F'(x)Must be zero (n+1) times, F*(x) must be zero n fimes........ in the interval[x,, x| .
Also F“*l(x)zo once in this inferval. Suppose this point is X=¢, x, <& < x, differentiate
(5) (n+1) times with respect to x and putting x=¢, we get

yn+1(g)

(n+1)!

y"(&)-L(n+1)!=0 Which implies that L=

Comparing (4) and (6) , we get

()0 00) =L L )

This given the required expression x, < ¢ < x, for error

2.1. Finite Differences:-

1. Infroduction:-

In this chapter, we introduce what are called the forward, backward and

central differences of a functiony=f(x). These differences and three standard

examples of finite differences and play a fundamental role in the study of differential

calculus, which is an essential part of numerical applied mathematics
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2. Forward Differences:-

Consider a function y= f(x)of an independent variable x. let y,,y,,¥,,....y, be
the values of y corresponding fo the values x,,x,x,...x, of x respectively. Then the
differences vy, -y, Y,-Y,————— are called the first forward differences of y, and we
denote them by Ay,,Ay,,....... that is

AYo = Y1 = Yor A1 = Yo = Y1, AY, = Y3 = Yoo

In general Ay, =y,,—-y, .r=01,2————-

Here, the symbol A is called the forward difference operator

The first forward differences of the first forward differences are called second forward

differences and are denoted by A?y,,A%y,...... that is

A’ Yo = Ayl - Ayo
A’ Y, = AY2 _Ay1

In general A’y =Ay,,—Ay, r=0,12....... similarly, the n'» forward differences are

r

defined by the formula.
A"y, =AYy, —A"Y, 1=0,12.......

While using this formula for n=1, use the notation A’y =y and we have
A"y, =0vn=12...... and r=0,2,......... the symbol A" is referred as the nth forward

difference operator.

3. Forward Difference Table:-

The forward differences are usually arranged in tabular columns as shown in the

following table called a forward difference table
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Values Values First Second Third differences Fourth
of x ofy differences differences differences
X, Yo
AYy=Y1— Yo
X, Y1 Az Yo = A)/1 —Yo
AylzyZ_yl ASyo:Azyl_Azyo
Az — A _A A4 _ A3 _A3
X, Y, y, =4y, \% Yo =AY, Yo
Ayz =Y;—Y, Aay1 =A2yz_A2y1
Xq Ys A? Y, = A3/3 - Ayz
X4 Y, =Yi—Ys

Example -finite forward difference table for y = x°

X y=f(x) Ay Ay A%y A*y
1 1
7
2 8 12
19 )
3 27 18 0
37 )
4 64 24 0
61 6
5 125 30
21
6 216
4. Backward Differences:- As mentioned earlier, let y,,y,.....Y,...... be the values of a
function y=f(x) corresponding to the values X, X, Xy.ooeerenneee. Xpoveens of x respectively.

Then, Vy, =y, - Y., VY, =¥, — ¥, V¥, = Y. — ,,.... are called the first backward differences
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In general Vy, =y, -y, r=123..... —(1)

The symbol Vis called the backward difference operator, like the operator A, this

operator is also a linear operator

Comparing expression (1) above with the expression (1) of section we immediately

note that Vy, =Vy,;,r=012....—>(2)

The first backward differences of the first background differences are called

second differences and are denoted by v?y,,V?y, ——-V? ————
i.e.,..V?y,=Vy,-Vy, VY, =Vy, - Vy, ..........

In general V?y, =Vy, —Vy,,,r =2,3....>(3) similarly, the nih backward differences are
defined by the formulaV"y, =V"'y, =V"'y_,,r =n,n+1...—>(4) While using this formula,

forn = 1 we employ the notation v°y, =y,

If y=f(x) is a constant function, then y = c is a constant, for all x, and we get

Vv"y, =0vn the symbol V" is referred to as the nthbackward difference operator

5. Backward Difference Table:-

X Y vy V2y Viy
X Yo

i =y1-y0
X, Yy V7Y,

Vy,=y2-y1 V3y3
X, Y, VY,

Vy, =y3-y2
X Ys
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6. Central Differences:-

With ¥4, Y1, ¥,....y, as the values of a function y= f(x) corresponding fo the values

X, X, X,.... OF X, we define the first central differences

O0Yy2r0Y32,0Ys, ———— Qs follows
Vs = Y17 Y0 OYa2 = Yo = Y1:0Ys, = Y5 — Yo ————

é‘yr—1/2 = yr - yr—l - (1)

The symbol ¢ is called the central differences operator. This operator is a linear
operator comparing expressions (1) above with expressions earlier used on forward

and backward differences we get
Oy, =AYy =VY;,0Yy, =AY, =VY,.....
In general 8y,,,, =AYy, =Vy,,;,n=0,12....—>(2)

The first central differences of the first central differences are called the second

central differences and are denoted by 5%y,,8%Y,...
ThUs 8%, = 8y, =8 Y15, 87 Y, = Gy = S gyennenn

52 Yo = 5yn+1/2 - 5yn—]l2 - (3)

Higher order central differences are similarly defined. In general the nth central

differences are given by
i) forodd n:8"y, , ="'y, ="y, 4, r=12....—(4)
i) foreven n:8"y, ="y, ., =" Y, 4 F =1,2.... > (5)
while employing for formula (4) for n=1, we use the notation 8°y, =y,

If y is a constant function, that is if y=c¢ a constant, then

o'y, =0 for all n>1
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7. Central Difference Table

Xo Yo sy 5y 5y sty
OYu,
X, 2 5%,
6y2/2 §3y3/2
X, Y, 5%y, 5%y,
5Ys12 5 Yers
X3 Y, 52y3
Y,
Xy Y,
E
X
ample: Given f (—2):12, f (—1):16, f (O):15, f (1):18, f (2):20 the central

difference table and write down the values of 8Y,,,5%y, and &%y, by taking x, =0

Sol. The central difference table is

X y=f(x) oy 5%y 5y sty
2 12
4
-1 16 -5
-1 9
0 15 4 -14
3 -5
1 18 -1
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5. Symbolic Relations and Separation of symbols:
We will define more operators and symbols in addition toA, V and J already

defined and establish difference formulae by symbolic methods

Averaging Operator-Definition:- The averaging operator g is defined by the equation
1

MY, = E[yrﬂ/z + yr—llz]

Shift Operator-Definition:- The shift operator E is defined by the equation Ey, =vy,,,.

This shows that the effect of E is to shift the functional value vy, to the next higher value

¥r.i- A second operation with E gives E?y, =E(Ey, ) =E(Y,..) = Y.
Generalizing E"Y' =v,,,
Relationship Between Aand E

We have AYy=Y1— Y,
=Ey, - Y, =(E_:l-)YO
=>A=E-y(or)E=1+A

AYo=Y.— Yo
:EYO_YO:(E_]-)YO
=A=E-y(or)E=1+A

Some more relations

Ay, =(E-1)'y, =(E*-3E°+3E -1}y,
= Y3_3y2 +3y1_y0

Inverse Shift Operator-Definition

Inverse operator E* is defined as E™'y, =y, ,

In general E™y, =Y, _,
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We can easily establish the following relations
i) Vv=1-E*

”) 5 = E1/2 _ E—1/2

i) == (Y2 + E7)
2

iv) A=VE =E"

V) ,u251+%52

Differential Operator-Definition The operator D is defined as Dy(x) :g[y(x)]

Relation between the Operators D and E

. : . h? h®
Using Taylor's series we have, y(x+h)=y(x)+ hyl(x)+§ y“(x)+ay1“(x)+————
This can be written in symbolic form

h’D*> h°D? hD
ny_{1+hD+ o 3 +————})§ =e".y,
We obtain in the relation E =e"™ — (3)
o If f(x) is a polynomial of degree n and the values of x are equally spaced then
A"f (x) is constant

Proof:

Let f(x)=aX"+ax" +————— +a, ,Xx+a, where a;,a,a,...a, are constants anda, #0. If

his the step- length, we know the formula for the first forward difference
AF (%)= F (x+h)= F (x) =] 8 (x+h)" +a, (x+h)"™" + ===+, (x+h)+a, |
—[aX" +ax"t +————+a, x+a, |
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n-3

n-1 n-2
=a,nhx" +b,x"* +bx"" +————+b, ,Xx+b,,

Where b,y,b,,....0h_, are constants. Here this polynomial is of degree(n-1), thus,

the first difference of a polynomial of nth degree is a polynomial of degree (n-1)

Now

AP (x)=A[ Af (x) ]

= A[aonh.x“‘l +b, X"+, X"+ ————+b _X+D

- aonh[(x+h)"_l —x"’l]+b2 [(x+ h)"? —x”’2}+———+ b, [ (x+h)=x]

=a,n" "2 4o X" —— +C, X+C,_
Where c,...c,_; are constants. This polynomial is of degree (n-2)

Thus, the second difference of a polynomial of degree n is a polynomial of
degree (n—-2) continuing like this we get A"f (x)=a,n(n-1)(n-2)————- 2.1h" =ash"(n!)

.. wWhich is constant

Note:-

1. As A"f (x) is a constant, it follows that A™ f (x)=0,A"*f (x)=0,........

2. The converse of above result is also frue that is, if A"f(x) is tabulated at
equal spaced intervals and is a constant, then the function f(x) is a
polynomial of degree n

Example:-

1. Form the forward difference table and write down the values of Af (10),

A?f (10),A°f (15) and A*y(15)
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X 10 15 20 25 30 35
y 19.97 21.51 22.47 23.52 24.65 25.89
Sol.
X Y Ay A’y Ay A'y A’y
10 19.97f(10)

1.54Af(10)
15 21.51(15) -0.58A%f(10)

0.96 0.67
20 22.47(20) 0.09 -0.68

1.05 - 0.01A3f(15) 0.72
25 23.52f(25) 0.08 0.04

A*f(15)

1.13 0.03
30 24.65f(30) 0.11

1.24
35 25.891(35)

We note that the values of x are equally spaced with step- length h =5

Note: - . x,=10,x, =15-—---X, =35 and

yo = T (%)=19.97
y, = f(x)=2151

ys = f(X;)=25.89

ys = f (%) =25.89
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From table

Af (10) = Ay, =1.54
A*f(10)= A%y, =-0.58
A*f (15) =A%y, =-0.01
A*f(15) =A%y, =0.04

2. Evaluate

(i)Acosx

(ii)A%sin(px+q)

(iii)AneaX+b

Sol. Let h be the interval of differencing

(i)Acosx =cos(x+h)—cosx

. ( hj. h
=-2sin| X+— |sin—
2 2

(i) Asin(px+g)=sin| p(x+h)+q]-sin(px+q) Af(x) = f(x + h) — f (x).for ward formula
) o, o
—2cos(px+q+ 5 Jsm 5

:25inp—hsin(£+ px+q+p—h)
2 2 2
Vfilx)=f(x)— f(x—h)backward formula

A? sin(px+q)=23inp7hA{sin(px+q)+%(7r+ ph)}

. ph ? 1
= 25|n7 sin px+q+5(7z+ ph)
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(iii)Aeax+b _ ea(x+h)+b _eax+b

_ a(b) (eah—l)

A2 = A[A(ea“b )] - A[(ea“ ~1)(e™ )}

(e -1 ’ Ae™™")

( ax+b

Proceeding on, we get A" (e™*)= (e —1)n g

)
;

eah _
e -1

e

3. Using the method of separation of symbols show that

n(n_l) Hy o +____+(_1)n Hyn

Anlux—n =My Ny +

Sol. To prove this result, we start with the right hand side. Thus

n(n-1) ]
HX=NpX =14 = X =24 === == +(-2)" ux—n
= ﬂX—nElﬂXJr@ B ux+-——-- +(-1)" E7"ux
et e e
1Y (E-1)'
= 1—— = —
( Ej =g

n

A
:E,uX:A”E_”,uX

=A"u,_, Thisis left hand side

4, Find the missing term in the following data
X 0 1 2 3 4
Y 1 3 9 - 81

Why this value is not equal to3* . Explain
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Sol.  Consider A'y, =0

X Y A A2 A3 A4

0 1 2 4 x-19 124-4x=0
1 3 6 x-15 105-3x

2 9 X-9 90-2x

3 X 81-x

4 81

=4y, -4y, +5y, -4y, +Yy,=0 124-4x=0— x=124/4=31

Substitute given values we get

81-4y,+54-12+1=0=y,=31

From the given data we can conclude that the given function is y=3*. To find

Y, . we have to assume that y is a polynomial function, which is not so. Thus we

are not getting y=3*=27
2.2. a. Newton’s Forward Interpolation Formula:-

Let y= f(x) be a polynomial of degree n and taken in the following form

y=1f(X)=bg+b (x=x)+b, (X=X ) (X=X ) +b; (X=X, ) (X=X ) (X=X, )+ ===
+b, (X=X ) (x=% ) ————=(X=%, ;) = (1)

This polynomial passes through all the points [xi; yi] fori =0 to n. there fore, we

can obtain the y,'s by substituting the corresponding x;'s as

at x=Xx,,Y,=b,
at x=x,y, =b, +b, (% —%,)
at X=X, Y, =by+b, (X, =% ) +b, (%, =%, ) (X, =%, ) > (1)

Let ‘h’ be the length of interval such that x;'s represent
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Xgs Xo + N, X, +2h, X, +3h————=X, + xh
This implies x, —x, =h, X, =X, —2h, X; =X, =3h————x, —X, =nh — (2)
From (1) and (2), we get

Yo =Dy

¥, =Dy +bh

Y, =b, +b,2h+b, (2h)h

Y, =b, +b3h+h, (3h)(2h)+b3 (3h)(2h)h

Y, =b, +b (nh)+b, (nh)(n-1)h+———+b, (nh)[(n-1)h][(n-2)h]—(3)
Solving the above equations for by,b,,,b,....b,, we get b, =y,

Yi—by  Vi—Y, Ay
b1:1 0 _ 21 0 _=Jo

h h h
bzzyz_bo_b12h: _(yl_yO)Zh

2h? Y2~ Yo h

Y2_yo_2y1_2yo — y2_2y1+yo — Azyo
2h? 2h? 2h?

n A%,

b = 21h?

Similarly, we can see that

b :A3y0 :A4y0 _____ b :%
3Tt 4! " nth"
A 2

Y= 1(x)= Yot T2 (x30)+ 502 (x= %) (x-%,)

Y,
+3|h§(x—xo)(x—xi)(x—x2)+———+

"y
n!hr?(X_XO)(X_Xl)___(X_Xn—l)_)(3)

If we use the relafionship x =X, + ph= x—-X, = ph, where p=0,12,.....
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Then

X=X =X—(X,+h)=(x=x,)—=h
=ph-h=(p-1)h

X—X, =x—(%+h)=(x-x)-h
=(p-1)h-h=(p-2)h

Equation (3) becomes for h

p(p-1)

V= ()= f(%+ph)=yo+ PAY, +——

p(p-1)(p-2)-———(p-(n-1))

n!

p(p-1)(p-2)
3!

A%y, + A%y, +————+

A"y, —(4)

2.2. b. Newton’s Backward Interpolation Formula:-

If we consider

Yo (X)=ag+a, (X=X, )+a, (X=X, ) (X=X ) +as (X=X, ) (X=X, ) (X=X, ) +————(X—%)
and impose the condition that y and y, (x) should agree at the tabulated
poINts X, X, =1,.....%,, X, X,

We obtain

p(p+1)

yn(X):yn+pvyn+ 2| szn +—-——-

p(p+1)————[p+(n—1)] vy, +—————>(6)

Where p = X_hx”
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This uses tabular values of the left of y, . Thus this formula is useful formula is useful

for interpolation near the end of the table values
Formula for Error in Polynomial Interpolation:-

If y=f(x) is the exact curve and y=4¢,(x) is the interpolating curve, then the error

in polynomial interpolation is given by

Error = f (x)— ¢, (X) = (X‘X°)(X‘(>;1)+‘1)‘!“(X‘X") £ (2) > (7)

for any x, where X, <x<Xx, and x, <& <X,

The error in Newton'’s forward interpolation formula is given by

(X)—d () = p(p-1)(p-2)...... (p—n)An+lf ()

Where p=2"%

The error in Newton's backward interpolation formula is given by

P(P+L)(P+2)cccee(PH+N) i1 o X—X

f(x)- = h f(g)Wh = n

(¥)=¢: (%) (n+1)! y"*f (¢) Where p -
Examples:-

1. Find the melting point of the alloy containing 54% of lead, using appropriate

interpolation formula

Percentage  of

lead(p)-X 50 60 70 80
temperature 205 | 225 248 |274
(Qc)-Y
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Sol. The difference table is

X Y A A? A®

50=Xo 205=Yo

20=AY0
60 225 3=A%Yo

23 0=A3Yp
70 248 3

26

80 274

Let temperature = f (x),X=54

X, + ph=24,x,=50,h =10
50+ p(10)=54 (or)p=0.4

By Newton's forward interpolation formula

P(P-D) o, P(P=D(P-2)

f(X°+ph):y0+pAyo+ 2! Yo n! Yo+t ———
f(54)= 205+o.4(2o)+w(3)+ (0.4)(0.4-1)(0.4-2) )
2! 31
=205+8-0.36
=212.64

Melting point = 212.64

2. Using Newton's forward interpolation formula, and the given table of values

X 1.1 1.3 1.5 1.7 1.9
f(x) 021 0469 [1.25 |1.89 |2.61
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Obtain the value of f(x) when x=1.4

Sol.
X y=f(x) A A? A® A*
1.1 0.21
0.48
1.3 0.69 0.08
0.56 0
1.5 1.25 0.08 0
0.64 0
1.7 1.89 0.08
0.72
1.9 2.61

If we take x, =1.3 then y, =0.69,

Ay, =0.56,A%y, =0.08,A%, =0,L=0.2,x=1.3

X, +ph=1.4(or)1.3+p(0.2)=1.4,p :%

Using Newton's interpolation formula

1(1_1)
f(14)=069+2x056+ 22 /5008
2 2!

=0.69+0.28—-0.01=0.96
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3. The population of a town in the decimal census was given below. Estimate the

population for the 1895

Year x 1891 1901 1911 1921 1931
Population

46 66 81 93 101
of y

Sol. Putting L=10,x,=1891,x=1895 in the formula x=X,+ ph we obtain p=2/5=0.4

X Y A A? A | A*
1891=x0 | 46=y0
20Ay0
1901 66 ;Azyo
15 2
1911 81 -3 -3
12 -1
1921 93 -4
8
1931 101

y (1895) = 46 +(0.4)(20) + (0'4)(2'4_1) —(-5)

_(0.4-1)0.4(0.4-2)

5 (2)
, (04)(0.4-1)(0.4-2)(0.4-3)
24

=54.45 thousands

2.3. Gauss’s Interpolation Formula:- We take x, as one of the specified of x that lies
around the middle of the difference table and denote x,—-rh by x—r and the
corresponding value of y by y—-r. Then the middle part of the forward difference

table will appear as shown in the next page
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X Y Ay A%y Ay A'y Ay
X4 Y4

X5 Y4 Ay,

X, Y., Ay, Ay,

X, Y., Ay, APy, Ay,

X Yo Ay, A%y, Ay, A'y,

X, Vi AY, A%y, Ay, Aty Ay,
X, Y Ay, A%y, Ay, A'y, Ay,
X, Ya AY, A%y, A%y, Ay, Ay,
X, Y AY, A%y, Ay, Ay, Ay,

AYO = Ay_1 +A’ Y
A2yo = AZyf1 +A° Y,
A Yo = A Y.+ A* Y

Ay—l = Ayfz +A? Yo,
A2yf1 = Azyfz +A°® Yo,
A® y,.= A Yo+ A“y,?_

By using the expressions (1) and (2), we now obtain two versions of the following

Newton's forward interpolation formula

Vo =[¥o + p(Ayo)+—p(2!_1)(A2yo)+ p(p_lc,,)!(p_z)A"'yo

L P(p-1)(P-2)(P-3)
41

T Fpp— 3
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Here vy, is the value of y at x=x, =X, + ph ,P=(x-x0)/h

2.3.a. Gauss Forward Interpolation Formula:-

Substituting for A%y,,A%y,,.... from (1)in the formula (3), we get

1 _1)(p-2
Yo =[¥o + P(AY, )+ p(; )(A2y1+A3yl)+ dt: 3)|(p )Asy—l
+A'y + p(p—l)(p—2)(p—3)A4yil+A5yil+____]

41

yp :[y0+ p(AyO)+¥(A2yl)+ p(p‘i']:;’)l(p_l) A3y71

, P(p+1)(P-1)(p-2)
41

(y.)+--—]
SubstitutingA®y, from (2), this becomes

Y, =[Yo+ p(Ay,)+ p(gl_l)

L(p+h(p-Yp(p-2)
41

(P+1)p(P-1) s
31

O R 4

A’y +

Y

Note:- we observe from the difference table that
AYy =38Yyy, A’y =52y, A%y , =8%,,,A"y , =8"Y, and so on. Accordingly the formula

(4) can be written in the notation of central differences as given below

-1 +1 -1
yp=[y0+p6ym+—p(z, gy, + (2 );(p Loy,
+(|0+1)(|0—1)|f>(|f>—2)54y0+____] _________________ s

4!
2.3.b. Gauss’'s Backward Interpolation formula:-

Let us substitute for Ay,,A%y,,A®Y, - from (1) in the formula (3), thus we obtain
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- - 2
yp=[yo+p(Ay1+A2y1)+%(A2yl+A3y1)+(p 1)5!('0 )(A3y1+A“y1)+
~1)(p-2)p(p-3
(p )(p4!)p(p )(A“y_1+A5y_1)+————]

=[y,+p(Ay,)+

Mp(Azyl)+(p+1)p(p—1)As (p+1)p(p—1)(p—2)(A4yl)+____]

Substituting for A%y, and A%y, from (2) this becomes

1 1 1
ypz[y0+p(Ay1)+(p;!)p 7l+(P+ )?f’!(p )

+(p+1)p(i;”(p_z)@Vy4+¢fy4)+———_]

(Asy—l +A* Yo, )

2.4. Lagrange’s Interpolation Formula:-

Let X5, %, X,,.... X, be the (n+1) values of x which are not necessarily equally
spaced. Let Yy, Vi Yoereeen y, be the corresponding values of y=f(x) let the
polynomial of degree n for the function y=f(x) passing through the (n+1)

points (%, F (%)) (X f(%))———=(x,., T (x,)) be in the following form

Where a;,a,,a,.... a" are constants

Since the polynomial passes through(X,, f(%,)). (%, f(%))em (X0 F(X,)). The

constants can be determined by substituting one of the values of

Xos X, X, fOr x in the above equation
Putting x=x, in (1) we get, f(x,)=a,(x=x%)(X =X, )(X —X,)

f (%)
X=X ) (Xg =X, )eee(X — %, )

:>ao=(
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Putting x=x_in (1) we get, f(x)=a,(x=%)(%—=%,)———=(%—X,)

f(x)
X = %) (% =% ) e (X% = X,)

:>a1=(

Similarly substituting x=x, in (1), we get

Continuing in this manner and putting x=x, in (1) we

f(x)
(Xn _XO)(Xn _Xl)____(xn _Xn—l)

get a, =

Substituting the values of ay,a,,4,...a,, we get

f(x1)+(X_X°)(X_X1)(X_X2) ..... (x=x,) (%) + (X =% ) (X=X )erre(X =%, 1) f(x,)

Examples:-

1. Using Lagrange’s formula calculate f (3) from the following table

X 0 1 2 4 |5 |6

Sol.Given X, =0,x, =1,X, =2,X; =4,% =6,X, =5
f(x)=1"f(x)=14,f(x,)=15,f(x)=5 f(x,)=6,f(x)=19

From langrage’s interpolation formula
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X

§§xl5+§§x5—2§x6+}2x19
48 48 60 40

3 then

Here X

© ~—~ ‘©
| © |
o |
N’ 1n(6\
LN ~— 7
L] _u_uu_u_
m | O o
— = 2| 232
Sl =X ==
4. B A
| | [ |
o (O
— = 2 d
NN NN
| | | | _ |
MO m|—d M|
— N | T |
— o
_1__0 _ n_uO
| |
™Mo —
(,\3(,3\2
Il
—~
™
N—
(Y-

14+

12 18
———X

240 60
0.05-4.2+11.25+3.75-1.8+0.95

(3-0)(3-1)(3-2)(3-5)(3-6) y

(4-0)(4-1)(4-2)(4-5)(4-6)
(3—0)(3—1)(3—2)(3—4)(3—6)><

(5-0)(5-1)(5-2)(5-4)(5-6)

(3-0)(3-1)(3-2)(3-4)(3-5)
(6—-0)(6-1)(6—-2)(6—4)(6-5)

=10

£(3)=10
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2. Find f(3.5) using Lagrange method of 2™ and 3" order degree polynomials.
x1l 2 3 4
f(x) 1 2 9 28

Sol: By lagrange’s interpolation formula

=0.0625+(-0.625)+8.4375+8.75

=16.625
f(x) = (x—2)(x_—63)(X—4) (1)+(X—1)(X;3)(X_4)(2)
g5 n D3 g
T i TR P i i PP 1
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X} —7x*+14x-8 x3—6x*+11x—6

3 2
_ X —9x +26X—24+X3_8X2+9X_12+ (9)+ (28)
) 6

-6
[—x?’ +OX2 26X+ 24+ 6X° —48X% +114x — 72— 27x% +189%% — 378X + 216 + 308X + 28x° —168x> —168]
B 6

6x> —18x> +18x
5 =

f (x)=x>—3x"+3x

- £(35)=(3.5)"~3(3.5)" +3(3.5)=16.625
Gavuss Formula Example:

1. Find y(25), given that yoo= 24,y24 = 32, y28 = 35 ,y32 =40 using Gauss forward

difference formula :

Solution: Given

X 20 24 28 32
Y 24 32 35 40
By Gauss Forward difference formula

-1 +1)p(p-1
yp=[yo+p(Ayo)+—p(2, )Azyﬁ(p );(p )

+(p+1)(p_4]!-) p(p_z)(A4y_2)+————]—>(4)

We take xo= 24 as origin.
Xo=24,h=4,x=25p = (x-x)/ h, p=(2524)/4=0.25

Gauss Forward difference table is

X Y Ay A%y A’y
20=x-1 24=y-1

24=x0 32=y0 Ay =8

28=x1 35=y1 Ay, =3 A’y ,=-5

32=x2 40=y2 Ay, =5 A’y,=2 Ay =7
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By gauss forward interpolation Formula

0.25)(0.25-1)

270y (—5) +

(0.25+1)(0.25)(0.25—1)

We get y(25) = 32 +0.25(3) + ( (7) = 32 +0.75
+0 46875 - 0.2734 = 32.945
Y(25) = 32.945.

2. Example:

Use Gauss Backward interpolation formula to find f(32) given that f(25) = 0.2707,
f(30) = 0.3027, f(35) =0 .3386 , f(40) =0 .3794.

Solution: let xo = 35 and difference table is

X Y Ay A%y A%y

25=x-2 0.2707=y-2

30=x-1 0.3027=y-1 0.032

35=x0 0.3386=y0 0.0359 | 0.0039

40=x1 0.3794=y1 0.0408 | 0.0049 0.0010

From the table yo = 0.3386 ,h=5,P=(x-x0)/h=(32-35)/5=-0.6

2

Ay, _ A%y 3
F= 0035977 20,0049, A2 =0.0010, %0 = 32 p = (- x0)/h = (32-35)/5 = -0.6

By Gauss Backward difference formula

(p+1)p(p-1)
3!

(A4y_2 +A5y_2)+____]

+1
yp=[yo+|0(Ay_1)+('02,)ID

L(pry)p(p-1)(P-2)
41

A%y +

(Asy—l +A* Y, )

f(32) = 0.3386 + (-0.6)(0.0359) + (-0.6)(-0.6+1)(0.0049)/2 + (-0.6)(0.36-1)(0.00010)/6 =0 .3165
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2.5 Stirling’s Formula:

Stirling’s formula is arithmetic mean of Gauss forward interpolation and Gauss

Backward Interpolation formulae

We know that from Gauss forward formula

P(P-1) oy, (PHYP(PY) s
2! - 3! N
+(p+1)(p—4? p(p—Z)(A4y_2)+____]_)(4)

Y, =[Yo + P(AY,)+

And from Gauss backward formula

(p+1)p (p+1)p(p-1)

Vo =Dy + P(AY.1)+ 2 oAy + 3 (A%, +A'y,)
L(p+l) p(p—l)(p—2)(A4y_z+Asy_z)+____]
4 —(5)

From 4,5, we found arithmetic mean the Stirling’s formula is defined as
P=X—XO
h

Y(x)=yo+P|

, where h=x1-xo

AY—1+AY0

4 N
5 A*Y o+

]+P72 AZY +[P(P2—1)] [A3Y—2+A3Y—1]+P2(P2—1)

3! 2 4!

2.5 Bessel’s Formula:

Y=f(x) is a function with data (x;, yi) with P=% . where h=x;-xo then Bessel’'s formula is

defined as follows

Y (X)= Yo+PAYO0 +

P(P-1) [Az Y0+A2Y—1] . (P—i)P(P—l) A3Y + P-D(P+1)(P-2) A% Y—2+A4Y—1] o
2! 2 3! 4! 2

Examples:

1. Using Striling’s formula, compute f(1.22) from the following data

X 1.0 1.1 1.2 1.3 1.4

F(x) 0.841 0.891 0.932 0.963 0.985
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Sol. Chose X0=1.2 s origin and length h=0.1 and P—X_hX

=0.2

Next we construct central difference table by using above data and evaluate required

value by Stirling’s formula

X Y Ay A%y A’y A*y
X,=1.0 y_,=0.841
X, =1.1 y ,=0.891 Ay ,=0.05
X,=1.2 Yy, =0.932 Ay ,=0.041 A%y, =-0.009
x=1.3 y,=0.963 Ay,=0.031 A’y ,=-0.01 A’y ,=-0.001
X,=1.4 y, =0.985 Ay, =0.022 A?y,=-0.009 A’y ,=0.001 A*y ,=0.02
Use Stirling’s formula

Yix) = yo+ P [T B p2 v 4 p(p2 — 1)/3) [EXEY A ) pay
Then Y(1.22) = 0.932+0.200 000 4 028 (.0 1)+ 220240 (0,002) = 0.93899
2. Find f(16) by Stirling’s formula from the following table
X 0 5 10 15 20 25 30
F(x) 0 0.0875 0.1763 0.2679 0.364 0.4663 0.5774
Examples:
1. Use Bessel’s formula to compute f(1.95) from the following data
X 1.7 1.8 1.9 2.0 2.1 2.2 2.3
F(X) 2.979 3.144 3.283 3.391 3.463 3.997 4.491
Sol. Choose the origin at Xo =2.0, given h=0.1 and P= === 1572905

Next by using Bessel's formula and central difference Toble we can evaluate the required

solution
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X Y Ay A%y A%y A'y A’y

X,=1.7 Y =2.979

X,=1.8 y,=3.144 Ay ,=0.165

x,=1.9 y,=3.283 Ay,=0.139 | A’y ,=-0.026

X,=2.0 Y, =3.391 Ay ,=0.108 | A%’y ,=-0.031 Ay, =-0.005

X =2.1 y, =3.463 Ay,=0.072 | A’y ,=-0.036 | .., =0.005 | A*y,=0

X,=2.2 y, =3.997 Ay, =0.53 A?y,=0.462 xy,=0.498 A, asy  =0.503
=0.503

X, =2.3 Yy, =4.491 Ay,=0.494 A%y, =-0.04 aty, =-0.502 Aty =1 sy, =-1.503

Bessel's formula Ay_; = —2.006 )

Y(X)= Yo+PAYO + P(Pz'!—l) [A2 Y0+2A2Y—1] + (P—E):!(P—l) A3 Y+ P(P—l)(};-!l-l)(P—Z) A* Y—2;—A4Y—1] b

Y(1.95) = 3.391+(-0.5)(0.072) +

(-0.5)(~0.5-1)(~0.036+0.462) , (~0.5-0.5)(~0.5)(~0.5-1)(~0.5-2)(0.503—1)

2.2 24.2
Y(1.95) = 3.3629
2. Compute Y(25) by using Bessel's formula to the following table
X 20 24 28 32
Y 2854 3162 3544 3992

9. Practice Quiz

1. Newton's backward Interpolation formula is

a.

Y, =[Yo+ P(Ay,)+

(p+

(P p(p-1)(pP-2)

1)p

(p+1)p(p-1)

A%y +

41

. y+yo
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d. None
2. The i Interpolation formula is used to estimate vy, if the x-values are
unequally spaced. [ c ]

a. Newton formula

b. Gauss formula

c. Lagrange’s formula

d. Bessel's formula

3. Averaging Operator formula [ d ]
a.A

b.v

c.u

= 3Dz +¥r2e]
d. MY, = 5 Yoz T Y

4. The relation between A and E [ c ]

a.A=E

b.V=E

C.A=E—-1

d.A=E+1

5. Find the missing term in the following data [ c ]
X 0 1 2 3 4
Y 1 3 9 - 81
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a. 10

L. 19

c.27

d.0

6. The relation between V.and E-
a. V=1-E*

b. §=E""-E™

C. ,u=%(El’2 +E™?)

1
d. y?=1+=652
H 4

7. The relation between § and E
a.V=1-E*
b 5 = E1/2 _ E—1/2

C. ,u=%(Ell2 +E™?)

o}

1
Lt =1+=62
H 4

8. The relation between u and E
a.V=1-E*

b. s=E"?-E™

C. ,u=%(E”2 +E™?)
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1
d. y?=1+=52
H 4

9. The relation between uand § d ]
a.V=1-E*
b. s=E"?-E™
C. ﬂ =1(E112 + E—l/Z)
2
1
d. 4 =1+=6?
H +4
10. The relation between E and D d
a.V=1-E*
b 5 = EllZ _ E—1/2
C. ﬂ =1(E112 + E—l/Z)
2
d.E=ehb
10. Assignments
S.No Question BL CO
Using Newton'’s forward interpolation formula, and the given table of
values.
1 X 1.1 1.3 1.5 1.7 1.9 1 2
F(X) 0.21 0.69 1.25 1.89 2.61
Obtain the value of f(x) when x = 1.4
2 Use Gauss back ward interpolation formula to find f(32) given 1 2
that £(25) = 0.2707, £(30) = 0.3027, f(35) = 0.3386, f(40) = 0.3794.
3 Evaluate f(10) given f(x) = 168,192,336 at x = 1,7,15 respectively. Use 5 2
Lagrange interpolation.
4 Apply Bessel's formula to obtain 1E(25)given 1 2
f (20) = 2854, f (24) = 3162, f (12) = 3544, f (12) = 3992.
5 Apply Stirling’s formula to obtain f(35) given : )

f(20) = 512, f (30) = 439, f (40) = 346, f (50) = 243.
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11. Part A- Question & Answers

S.No

Question& Answers

Distinguish between interpolation and extrapolation
Sol. Interpolation: It is the estimation for some such values
which lie inside the given Values.

Extrapolation: It is the estimation for some such values
which lie outside the given Values.

BL

Cco

Write relation between E and A.

Sol. Af(x) = f(x+h)- f(x) Forward Definition
=Ef (x) - f(x) Shift Definition
=(E-1)f(x)

Prove that (1+A)1-V)=1
Sol. We know that (1+A)=E,(1-V)=E™
(1+A)A-V)=EE™" =1

Evaluate Atan™ x
Sol. Atan~' x =tan~"(x+h) —tan* x

-1 X+h—X 1( h )
=tan | ——— | =tan —
1+ (x+h)x 1+ x° +hx

Evaluate Ae’if h=1.
Sol. We know that Ae* =e*" —g*
— e><+1 _ex

=(e—1e"

Evaluate A°|(1- ax)(1— bx?)(1 - ox*)(1— dx*)|.
Sol.  Let f(x)=A|d-ax)(-bx?)1—cx®)1—dx*)]
f(x) is a polynomial of degree 10 and the coefficient of x™ is

abcd.
A°|(1- ax)(1 - bx?)(1 - cx®)(1 - dx*)|= abcdAx™° = abcd 10!

Write Newton-Gregory forward interpolation formula.

Sol.
-1 ~)(p-2
Y= Yo + PAY, + |0(|c;I )A2y0+ p(p ;(p )A3y0+ ________

Write Newton-Gregory backward interpolation formula.

Sol.
Y=Y, +pVy, +wvzyn + p(p”;,(p”)vsyn Fommm e

State Langrage’s interpolation formula.
Sol. Let X1,X2,X3wcemeee xn be the values of x which are not equally
spaced and yi1,y2,y3—yn be the Corresponding values of y.
Thus Lagrange’s interpolation formula is

—h
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(X X)(X %) === —(x=%,)

Y1+
(Xl B Xz)(X1 B Xs) - __(Xl - Xn)
(x=x)(X=%;) ————(x—X,)
Y2 +
(Xz - Xl)(XZ - Xs) - _(Xz - Xn)
(X=X )(X=X;) === —=(X = X,.4)
(Xn B Xl)(Xn B Xz) - _(Xn B Xn—1) '
Write Stirling’s Formula
10 Sol. Y(X) =yo+ P [AY—12+AY0] +P72 A2 Y.+ [P(P;—l)] 9
[AS Y—2;A3y—1]+P2(112!—1) A Y 4o
12. Part B- Questions
S.No Question BL (o{0)
Forx =0,1,2,4,5; f(x) = 1,14,15,5,6. find f(3) using forward
1 . 1 2
difference table.
Find the values of cos1.747 using the values given in the table
2 below 1 2
X 1.70 1.74 1.78 1.82 1.86
F(X) 0.9916 0.9857 0.9781 0.9691 0.9584
Using Newton'’s forward interpolation formula, and the given
table of values.
3 X 1.1 1.3 1.5 1.7 1.9 1 2
F(X) 0.21 0.69 1.25 1.89 2.61
Obtain the value of f(x) when x = 1.4
4 Use Gauss back ward interpolation formula to find f(32) given 1 2
that f(25) = 0.2707, f(30) = 0.3027, f(35) = 0.3386, f(40) = 0.3794.
Use Lagrange interpolation.
5 Evaluate f(10) given f(x) = 168,192,336 at x = 1,7,15 5 2
respectively.
Find the unique polynomial p(x) of degree 2 or less such that
6 p(x) =1,p(3) = 27,p(4) = 64 using Lagrange'’s interpolation 1 2
formula.
. Given f(2) = 10, f(1) = 8, £(0) = 5, f(—1) = 10 estimate f(%) by s »
using Gauss forward formula
Using Lagrange’s Interpolation formula, find y(10)from the
following table
X 5 6 9 11
8 Y 12 13 14 16 ! 2
Fit the second difference of the polynomial x* — 12x3 + 42x? —
30x + 9 with interval of differencing h = 2
9 Apply Bessel's formula to obtain f(25) given ] 9

f (20) = 2854, f (24) = 3162, f (12) = 3544, f (12) = 3992.
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dx =

K| =
W =

2
f [(1+ 1.4142) + 3(1.0004 + 1.0062 + 1.0943 + 1.2175)
1

+2(1.0301)]
=1.0894

Numerical solutions of ordinary differential equations

1. The important methods of solving ordinary differential equations
of first order numerically are as follows

1

2

Taylor's series method

Picard’'s method

4
5

)
)

3) Euler's method
) Modified Euler’'s method of successive approximations
)

Runge- kutta method

To describe various numerical methods for the solution of ordinary

differential egn’s, we consider the general 1st order differential egn
Given O.D.Egn. dy/dx=f(x,y)------- (1)

with the initial condition y(xo)=Yyo. X1=Xo+h, X2=X1+h,we have fo

evaluate Y,,Yo etc
The methods will yield the solution in one of the two forms:

i) A series fory in terms of powers of x, from which the value of y

can be obtained by direct substitution.

i) A set of tabulated values of y corresponding to different

values of x
The methods of Taylor and Picard belong to class(i)

The methods of Euler, Runge - kutta method, Adams, Milne etc,

belong to class (ii)
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3.4 TAYLOR'S SERIES METHOD

To find the numerical solution of the differential equation

Y fxy)>(1)
dx

With the initial condition y(X,) =Y, 2> (2)
y(x) can be expanded about the point X, in a Taylor's series in
powers of (X—X,) as

09 =30+ 2y £ 0y o 2 ) 5

In equ3, Y(X,) is known from I.C equ2. The remaining coefficients
Y'(%), Y'(X)eeeeenn. y"(X,) etc are obtained by successively differentiating
equl and evaluating at x,. Substituting these values in equ3, y(x)at

any point can be calculated from equ3. Provided h=x-x, is small.

When x, =0, then Taylor’s series equ3 can be written as

y(x) = y(0) + x.y'(0) + % Y(0) 4 oot % Y (0) + s > (4)

1. Using Taylor's expansion evaluate the value of y'-2y=3e*,y(0)=0,
ata) x=0.2

b) Compare the numerical solution obtained with exact

solution .
Sol: Given equation can be written as 2y +3e* =y, y(0) = 0x0=0, yo=0

Differentiating repeatedly w.r.t fo ‘x’ and evaluating af x=0

y'(x) =2y +3e*,y'(0) = 2y(0) +3e° = 2(0) +3(1) = 3

y'(x)=2y'+3e*,y"(0) =2y'(0) +3e° =2(3) +3=9

y"(X) = 2.y"(x) +3e*,y"(0) =2y"(0) +3e’ =2(9) +3=21

vV (x) = 2.y"(x) +3e*, y"(0) = 2(21) + 3e® =45

v (X) =2.y" +3e*, y"(0) = 2(45) +3e® =90 +3 =93

In general, y™(x)=2.y™(x)+3e* or y"?(0)=2.y™(0)+3e°
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The Taylor’s series expansion of y(x) about X, =0 is

2 3 4 5
X

1A X 14 m X " X mn
y(X)=y(0)+xy(0)+5y(0)+ay (0)+Zy (0)+5y (0) +....

Substituting the values of y(0),y'(0), y"(0), y"(0),..........

Y(X)=0+3X+%X2+%1X3+£X4+£x5+ ........

9 7 1
X)=3X+= X+ =X+ ="+ =X +....... > equl
y(x) 2 2 40 9
Now put x=0.1 in equl
¥(0.1) = 3(0.1) +%(o.1)2 +%(0.1)3 +§(o.1)4 ; 2—3(0.1)5 _ 0.34869

Now put x=0.2 in equl

y(0.2) =3(o.2)+%(o.2)2 +%(o.2)3 +%(0.2)4 +%(o.2)5 —0.811244

¥(0.3) :3(0.3)+%(o.3)2 +£(o.3)3 +%(0.3)4 +j—;(o.3)5 _1.41657075

Analytical Solution:

The exact solution of the equation 3—y=2y+3ex with y(0)=0 can be

X
found as follows

%—Zyzi%eXWhich isalineariny.
X

Here P=-2,Q=3¢"
P =[] e
General solution is y.e™>* :.[Bex.e‘zxdx+c =-3¢* +c,dividing by e™?* on b.s.
s y=-3"+ce®wherex=0,y=0, 0=-3+c=c=3
The particular solution is y =3e* —3e* or y(x) =3 —3e*
Put x=0.1in the above particular solution,

y =3.%% —3e*! =0.34869

Similarly put x=0.2
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y =3e° —3¢°2 = 0.811265
putx=0.3
y =36 —3¢°3 =1.416577

There is negligible error between numerical solution and analytical
solution.

2. Using Taylor’s series method, solve the equation % = x> +y? for
X

Xx=0.4 given that y=0when x=0
Sol: Given that %:x2+y2 and y=0 when x=0 i.c. y(0)=0
X

Here y,=0, X,=0
Differentiating repeatedly w.r.t ‘x’ and evaluating at x=0
y'(X)=x*+y? y(0)=0+y*(0)=0+0=0
y"(x) =2x+y"2y,y"(0) = 2(0) + y'(0)2.y = 0
y"(X)=2+2yy"+2y".y', y"(0) = 2+ 2.y(0).y"(0) + 2.y'(0)> =2

y"(x)=2.y.y"+2.y"y'+4.y"y',y"'(0) =0
The Taylor's series for f(x) about x, =0 is

N

y(x) = y(0)+xy(0)+ y"(0)+ y’”(0)+ y"”(0)+

Substituting the values of y(0), y'(0), y"(0),.....

3 3
y(x)=0+x(0)+0+23L|+0+ ........ =X€+ (Higher order terms are
neglected)
.y(0.4) = 04 4y 0 064 =0.02133

3. Solve y'=x-Yy? y(0)=1 using Taylor’s series method and compute

Y(0’1 )IY(0.2)
Sol: Given that y'=x-y? y(0)=1

Here y, =1, X, =0

Differentiating repeatedly w.r.t ‘x’ and evaluating at x=0
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y'(x)=x-y*y(0)=0-y(0)*=0-1=-1

y'(x) =1-2y.y',y"(0) =1-2.y(0)y'(0) =1-2(-1) =3

y"(x) =1-2yy'-2(y")*, y"(0) = -2.y(0).y"(0) = 2.(y'(0))* = 6 -2=-8

y"'(x) ==2.y.y"=2.y".y'=4.y".y", y"'(0) = -2.y(0).y"(0) —6.y"(0).y'(0) =16 +18 = 34

The Taylor's series for f(x) about xo =0 is

2 3

= 1 1 X_ 11 X_ 111
y(x) =y(0) + u” (0) + oY (0) + ™\ (0) +.....
Substituting the value of y(0), y'(0), y'1(0),.....

y(x) =1 —x+§x2— §x3+ %x4+ .....
2 6 24
3 . 4 17

X)=1-X+=x2- =x3+ —x4+..... (I
v 2 3 12 (1)

now put x=0.11n (1)
3 4 17
0.1)=1-0.1+=(0.1)2+ = (0.1)3+ — (0.1)4+ .....
y(0.1) 5 012+ 2 (0.1)7+ 2 (0.1)
=0.91380333 ~ 0.21381

Similarly put x =0.2in (1)

3 4 17
02)=1-02+-(0.2)2- - (0.2)3+ —(0.2)4+.....
v(0.2 >(02)2- 2 (0.2 + 2(02)

=0.8516.
4. Solve y!' = x2-vy, y(0) =1, using Taylor's series method and
compute y(0.1), y(0.2), y(0.3) and y(0.4) (correct to 4 decimal

places).
Sol. Giventhaty'=x2—-yandy(0) =1
Here xo =0, yo=1 ory =1 when x=0
Differentiating repeatedly w.r.t ‘x’ and evaluating at x = 0.
Yi(x) =x2-y, y(0)=0-1=-1
Vi{x) = 2x =Y\ y(0) = 2(0) = y(0) =0~ (-1) = |
Yi{x) = 2=yl y1(0) = 2-y1(0) =2~ 1=1,
YVIX)=-y1, yv(0) =y (0) =-1.

The Taylor's servies for f(x) about xo=0is
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3 4

y(x) = y(0) + %y'(O) ¥ %y”(o) " %y“'(O) ¥ %y'V(O) _—

substituting the values of y(0) , y'(0) , y'1(0) , y'(0) ,......

X2 X3 X4
Shax () + (1) + () + (1) +
Vi) =T+ (1) + 2 (1) + (1) + 2 ()
X2 X3 X4
=l-x+ —+ —-—+..... S(]
" 26 (1)
Now put x=0.11in (1),
2 3 4
y(0.1)=1_o.]+(0-1) +(0.1) (0 N
6 24

=1-0.1+0.005+0.01666 —0.0000416 -0.905125 ~ 0.9051
(4 decimal places)
Now putx=0.2ineq (1),
y(0.2)=1-0.2+ (0'22)2 + (0'62)3 - (Oéi)A
=1-0.2+0.02 +0.001333 - 0.000025
=1.021333 - 0.200025
=0.821308 ~ 0.8213 (4 decimails)
Similarly y(0.3) =0.7492 and y (0.4) = 0.6897 (4 decimal places).

5. Solve % -1 = xy and y(0) = 1 using Taylor’s series method and
X
compute y(0.1).

Sol. Given that % -1=xyandy(0) =1
X

Here%:1+xycmdyo=1,xo=0.
X

Differentiating repeatedly w.r.t ‘x’ and evaluating at xo =0
yi(x) =1+xy, y'(0) = 1+0(1) = 1.

Y'(X) =xy'+y, y'(0) = 0+1=1

ylx) =xy" +yl+y,  yi0) =0.(1) +20(1) =2

YV(x) = xyll +yI+ 291 yv(0) = 0+3(1) =3.

y\/(x) = Xyl\/ + y||| +2y|||’ yV(O) =0+2+ 2(3) =8
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The Taylor series for f(x) about xo=0is
2 3 4 5

y(x) =y(0) +xy!(0) + % Y1 (0) + %ymw) + %V'V(O) + %ywow .....

Substituting the values of y(0) , y!(0) , y'(O) , ....

x> X x* x®
X)=1T+x+ — + —(2)+ —(3) + —(8) +....
y(x) 5 6() 24() 120()
¥ X xr X
X)=T+X+ —+ — + — + — + ... 21
y(x) 5 YR (1)
Now putx=0.Tinequ (1),
2 3 4 5
y(O.]):1+O.1+(O'1) +(O'1) +(O'l) +(0.1) + o
2 3 8 15

=1+0.1 +0.005 + 0.000333 + 0.0000125 + 0.0000006
= 1.1063461

6. Given the differential equ y! = x2 + y2, y(0) = 1.Obtain y(0.25), and
y(0.5) by Taylor’s Series method.

Ans: 1.3333, 1.81667

7. Solve y' = xy2 + y, y(0) =1 using Taylor’s series method and compute

y(0.1) and y(0.2).
Ans: 1.111, 1.248.

Note: We know that the Taylor's expansion of y(x) about the point xo

in a power of (x — xo)is.

1) = ylxo) + ED yie) + XDy %y"w s ()
Or
y(x) = yo+ —(X;X") Yo * —(X_Z),(°) ) —(X;),((’) o
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If we let x—xo = h. (i.e. x =xo + h = Xx1) we can write the Taylor’s
series as

h h? h? h*
y(x) =y(x1) =yo+ m Yy + 5 ys + 3 ya' + E yo o+
. h h? h® h"
ey =yot S Ve T or Wt Yo Y >(2)
Similarly expanding y(x) in a Taylor’s series about x = x;. We will
get.
— h | hz 1 h3 1 h4 \%
yz—y1+ﬂyl+§yl TR RS R >(3)
Similarly expanding y(x) in a Taylor’s series about x = x2 We will
get.
h h? h?® h*
y3=y2+ Hyzl +zy2” +§y2'” +Zyzw+ ...... > (4)
In general, Taylor's expansion of y(x) at a point x= xn is
h h? h? h*
YH+1ZYH+Ey,: +§y,:' +§yr'," +Eyr',v + ... > (5)

8. Solve y' = x-y2, y(0) = 1 using Taylor’s series method and evaluate
y(0.1), y(0.2) by step size h=0.1.

Sol:  Givenyl=x-y2 2>(1)
and y(0) =1 2>(2)
Here xo=0, yo=1.

Differentiating (1) w.r.t 'x’, we get.

yh=1-2yy ~>(3)
ym=-2(y y'+ (y')?) ~> (4)
yv = 2ly Yyl ytE 2y v 2 (9)
=-2(3yl. yl+y yl) ...
Putxo=0, yo=11in (1),(3).(4) and (5),
We get
y, =0-1=-1,

Yo =1-2(1) (-1)=3,
Yo =-2[(-1)2) + (1) (3)]=-8

I4|INMPT-UNIT-11II



Yoo =-2[3(-1) (3) + (1) (-8)] = -2(-9 -8) = 34.

Take h=0.1
Step1: By Taylor’s series, we have
— h | h2 1 h3 1l h4 v
Y1 =Yo+ ﬂyo +Zy° gyo Ey" + ... ->(6)

on substituting the values of yo, vy , vy . etc in equ (6) we get

. 1 1)° 1
yo.1) =y =1+ 2100+ (O 3+ O g+ O 5y,
1 3] 24
=1-0.1+0.015-0.00133+0.00014 + ...

=0.91381

Step2: Let us find y(0.2), we start with (x1,y1) as the starting
value.

Here xi =xo+ h=0+0.1 =0.1 and y; =0.91381

Put these values of x; and y1in (1),(3).(4) and (5),we get
y, =x1- y>=0.1-(0.91381)2=0.1 - 0.8350487 = -0.735
yi =1-2y1-y] =1-2(0.91381) (-0.735) =1+ 1.3433 =2.3433

v =S 20yl )2+ yr ey ] = - 2[(-0.735)2 + (0.91381) (2.3433)] = -5.363112
Y =-2080y oy vy

= - 2[3.(-0.735) (2.3433) + (0.91381) (-5.363112)]

= -2[(-5.16697) — 4.9] =20.133953

By Taylor’s series expansion,
— + E Iy h_z yn h_s y||| h_4 y
Y2 =Y1 1 Y1 o 1 1

~y(0.2) =y2=0.91381 + (0.1) (-0.735) +

(021) (2.3433) +

O 5363112 + (01) (20.133953) + ...

y(0.2) =0.91381 - 0.0735 + 0.0117 - 0.0008% + 0.00008 =0.8512

9. Tabulate y(0.1), y(0.2) and y(0.3) using Taylor’s series method given
thaty!' =y2+ x and y(0) = 1

ISINMPT-UNIT-11II



Sol: Given y! =y2 + x >(1)

and y(0) =1 2>(2)
Here xo=0, yo=1.

Differentiating (1) w.r.t 'x’, we get
y' =2y 41 >(3)
y" =20y vyt + ()2 ~>(4)
=20y y" +ylyt2yiy]

=2[y- y" +3y'y"] ~>(9)

Putxo=0,yo=11in (1), (3), (4) and (5), we get

Yo =(1)2+0=1

ye =2(1) (1) +1=3,

Yo =2((1) (3) +(1)2) =

Y =2[(1)(8) +3(1)(3)]

=34

Take h =0.1.

Step1: By Taylor’s series expansion, we have

h h? h® h*
y(x1) =yr=yo+ ﬁyg —y0 —y:;' —Iy;V+.... >(6)

on substituting the values of yo, y; . yg etcin (6),we get

y(0.1) = yi= 1+ (0.1)(1) + (01) + B g (021) )+
=1+0.1+0.015+0.001333 +0.000416

y1=1.116749
Step2: Let us find y(0.2), we start with (xi,y1) as the starting values
Here xi =xo+h=0+0.1=0.1 and y; = 1.116749
Putting these valuesin (1),(3),(4) and (5), we get
y, = y2+x; =(1.116749)2+ 0.1 = 1.3471283

yi =2y y; +1=2(10116749) (1.3471283) + 1 = 4.0088
v = 2(yr v+ (y))2) = 2((1.116749) (4.0088) + (1.3471283)2]
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= 12.5831

[\

yY =2y v 6yl oyt = 2(1.116749) (12.5831) + 6(1.3471283) (4.0088)

= 60.50653
By Taylor's expansion
h h? h® h*
yba) =y2=yi+ sy S !
~Y(0.2) =y2=1.116749 + (0.1) (1.3471283)

(0 1)° (0.9 1)
2

(4.0088) +

(12.5831) + Q17 D"
24

(60.50653)

y2=1.116749 + 0.13471283 + 0.020044 + 0.002097 + 0.000252
= 1.27385

y(0.2) =1.27385
Step3: Let us find y(0.3) we start with (x2,y2) as the starting value.
Here xo =x1 + h=0.1 +0.1 =0.2 and y2 = 1.27385
Putting these values of xo and y2in eq (1), (3). (4) and (5).
we get

yl = y2 +x2=(1.27385)2 + 0.2 = 1.82269
yi=2yo yi +1=2(1.27385) (1.82269) + 1 = 5.64366

= 20y2 y! + (y})2] = 2[(1.27385) (5.64366) + (1.82269)7]
= 14.37835 + 6.64439 = 21.02274
2y2+ y," 6y,

v —

Y2

= 2(1.27385) (21.00274) + 6(1.82269)+(5.64366)

= 53.559635 + 61.719856 = 115.27949
By Taylor's expansion,

h h? h® h*
y(x3) =y3=y2+ EYQ + §y2" —YQ" _'y;v

v(0.3) = ya = 1.27385 + (0.1) (1.82269)

, 0.1° 0.9)° 1)

(5.64366) + (21.02274)

L 0.°

(115.27949)

=1.27385 + 0.182269 + 0.02821
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+0.0035037 + 0.00048033 = 1.48831
v(0.3) = 1.48831

10. Solve y'= x2 -y, y(0) = 1 using Taylor’s series method and evaluate
y(0.1),y(0.2),y(0.3) and y(0.4) (correct to 4 decimal places)
Sol: Givenyl=x2-y 2>(1)

and y(0) =1 2>(2)
Here xo =0, yo =1
Differentiating (1) w.r.t 'x’, we get
y'=2x-y'>(3)
ylil=2-yl >(4)
ylV = -yl > (5)
put xo =0, yo=11in (1),(3).(4) and (5), we get
Vo= X -yo=0-1=-1,
Yo =2x0- yp =2(0) = (-1) =1
Yo' =2-y) =2-1=1,

v =yt =1 Take h =0.1

Step1: by Taylor's series expansion

o h ,  h , h , ht

y(xi) =yi=yo+ 1 Yo * o Yo * ayo + Eyo T ~>(6)

On substituting the values of yo, vy, . ys etcin (6), we get
0.1)° 0.2)° 0.2)*
y(0.1) =y =1+ (0.1) (-1) + %(1) + %(1) + %(—1)#...
=1-0.1 + 0.005 + 0.01666 — 0.0000416
=0.905125 ~ 0.9051 (4 decimal place).

Step2: Let us find y(0.2) we start with (x1,y1) as the starting values
Here xi=xo+h=0+0.1=0.1 and y;=0.905125,
Putting these values of x; and y1 in (1), (3), (4) and (5), we get
From 1,3,4,5 we get
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y; = x2 -y =(0.1)2-0.905125 = -0.895125
y,'=2x1 - y; =2(0.1) - (-0.895125) = 1.095125,
M=2-y' =2-1.095125=0.90475,

1

v _

V= _yM =.0.904875,

By Taylor's series expansion,

(X): — +n I_'__2 Il+h_3ylll+h_4lv+
YIX2) =Y2=Y1 1 Y1 o1 Y1 31 a1 i T
2
y(0.2) = y2=0.905125 + (0.1)(-0.895125) + ©.1) (1.09125)
3 4
+ OO 4 605105) + O (15.904875)+....

y(0.2) =y2=0.905125 - 0.0895125 + 0.00547562 + 0.000150812
=0.8212351 ~ 0.8212 (4 decimal places)
Step3: Let us find y(0.3), we start with (x2,y2) as the starting value
Here xo =x1 + h=0.1+ 0.1 =0.2 and y2 = 0.8212351
Putting these values of xo and y2in (1),(3).(4), and (5) we get
y; = X5 -y2=(0.2)2-0.8212351=0.04 - 0.8212351 = - 0.7812351

yi=2x2- yi =2(0.2) + (0.7812351) = 1.1812351,
yl'=2- y!' =2-1.1812351 = 0.818765,
M=yl =.0.818765,

By Taylor's series expansion,

2
11

Yool =yamyor Doy Doy B B,
() I | IR | I

(0.2)?

y(0.3) =y3=0.8212351 + (0.1)(-0.7812351) + (1.1812351)

(0.)°

3
N (0-61) (0.818765) + (-0.818765)+....

y(0.3) =y3=0.8212351-0.07812351+ 0.005906 + 0.000136 —
=0.749150 ~ 0.7492 (4 decimal places)

Step4: Let us find y(0.4), we start with (x3,y3) as the starting value
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Here x3=x2+ h=0.2+ 0.1 =0.3 and y3 = 0.749150

Putting these values of x3s and yz in (1),(3).(4), and (5) we get
y; = xZ -y3=(0.3)2-0.749150=-0.65915,

Vs =2x3- y: =2(0.3) + (0.65915) = 1.25915,

ya'=2- yl =2-1.25915=0.74085,

y)' = -y =-0.74085,

By Taylor's series expansion,

— — ﬂ I h_z I h_3 1 _4 v
yixa) =ya=yst st Ys Ve Y e

1! 21 31
2 3
V(04 =y =0.749150 + (0.1)(0.65915) + 21 (125915 +
4
(0.74085) + % (0.74085) ...

y(0.4) = y4=0.749150 - 0.065915+ 0.0062926+ 0.000123475 — 0.0000030
=0.6896514 ~ 0.6896 (4 decimal places)

11. Solve y! = x2—-y, y(0) = Tusing T.S.M and evaluate y(0.1),y(0.2),y(0.3)
and y(0.4) (correct to 4 decimal place ) Ans : 0.9051, 0.8212, 07492,
0.6896

12. Given the differentiating equation y! = x! + y2, y(0) = 1. Obtain y(0.25)
and y(0.5) by T.S.M.

Ans: 1.3333, 1.81667
13. Solve y!' =xy2 + vy, y(0) = 1 using Taylor's series method and evaluate
y(0.1) and y(0.2)
ANs: 1.111, 1.248.

3.6 Picard’s Method

Consider the differential equation % = f(x,y)
Given thaty =y, for x = x,

Theny®™ =y, + f):)“ f(X,y(“_l)) dx, n=1,23,

Problems
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1. Find the value of y for x=0.4 by Picard’s method, given that % -

x? +vy2%, y(0) = 0.
Sol: Given Z—Z =x%2+4+y2 y(0)=0
By Picard’s method y™ =y, + fx’:‘ f(x, y®P)dx, n=1,23,

For the first approximation, replace y, by 0

3

X X
y<1>=0+f (< +0) dx ==
0

. . . 3\ 2 6 3
Second approximationis y® = [7(x? + (X?) )dx = [)(x? +%) dx = X? +

x7

63
Calculation of y® is tedious and hence approximate value is y®

3 7
Forx=0.4,y = —(0:) + (0:3)

= 0.02133 + 0.00026 = 0.0214

2. Solve Find the value of y at x=0.1 by Picard’'s method, given that

ay _ y-x _
dx  y+x’ (O)_l

- Gi v _yx —
Sol: Given i y+x,y(O) =1

By Picard’s method y™ = yo + [ f(xy®~V) dx = yo + [ 577 dx

0 y+x

For the first approximation, replace y, by 1

<D=1+J
Y o 1+x

X X

_ dx=1+J -1+ dx
0

1+x
yD =1+ [—x + 2log(1 + X)X
y@D =1 —x + 2log(1 + x)

. . . 2 — X 1-x+2log(1+x)—x
Second approximation is y 1+, T 2los(1r Tx

Which is very difficult to integrate
Hence we use the first approximation itself a s the value of y

Lyx) =y® =1—x+2log(1+x)
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Put x=0.1, we get
y(0.1) =1 — 0.1 + 2log(1 + 0.1) = 1.0906

3.6 EULER'S METHOD

It is the simplest one-step method and it is less accurate. Hence it has
a limited application.

Consider the differential equation % = f(x,y) 2>(1)
X

With y(xo) = yo=>(2)
Consider the first two terms of the Taylor's expansion of y(x) at x = xo
y(X) = y(xo) + (x —Xo) y'(xo) ~>(3)

from equation (1) y'(xo) = f(xo.y(xo0)) = f(Xo0.Yo)
Substituting in equation (3)

= Y(X) = y(xo) + (X = xo) f(x0,yo)
At X =x1, y(X1) = y(xo) + (X1 = Xo) f(xo.,Yo0)

Y1 =Yoo+ hf(xoyo) whereh=x;-xo
Similarly at x =x2, y2=vy1 + h f(xi,y1),
Proceeding as above, yn+1 = Yn + h f(Xn,Yn)

This is known as Euler's Method

1. Using Euler's method solve for x = 2 from % =3x2 + 1,y(1) = 2, by
X

taking step size
(1) h=0.5and (Il) h=0.25
dy
Sol: Here dX =f(x,y) =3x2+ 1, x0=1,y0= 2

Euler’s algorithm is yn+1 =yn + h f (Xn,yn), N =0,1,2,3,..... ->(1)
(1) h=0.5 wX1=x0+h=1+0.5=1.5
Takingn=0in (1), we have Xx2=xX1+h=15+0.5=2

y1= Yo+ h f(xo,yo)
ie. yi=y(1.5) =2+ (0.5) f(1,2) =2+ (0.5) (3+ 1) =2 + (0.5)(4)=4

Here xi=xo+h=1+05=1.5
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~y(1.5) =4 =y,
Takingn=1in (1),we have
y2=y1 +hf(xiy)
i.e.y(x2) =y2=4+(0.5) f(1.5,4) =4+ (0.5)[3(1.5)2+ 1] =7.875
Here xa=x4+h=15+0.5=2

~y(2) =7.875

(1) h=0.25 Xxo=1y0=2 sX1=1.25,x2=1.50, x3 = 1.75, X4
=2

Takingn =0in (1), we have
y1= Yo+ hf(xo.yo)
ie. y(xi)=yr=2+(0.25) f(1,2) =2+ (0.25) (3+ 1) =3=y(1.25)

y(x2) =y2=y1 + hf(xiy)
i.e.y(x2) =y2=3+ (0.25) f(1.25,3)
=3+ (0.25)[3(1.25)2 + 1]
= 4.42188
Herexo=x1+h=1.25+0.25=1.5

~y2=y(1.5) = 4.42188
Takingn=2in (1), we have
i.e. y(xs) =ys=y2th f(x2,y2)
= 4.42188 + (0.25) f(1.5,2)
= 4.42188 + (0.25) [3(1.5)2+ 1]
= 6.35938

Here xa=x2+h=15+0.25=1.75
~y(1.75) =6. 35938 =y3
Takingn =4in (1), we have
y(x4) =ya=ys+hf(xsys)

i.e.y(xs) =ys=6.35938 + (0.25) f(1.75,2)
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= 6.35938 + (0.25)[3(1.75)2 + 1]
Y (x4)= 8.90626=y(2)

Note that the difference in values of y(2) in both cases (i.e. when h =
0.5 and when h = 0.25).The accuracy is improved significantly when h
is reduced to 0.25 (Example significantly of the egnis y = x3+ x and
with this y(2) =y2 =10

2. Solve by Euler's method,y! = x +y, y(0) = 1 and find y(0.3) taking
step size h = 0.1. compare the result obtained by this method

with the result obtained by analytical solution

Sol: Given D.E.isy! =f(x,y)=x+vV, y(0) =
1,h=0.1,%x0=0,x1=0.1,%x2=0.2,x3=0.3,y0=1

From Euler’'s method

y1=Yyo+ h f(xo,yo)=140.1(0+1)=1.1

y(x2) =y2=y1 +hf(x;,y1)=1.1+0.1(0.1+1.1)=1.22
y(x3) = ys = y2th f(x2,y2) =1.22+0.1(0.2+1.22)=1.362

y1=1.1=y(0.1),
y2=y(0.2) =1.22
ys =y(0.3) = 1.362
Analytical method (linear d.e. method)
yl=x+y
dy/dx-y=x
P=-1,Q=x
|.F.=eAint(Pdx)=eAint(-dx)=e/-x
Sol. Y(I.F.)=int(Q(i.f.)dx+c
Y (eA-x)=int(xeA-x)dx+c=eN-x(-x-1)+C
Divide by eA-x on b.s.
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Solution y=-x-T+ceAx

Put x=0,y=1 then

1=-0-1+c

C=2

General

solufion y=-x-1+2e/\x

Particular solution is y(x) = 2ex— (x + 1)

Hence analytical values y(0.1) = 1.11034, y(0.2) = 1.3428, y(0.3) =

1.5997

We shall tabulate the result as follows

X 0 X1=0.1 X2=0.2 X3=0.3
Euler . 1 . 1.22 1 362
y(numerical)
Hnear ] 1.11034 1.3428 13997
y(analytical)

The value of y deviate from the execute value as x increases. This

indicate that the method is not accurate

3. Solve by Euler's method y! + y = 0 given y(0) = 1 and find

y(0.04) taking step size

h=0.01 Ans: 0.9606
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Using Euler's method, solve y at x = 0.1 from y'! = x+ y +xy, y()) =

1 taking step size

h = 0.025.

Given that g— = xy ,y(0) = 1 determine y(0.1),using Euler’s
X

method. h =0.1
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Sol: The given differentiating equation is j—= xy,y(0) =1 ,a=0,b=0.1
X

Here f(x,y) =xy ,Xxo=0and yo =1

Since his not given much better accuracy is obtained by breaking up

the interval (0,0.1) in fo five steps.

Euler's algorithm is yn+1 = yn + h f(Xn,yn) >(1)
~.From (1) form =0, we have
y1=Yyo+h f(x0,yo)
=1+ (0.02) f(0,1)
=1+ (0.02) (0)
=1
Next we have x; =xo+h =0+ 0.02 = 0.02
~.From (1), form = 1,we have
y2 =y1 +hf{xiyi)
=1+ (0.02) f(0.02,1)
=1+ (0.02) (0.02)
= 1.0004
Next we have x; = x; + h = 0.02 + 0.02 =0.04
~.From (1), form = 2,we have
ys =2+ hf(x2,y2)
=1.004 + (0.02) (0.04) (1.0004)
=1.0012
Next we have x3 = x2 + h =0.04 + 0.02 =0.06
~.From (1), form = 3,we have
ya=y3+ hf(xs,ys)
=1.0012 + (0.02) (0.06) (1.00012)
= 1.0024.
Next we have x4 = x3 + h =0.06 + 0.02 =0.08

~.From (1), form = 4,we have
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Y5 = Y4+ N f(xa,y4)
=1.0024 + (0.02) (0.08) (1.00024)
= 1.0040.
Next we have xs = x4+ h = 0.08 + 0.02 =0.1
When X = Xs, y~Ys
-y = 1.0040 when x = 0.1

6. Solve by Euler's method y! = 2y given y(1) = 2 and find y(2).

X

7. Given that % = 3x2 +y, y(0) = 4. Find y(0.25) and y(0.5) using
X
Euler’'s method

Sol: given 3— =3x2+yandy(0) = 4.
X

Here f(x,y) =3x2+vy ,x0=0,y0=4
Consider h =0.25
Euler's algorithm is yn+1 = yn + h f(Xn,yn) > (1)
~.From (1), forn =0, we have
y1 = Yo * h f(xo,yo)
=2+ (0.25)[0 + 4]
=2+1
=3
Next we have xi =xo+h=0+0.256=0.25
When x =xi, yi~y
~y1=3whenx; =0.25
~.From (1), forn =1, we have
y2=y1+hf(xiyi)
=3+ (0.25)[3.(0.25)2 + 3]
= 3.7968
Next we have xo=x1 +h=0.25+0.25=0.5
When x =X,y ~ y2
=y =3.7968 when x = 0.5.
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8. Solve first order differential equation % = ? y(0) =1 and
X

+x
estimate y(0.1) using Euler's method (5 steps).h=0.02
AnNs: 1.0928
9. Use Euler’'s method to find approximate value of solution of %X
X

=y-x + 5 at x = 2-1 and 2-2with initial contention y(0.2) = 1

3.7 Modified Euler's method

Working rule :
i)Modified Euler's method

i) When i=1y°_, can be calculated from Euler's method
i) K=0, 1......... gives number of iteration. i=1,2...

gives humber of times, a particular iteration k is repeated
Suppose consider dy/dx=f(x, y) -------- (1) with y(xo) =yo----------- (2)
To find y(x1) =y1 af x=x1=xo+h

Now take k=0 in modified Euler's method
We get y,W =y, +h/2[f (X, Yo )+ f (x1 yl(i‘l))} ........................... (3)

Taking i=1, 2, 3..k+1 in egn (3), we get
v =y, +h/2[ f(%,.¥,)] (By Euler's method)

v =y, +h/2[f (Xos Yo )+ f (X1 yl(o))}

y1(2) = yo+h/2|:f (XO'yO)+ f (Xllyl(l)):|

Y = Yot 12 T (00 v0)+ T (% 0.%)

k+1)

If two successive values of y,*,y,** are sufficiently close to one

another, we will take the common value as y, = y(x,)=y(x +h)
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We use the above procedure again

1) using modified Euler's method find the approximate value of x
when x=0.3given that dy/dx=x+y and y(0)=1

sol: Given dy/dx=x+yand y(0)=1
Here f(x,y)=x+Y,% =0, and y,=1
Take h = 0.1 which is sufficiently small
Here x,=0,x,=%X,+h=0.1,x,=x+h=0.2,x,=%,+h=0.3

The formula for modified Euler's method is given by

=3 ) )]0

Stepl: To find yi1=y(x1) =y (0.1)
Taking k =0in egn(1)
Yea = Yo +h/2[f (% + o)+ (X1 yl(ifl))} —(2)
when =1 ineqgn (2)
W = yo 012 £ (%0, %0)+ 1 (3,

First apply Euler's method to calculate yio) =Y

D =y +h (X%, Vo)
= 1+(0.1)f(0.1)
= 1+(0.1)
=1.10
now[ X, =0,Y, =1,% =0.1,y,(0)=1.10]

S =y, +0.1/2[f (% Yo)+ f (X1 yl(O))}

= 1+0.1/2[f(0,1) + f(0.1,1.10)
= 1+0.1/2[(0+1)+(0.1+1.10)]
=1.11

When i=2 in egn (2)

V= Yo+ 012 1 (0 30)+ (%) |
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= 1+0.1/2[f(0.1)+(0.1,1.11)]
=1+ 0.1/2[(0+1)+(0.1+1.11)]
=1.1105

W = Yo +h/2] £ (%.¥0)+ (.37

= 1+0.1/2[f(0,1)+f(0.1, 1.1105)]
= 140.1/2[(0+1)+(0.1+1.1105)]
=1.1105

Since y,? =y,®

Soy1=1.1105

Step:2 To find y2 = y(x2) = y(0.2)

Takingk=1inegn (1), we get

V0 =y, n 12 £ (% 3)+ (3 37) | (3) 1=1.234,....

Fori=1

yz(l) = yl+h/2|:f (Xl! y1)+ f (XZ’ yZ(O))i|
y,%is to be calculate from  Euler's method
Y2(0) = y1+h f (Xv yl)

=1.1105+ (0.1) f(0.1, 1.1105)
= 1.1105+(0.1)[0.1+1.1105]

=1.2316

-y, = 1.1105+0.1/2[ f (0.11.1105)+ f (0.2,1.2316)

=1.1105 +0.1/2[0.1+1.1105+0.2+1.2314]

= 1.2426
V.7 =y h /2] £ (g 0)+ 1 () |

=1.1105 + 0.1/2[f(0.1, 1.1105) , f(0.2 . 1.2426)]

=1.1105 + 0.1/2[1.2105 + 1.4426]
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=1.1105 + 0.1(1.3266)

=1.2432

y,® = y1+h/2[f (%, y,)+ f (xzyz(z))}
= 1.1105+0.1/2[f(0.1,1.1105)+f(0.2 , 1.2432)]
= 1.1105+0.1/2[1.2105+1.4432)]

=1.1105 + 0.1(1.3268)

=1.2432
Since y,% =y,
Hence yo = 1.2432

Step:3
To find ys = y(x3) =y y(0.3)

Taking k =2 in egn (1) we get

v =y, +h/2[f (X, Y, )+ f (x3, ys(i‘l))} —(4)
Fori=1,

v, =y, +h/2[f (X, ¥, )+ f (x3, ys(o))]

y,” is to be evaluated from Euler's method .

V% =y, +h f(x,,Y,)
= 1.2432 +(0.1) (0.2, 1.2432)
= 1.2432+(0.1)(1.4432)
=1.3875
Ly =1.2432+0.1/2[f(0.2, 1.2432)+f(0.3, 1.3875)]
= 1.2432 +0.1/2[1.4432+1.6875]
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= 1.2432+0.1(1.5654)

=1.3997
v =y #0121 (0 v2)+ (%)

= 1.2432+0.1/2[1.4432+(0.3+1.3997)]
= 1.2432+ (0.1) (1.575)

= 1.4003
V=Y, #0121 (% y)+ 1 (%)

= 1.2432+0.1/2[f(0.2, 1.2432)+f(0.3 , 1.4003)]
= 1.2432 +0.1(1.5718)

= 1.4004
v, =y, +h/2[ (%0 ¥,)+ f (X3' y3(3))}

=1.2432 + 0.1/2[1.4432+1.7004]
= 1.2432+(0.1)(1.5718)

= 1.4004
Since y,® =y,¥

Hence y,=1.4004 .. The value of y aft x =0.3 is 1.4004

2 . Find the solution of % =x-y, y(0)=1atx=0.1,0.2,0.3,0.4and 0.5
X
. Using modified Euler’'s method

Sol . Given % =x-yand y(0) =1
X

Here f(x,y) =x-y ,xo=0and yp =1
Consider h=0.1 so that
X=0.1,%x =0.2,%x3=0.3,x4=0.4and x5=0.5

The formula for modified Euler's method is given by
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yk+l(i) =Y +hi2f (Xk' yk)"‘ X0 yk+1(i_l) — (1)

Where k=0,1, 2, 3,..... i=1,23,.....
f (Xk’ Yi ) =X = Y %[f (X ¥y )+ (XM, yk+1(i_1)):| yk+1(i) =Yt h/2[f (X Vi) + (Xk+11 yk+1(i_l))_
§ |
K
0
0. |0-1=-1 - 14(0.1)(-1)=0.9 = y,®
0
0.1(i=1) 0-1=-1 1+(0.1)(-0.9)=0.91
14(-1-0.8) = 0.9
0.1(i=2) 0-1=-1 V2(-1-0.81)= -0.905 | 1+(0.1)(-0.905)=0.9095
0.1(i=3) 0-1=-1 V(-1-0.80.95)= - 1+(0.1)(-
0.90475 0.90475)=0.9095
K=1
0.1 0.1-0.9095=- |- 0.9095+(0.1)(-
0.8095 0.8095)=0.82855
0.2(i=1) -0.8095 0.9095+(0.1)(-
72(-0.8095-0.62855) | 0.719025)=0.8376
0.2(i=2) -0.8095 14(-0.8095-0.6376) | 0.9095+(0.1)(-
0.72355)=0.8371
0.2(i=3) -0.8095 14(-0.8095-0.6371) | 0.9095+(0.1)(-
0.7233)=0.8372
0.2(i=4) -0.8095 4(-0.8095- 0.9095+(0.1)(-
0.6372) 0.72355)=0.8371
K=2
0.2 0.2-0.8371=- i 0.8371+(0.1)(-
0.6371 0.6371)=0.7734
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0.3(i=1) = 0.6371 15(-0.6371- 0.8371+(0.1)(-
0.4734) 0.555)=0.7816

0.3(i=2) = 0.6371 15(-0.6371- 0.8371-
0.4816) 0.056=0.7811

0.3(i=3) = -0.6371 15(-0.6371- 0.8371-
0.4811) 0.05591=0.7812

0.3(i=4) = 0.6371 15(-0.6371- 0.8371-0.055915
0.4812) =0.7812

K=3

0.3(i=1) 0.3-0.7812 - 0.7812+(0.1)(-

0.4812) = 0.7331

0.4(i=1) -0.4812 15(-0.4812- 0.7812-0.0457 =
0.4311) 0.7355

0.4(i=2) -0.4812 15(-0.4812- 0.7812-0.0458 =
0.4355) 0.7354

0.4(i=3) -0.4812 15(-0.4812- 0.7812-0.0458 =
0.4354) 0.7354

K=4

0.4 -0.3354 - 0.7354-0.03354 =

0.70186

0.5 -0.3354 15(-0.3354- 0.7354-0.03186 =
0.301816) 0.7035

0.5 -0.3354 15(-0.3354- 0.7354-0.0319 =
0.30354) 0.7035

3. Find y(0.1) and y(0.2) using modified Euler’s formula given that
dy/dx=x2-y,y(0)=1

[consider h=0.1,y1=0.90523,y2=0.8214]

4. Given dy/dx=-xy? y(0)=2compute y(0.2) in steps of 0.1
Using modified Euler's method
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[h=0.1, y1=1.9804, y>=1.9238]

5. Given y! = x+siny, y(0)=1 compute y(0.2) and y(0.4) with h=0.2 using
modified Euler’s

method

[y1=1.2046, y2=1.4644]

3.8_Runge - Kutta Methods

. Second order R-K Formula

yie1 = Yit1/2 (Ki+K2),

Where Ki = h (x Vi)

K2 =h (xi+h, yitki)
Fori=0,1,2------

Il. Third order R-K Formula

yit1 = yit1/6 (Ki+4Ko+ K3),
Where K1 = h (xi, i)
Ko =h (xith/2, yotki/2)
Kz = h (xi+h, yi+2ko-ki)
Fori=0,1,2-—----

Ill. Fourth order R-K Formula

yie1 = yit1/6 (Ki+2Ko+ 2K3+Ky),
Where Ki = h (xi Vi)
Ko =h (x+h/2, yitki/2)
Kz = h (xi+h/2, yitka/2)

K4 =h (xith, yitks)
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1. Using Runge-Kutta method of second order, find y(2.5) from 3— =
X

X+y

« . y(2)=2, h=0.25.

d X+
d—y XY v =2.
X X

Sol: Given

Here f(x, y) = Xy xo=0,yo=2and h=0.25
X

oo X1 =Xo+th =2+0.25 = 2.25, xo = x1+h =2.25+0.25= 2.5
By R-K method of second order,

Yia = Y; +1/2(k, +k, ),k —hf (X +h,y, +k,),i=0,1... > (1)

Step -1:-

To find y(x1)i.e y(2.25) by second order R - K method taking i=0 in
ean(i)

We have vy, = y0+%(k1+k2)

Where ki= hf (xo.yo ), ko= hf (Xo+h,yo+ki)

f (xo0,yo0 )=f(2,2)=2+2/2=2

ki=hf (xo,y0 )=0.25(2)=0.5

ko= hf (xo+h,yo+k1)=(0.25)f(2.25,2.5)
=(0.25)(2.25+2.5/2.25)=0.528

S Y1=y(2.25)=2+1/2(0.5+0.528)

=2.514

Step2:

To find y(x2) i.e., y(2.5)

i=1in (1)

x1=2.25,y1=2.514,and h=0.25
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y2=y1+1/2(ki+ko)
where ki=h f((x1,y1 )=(0.25)f(2.25,2.514)
=(0.25)[2.25+2.514/2.25]=0.5293

k,=h (% +h,y,+k)=(0.1) f (0.11-0.1) = (0.1)(~0.9) = ~0.09

=(0.25)[2.5+2.514+0.5293/2.5]
=0.55433

Y, =Y (2.5)=2.514+1/2(0.5293+0.55433)

=3.0558
-y =3.0558 when x = 2.5
Obtain the values of y at x=0.1,0.2 using R-K method of

(ijsecond order (ii)third order (iii)fourth order for the diff egn
y'+y=0,y(0)=1

Sol: Given dy/dx = -y, y(0)=1

fixy) =-y, %=0,y0=1

Here f (x,y) =-y, X0=0, yo= 1 take h = 0.1

s X1 =xoth =0.1,

x2=x1+h =0.2

Second order:

step1: To find y(xi) i.e y(0.1) or y;

by second-order R-K method,we have
y1=yot1/2(ki+ko)

where ki=hf(xo,yo)=(0.1) f(0,1) = (0.1)(-1)=- 0.1
ko= hf (xo*+h, yot+ki)= (0.1) f (0.1, 1-0.1) = (0.1)(-0.9) = -0.09
y1=y(0.1)=1+1/2(-0.1-0.09)=1-0.095=0.905
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-y =0.905 when x=0.1

Step2:

To find yz2i.e y(x2) i.e y(0.2)

Here x; = 0.1, y1=0.905 and h=0.1

By second-order R-K method, we have

y2=y(x2)= y1+1/2(ki+ke)

Where k =h f (x,y,)=(0.1)f(0.1,0.905)=(0.1)(-0.905)=-0.0905

k,=h f(x +hy +k)=(
—(0.1) f (0.2,0.8145) =
=-0.08145

) f (0.2,0.905-0.0905)
1)(-0.8145)

0.1

(0.

y2= Yy(0.2)=0.905+1/2(-0.0905-0.08145)
= 0.905- 0.085975 = 0819025

Third order

Stepl:

To find yi i.e y(x1)=y(0.1)

By Third order Runge kutta method

Y = Yo +1/6(k, +4k, +k;)

where ki = h f(xo, yo) = (0.1) f (0.1) = (0.1) (-1) =-0.1

k,=hf(x,+h/2,y,+k /2)=(0.1) f (0.1/2,1-0.1/2) = (0.1) f (0.05,0.95)

(0.1)(~0.95) = —0.095

and ks = h f((xo+h,yo+2k2-k1)

(0.1) f (0.1,14+2(-0.095)+0.1)= -0.905

Hence y1 = 1+1/6(-0.1+4(-0.095)-0.09) = 1+1/6 (-0.57) = 0.905

v1=0.905 i.e y(0.1)= 0.905
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Step2:

To find y2,i.e y(x2)= y(0.2)

Here x;=0.1,y1=0.905 and h = 0.1

Again by 2nd order R-K method

y2 = y1+1/6(ki+4katks)

Where ki=h f(xi, y1) = (0.1)f (0.1,0.905)= -0.0905

ko= h f (x1+h/2,y1+k1/2)=(0.1)f(0.1+0.2,0.905 - 0.0905)= -(0.1) f (0.15,
0.85975)= (0.1) (-0.85975)

and ks = h f((xi+h,y1+2k2-k1)=(0.1)f(0.2,0.905+2(0.08975)+0.0905= -
0.082355

hence y2=0.905+1/6(-0.0905+4(-0.085975)-0.082355)=0.818874
-y =0.905 when x = 0.1
And y =0.818874 when x =0.2

fourth order:

step1:

x0=0,y0=1,n=0.1 To find y; i.e y(x1)=y(0.1)

By 4h order R-K method, we have
y1=Yyot+1/6(ki+2ko+2ks+ka)

Where ki=h f(xo,y0)=(0.1)f(0.1)=-0.1

ko=h f (xo+h/2, yotk1/2) = -0.095

and ks= h f((xo+h/2,yotk2/2)=(0.1)f (0.1/2,1-0.095/2)
= (0.1)(0.05,0.9525)

=-0.09525

and ks= h f(xoth,yotks)

= (0.1) f(0.1,1-0.09525)=(0.1)f(0.1,0.90475)

=-0.090475

Hence yi=1+1/6(-0.1)+2(-0.095)+2(0.09525)-0.090475)
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=14+1/6(-0.570975)+1-0.951625 = 0.9048375
Step2:

To findy,,ie., y(x,)=y(0.2),y, = 0.9048375,ie., y(0.1) = 0.9048375

Here x; = 0.1, y1=0.9048375 and h = 0.1

Again by 4 order R-K method, we have

y2 = y1+1/6(ki1+2ko+2ks+ka)

Where ki=h f(x;,y1)=(0.1)f(0.1,0.9048375)=-0.09048375

ko= hf (x1+h/2,y1+k1/2)=(0.1)f(0.1+0.1/2,0.9048375 -0.09048375 /2)=-
0.08595956

and ka=hf(x;+h/2, y1+k2/2)=(0.1)§(0.15,0. 8618577)= -0.08418577
ks=h f(xi+h,y1+ks)=(0.1)f(0.2,0.86517)
=-0.08186517

Hence vz = 0.09048375+1/6(-0.09048375-2(0.08595956)-2(0.08618577)-
0.08186517

=0.9048375-0.0861065
=0.818731
y = 0.9048375 when x =0.1 and y =0.818731

3. Apply the 4t order R-K method to find an approximate value of y
when x=1.2 in steps of 0.1,given that y! = x2+y2,y (1)=1.5

sol. Giveny!=x2+y2,and y(1)=1.5

Here f(x,y)= x2+y2 yo=1.5 and xo=1,h=0.1

So that x1=1.1 and x2=1.2
Stepl:
To find yiie, Y(x1)

by 4 order R-K method we have
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y1=yot1/6 (ki+2ka+2ks+ka)
ki=hf(xo,y0)=(0.1)f(1,1.5)=(0.1) [12+(1.5)2]=0.325
ko= hf (xo+h/2,yo+k1/2)=(0.1)f(1+0.05,1.5+0.325)=0.3866

and ks=hf((xo+h/2,yo+k2/2)=(0.1)(1.05,1.5+0.
3866/2)=(0.1)[(1.05)2+(1.6933)?]

=0.39698
ka=hf(xo*+h,yo+ks)=(0.1)f(1.0,1.89698)
=0.48085

Hence

Vi =1.5+%[o.325+ 2(0.3866) + 2(0.39698) +0.48085 |
—1.8955

Step2:

To find yz2, i.e., y(x,)=y(1.2)

Here x1=0.1,y1=1.8955 and h=0.1

by 4th order R-K method we have

y2 = y1+1/6(ki1+2ko+2ks+ka)

ki=hf(x1,y1)=(0.1)f(0.1,1.8955)=(0.1) [12+(1.8955)2]=0.48029

ko= hf (x1+h/2,y1+k1/2)=(0.1)f(1.1+0.1,1.8937+0.4796) =0.58834

and ks=hf((xi+h/2,y1+k2/2)=(0.1)f(1.5,1.8937+0.58743)
=(0.1)[(1.05)2+(1.6933)]

=0.611715
ka=hf(x1+h,y1+ks)=(0.1)f(1.2,1.8937+0.610728)
=0.77261

Hence y,=1.8937+1/6(0.4796+2(0.58834)+2(0.611715)+0.7726) =2.5043
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-y =2.5043 where x=0.2

4. Using R-K method, find y(0.2) for the eqn dy/dx=y-x,y(0)=1,take
h=0.2

Ans:1.15607

5.Given that y'=y-x,y(0)=2 find y(0.2) using R- K method take h=0.1
Ans: 2.4214

6. Apply the 4" order R-K method to find y(0.2) and y(0.4) for one

equation 103—y _x2+y%,y(0)=1takeh=0.1  Ans. 1.0207, 1.038
X

7. using R-K method, estimate y(0.2) and y(0.4) for the egn dy/dx=y2-
x2/ y2+x2,y(0)=1,h=0.2

ANs:1.19598,1.3751

8. use R-K method, to approximate y when x=0.2 given that
y'=x+y,y(0)=1

Sol: Here f(x,y)=x+y,yo=1,%0=0

Since his not given for better approximation of y
Take h=0.1

~.x1=0.1, x2=0.2

Stepl

To find yi i.e y(x1)=y(0.1)

By R-K method,we have

y1=yot1/6 (Ki+2ko+2ka+ka)

Where ki=hf(xo,yo)=(0.1)f(0,1)=(0.1) (1)=0.1

ko= hf (xo+h/2,yo+k1/2)=(0.1)f(0.05,1.05)=0.11
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and ka=hf((xe+h/2,yo+k2/2)=(0.1)§(0.05,1+0. 11/2)=(0.1)[(0.05)
+(4.0.11/2)]

=0.1105
ka=h f (xo+h,yo+ks)=(0.1)F(0.1,1.1105)=(0.1)[0.1+1.1105]

=0.121056

Hence ..y, =y(0.1) =1+%(o.1+ 0.22+0.240+0.12105)

y=1.11034

Step2:

To find y2i.e y(x2) = y(0.2)

Here x;=0-1, y1=1.11034 and h=0.1

Again By R-K method,we have

y2=y1+1/6(ki+2ko+2ks+ka)

ki=h f(x1,y1)=(0.1)f(0.1,1.11034)=(0.1) [1.21034]=0.121034
ko=h f (x1+h/2, y1+ki/2)=(0.1)f(0.1+0.1/2,1.11034+0.121034/2)
=0.1320857

and ks=h f((x1+h/2,y1+k2/2)=(0.1)f(0.15,1.11034+0.1320857/2)
=0.1326382

ks=h f(x1+h,y1+ks)=(0.1)f(0.2,1.11034+0.1326382)
(0.1)(0.2+1.2429783)=0.1442978

Hence y2=1.11034+1/6(0.121034+0.2641714+0.26527 64+0.1442978
=1.11034+0.1324631 =1.242803

Yy =1.242803 when x=0.2

9.Using Runge-kutta method of order 4,compute y(1.1) for the eqn
y'=3x+y2,y(1)=1.2 h = 0.05
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