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Unit-I 

COMPLEX VARIABLE 

 

1. 1 Algebraic Preliminaries: We shall recall some of the properties of a complex number. 

(i)  A complex number is of the form 𝑧 = 𝑎 + 𝑖𝑏 where 𝑎 and 𝑏 are real numbers and  𝑖 is 

the imaginary unit defined by 𝑖 = √−1, 𝑎 is called the real part of 𝑧 and this is written 

as 𝑅(𝑧) = 𝑎, 𝑏 is called the imaginary part of 𝑧 and this is written as 𝐼(𝑧) = 𝑏. 

(ii)  If the two complex numbers 𝑎 + 𝑖𝑏 and 𝑐 + 𝑖𝑑 are equal, then 𝑎 = 𝑐 and 𝑏 = 𝑑, i.e., 

the real and the imaginary parts of the first are respectively equal to the real and the 

imaginary parts of the second. 

(iii) Complex numbers are assumed to obey the addition, subtraction, multiplication 

Division laws of Algebra. Thus, 

(𝑎 + 𝑖𝑏) + (𝑐 + 𝑖𝑑) = (𝑎 + 𝑐) + 𝑖(𝑏 + 𝑑) 

(𝑎 + 𝑖𝑏) − (𝑐 + 𝑖𝑑) = (𝑎 − 𝑐) + 𝑖(𝑏 − 𝑑) 

(𝑎 + 𝑖𝑏)(𝑐 + 𝑖𝑑) = (𝑎𝑐 − 𝑏𝑑) + 𝑖(𝑎𝑑 + 𝑏𝑐) since 𝑖2 = −1 

(𝑎 + 𝑖𝑏)

(𝑐 + 𝑖𝑑)
=

(𝑎 + 𝑖𝑏)(𝑐 − 𝑖𝑑)

(𝑐 + 𝑖𝑑)(𝑐 − 𝑖𝑑)
 

       = (
𝑎𝑐 + 𝑏𝑑

𝑐2 + 𝑑2
) + 𝑖 (

𝑏𝑐 − 𝑎𝑑

𝑐2 + 𝑑2
) 

(iv)  Of the two complex numbers 𝑎 + 𝑖𝑏 and 𝑎 − 𝑖𝑏, each is said to be the conjugate of 

the other. The conjugate of a complex number 𝑧 is usually written as 𝑧̅. Sometimes 𝑧̅ 

is also denoted by 𝑧∗. 

If 𝑧 = (𝑎 + 𝑖𝑏), then 𝑧̅ = 𝑎 − 𝑖𝑏. 

𝑧 𝑧̅ = (𝑎 + 𝑖𝑏)(𝑎 − 𝑖𝑏) = 𝑎2 + 𝑏2 which is purely real. 

Also 
𝑧 + 𝑧̅

2
= 𝑎 = real part of 𝑧 = 𝑅(𝑧) 

and 
𝑧 − 𝑧̅

2
= 𝑏 = imaginary part of 𝑧 = 𝐼(𝑧) 

(v)  The complex number 𝑎 + 𝑖𝑏 can be represented by a point in a plane referred to a set 

of rectangular 𝑥 and 𝑦-axes such that the real part 𝑎 represents the abscissa and the 

imaginary part 𝑏 represents the ordinate of the point. In this manner, there is a one-to-

one correspondence between the pair of real numbers (𝑎, 𝑏) and the single complex 

number 𝑎 + 𝑖𝑏. In this case, the 𝑥𝑦-plane is called the plane of a complex variable or 

the complex plane, the 𝑥-axis is called the real axis and the 𝑦-axis, the imaginary axis.           

Let the polar coordinates of the point (𝑎, 𝑏) be (𝑟, 𝜃). 
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  Then, 𝑎 = 𝑟 𝑐𝑜𝑠𝜃 𝑎𝑛𝑑 𝑏 = 𝑟 𝑠𝑖𝑛𝜃 

  So 𝑟 = √𝑎2 + 𝑏2 𝑎𝑛𝑑 𝜃 = 𝑡𝑎𝑛−1 𝑏

𝑎
 

 The number 𝑟 is called the modulus and 𝜃 is called the amplitude or argument 

of the complex number 𝑧 = 𝑎 + 𝑖𝑏. In symbols, we write  

𝑟 = |𝑧| = |𝑎 + 𝑖𝑏| = √𝑎2 + 𝑏2 

𝜃 = 𝑎𝑚𝑝 𝑧 = arg 𝑧 = 𝑡𝑎𝑛−1
𝑏

𝑎
 

Now 𝑧 = 𝑎 + 𝑖𝑏 = 𝑟(𝑐𝑜𝑠𝜃 + 𝑖 𝑠𝑖𝑛𝜃) = 𝑟𝑒𝑖𝜃  

 

(vi)  From the above polar mode of representation of a complex number, the rules for the 

product and quotient of two complex numbers follow immediately. 

 Thus, 𝑧1𝑧2 = (𝑎1 + 𝑖𝑏1)(𝑎2 + 𝑖𝑏2) = 𝑟1𝑒𝑖𝜃1 . 𝑟2𝑒𝑖𝜃2 = 𝑟1𝑟2𝑒𝑖(𝜃1+𝜃2) 

 Hence, |𝑧1𝑧2| = 𝑟1𝑟2 = |𝑧1|. |𝑧2| 

 and arg(𝑧1 ,𝑧2) = 𝜃1 + 𝜃2 = arg 𝑧1 + arg 𝑧2 

i.e., the modulus of the product is equal to the product of the modulus and the 

argument of the product is equal to the sum of the arguments. 

𝑧1

𝑧2
=

𝑟1𝑒𝑖𝜃1

𝑟2𝑒𝑖𝜃2
=

𝑟1

𝑟2
𝑒𝑖(𝜃1−𝜃2) 

So |
𝑧1

𝑧2
| =

𝑟1

𝑟2
=

|𝑧1|

|𝑧2|
 and arg (

𝑧1

𝑧2
) = 𝜃1 − 𝜃2 = arg 𝑧1 − arg 𝑧2 

i.e., the modulus of the quotient is the quotient of the modulus and the argument of 

the quotient is equal to the difference of the argument of the denominator from that of 

the numerator. 

(vii)  When 𝑛 is positive integer, 

𝑧𝑛 = (𝑟𝑒𝑖𝜃)
𝑛

= 𝑟𝑛𝑒𝑖𝑛𝜃 = 𝑟𝑛(𝑐𝑜𝑠𝑛𝜃 + 𝑖 𝑠𝑖𝑛𝑛𝜃) 

𝜃 
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𝑖. 𝑒. , [𝑟(𝑐𝑜𝑠𝜃 + 𝑖 𝑠𝑖𝑛𝜃)]𝑛 = 𝑟𝑛(𝑐𝑜𝑠𝑛𝜃 + 𝑖 𝑠𝑖𝑛𝑛𝜃) 

Hence (𝑐𝑜𝑠𝜃 + 𝑖 𝑠𝑖𝑛𝜃)𝑛 = 𝑐𝑜𝑠𝑛𝜃 + 𝑖 𝑠𝑖𝑛𝑛𝜃 

which is the De Moivre’s theorem. 

 

1.2.  Function of a Complex Variables:  

If 𝑧 = 𝑥 + 𝑖𝑦 and 𝑤 = 𝑢 + 𝑖𝑣 are two complex variables, and if for each value of 𝑧 in 

a certain portion of the complex plane (called also as the domain 𝑅 of the complex plane) 

there  corresponds  one or more values of 𝑤, then 𝑤 is said to be a function of 𝑧 and is written 

as 

𝑤 = 𝑓(𝑧) = 𝑓(𝑥 + 𝑖𝑦) = 𝑢(𝑥, 𝑦) + 𝑖 𝑣(𝑥, 𝑦)                          (1) 

where 𝑢(𝑥, 𝑦)and 𝑣(𝑥, 𝑦) are real functions of the real variables 𝑥 and 𝑦. Clearly for a given 

value of 𝑧, the values of 𝑥 and 𝑦 are known and thus, one or more values of 𝑤 are determined 

by (1). If for each value of 𝑧 in 𝑅, there is correspondingly only one value of 𝑤, then 𝑤 is 

called a single-valued function of 𝑧. If there is more than one value of 𝑤 corresponding to a 

given value of 𝑧, then 𝑤 is called a multiple-valued function or many- valued function.  

For example, 𝑤 = 𝑧2, 𝑤 =
1

𝑧
, 𝑤 =

𝑧

𝑧4+1
 are single valued function of 𝑧.  The function 

𝑤 = 𝑧1/2, 𝑤 = arg (𝑧) are examples of many valued functions. The first one has three values 

for each value of 𝑧 (except for 𝑧 = 0) and the second one assumes infinite set of real values 

for each value of 𝑧 other than 𝑧 = 0. 

The complex quantities 𝑧 and 𝑤 can be represented on separate complex planes, called 

the 𝑧-plane and the 𝑤-plane respectively. The relation 𝑤 = 𝑓(𝑧) establishes correspondence 

between the points (𝑥, 𝑦) of the 𝑧-plane and the points (𝑢, 𝑣) of the 𝑤-plane. 

 

 

 

  

𝑧 = 𝑥 + 𝑖𝑦 

𝑊 − 𝑃𝑙𝑎𝑛𝑒 

 

 

 

 

𝑤 = 𝑢 + 𝑖𝑣 

𝑤 = 𝑓(𝑧) 

Figure 3 
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1.3.  Limits: Let 𝑤 = 𝑓(𝑧) denote some functional relationship connecting 𝑤 with 𝑧.  

Then 𝑤 = 𝑓(𝑥 + 𝑖𝑦) = 𝑢(𝑥, 𝑦) + 𝑖 𝑣(𝑥, 𝑦) where 𝑢 and 𝑣 are real functions of 𝑥 and 

𝑦. As 𝑧 𝑎𝑝proaches 𝑧0, the limit of 𝑓(𝑧) is said to be 𝑤0 if 𝑓(𝑧) can be kept arbitrarily close 

to 𝑤0, by keeping  𝑧 sufficiently close to, but different from 𝑧0.  

𝑖. 𝑒. , lim
𝑧→𝑧0

𝑤 = lim
𝑧→𝑧0

𝑓(𝑧) = 𝑤0  

Now let 𝑧0 = 𝑥0 + 𝑖𝑦0 

when 𝑧 approaches 𝑧0, it means that 𝑥 → 𝑥0 and 𝑦 → 𝑦0. 

Hence lim
𝑧→𝑧0

𝑓(𝑧) = lim
𝑧→𝑧0

(𝑢 + 𝑖 𝑣) = lim
𝑥→𝑥0
𝑦→𝑦0

(𝑢 + 𝑖 𝑣) = 𝑢0 + 𝑖 𝑣0 

Hence lim
𝑥→𝑥0
𝑦→𝑦0

 𝑢(𝑥, 𝑦) = 𝑢0 and lim
𝑥→𝑥0
𝑦→𝑦0

 𝑣(𝑥, 𝑦) = 𝑣0.  

Note: In the above, when we say that 𝑧 → 𝑧0, it means that 𝑥 → 𝑥0 𝑎𝑛𝑑 𝑦 → 𝑦0 in any 

order, by any path as shown in figure 4. 

 

 

1.4. Continuity: The idea of continuity is closely connected with the concept of a limit. A 

single-valued function 𝑤 = 𝑓(𝑧) is said to be continuous at a point 𝑧 = 𝑧0 provided each of 

the following conditions is satisfied: 

(i) 𝑓(𝑧0) exists 

(ii) lim
𝑧→𝑧0

𝑓(𝑧) exists, and  

(iii) lim
𝑧→𝑧0

𝑓(𝑧) = 𝑓(𝑧0) 

Remarks: 

1.   If 𝑓(𝑧) is continuous at every point of a region 𝑅, it is said to be continuous throughout 

𝑅. 

2.   𝑤 = 𝑓(𝑧) = 𝑢(𝑥, 𝑦) + 𝑖 𝑣(𝑥, 𝑦). If 𝑓(𝑧)is continuous at 𝑧 = 𝑧0, then its real and 

imaginary parts, i.e., 𝑢 and 𝑣 will be continuous functions at 𝑧 = 𝑧0, i.e., at 𝑥 = 𝑥0 𝑎𝑛𝑑 𝑦 =
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𝑦0. Conversely, if 𝑢 and 𝑣 are continuous functions at 𝑧 = 𝑧0, then 𝑓(𝑧) will be continuous at 

𝑧 = 𝑧0. 

3.  The sums, differences and products of continuous functions are also continuous are also 

continuous. The quotient of two continuous functions is continuous except for those values of 

𝑧 for which the denominator vanishes. 

 

1.5. Continuity of a Function of Two Real Variables: 

𝑤 = 𝑓(𝑧) = 𝑓(𝑥 + 𝑖𝑦) 

is a function of the two variables 𝑥 and 𝑦. Hence, to discuss the continuity of 𝑓(𝑧), we shall 

have to deal with the continuity of a function of two independent variables 𝑥 and 𝑦. 

 

Definition: a function 𝑓(𝑥, 𝑦) of two real independent variables 𝑥 and 𝑦 is said to be 

continuous at a point (𝑥0, 𝑦0) if, 

(i) 𝑓(𝑥0, 𝑦0), the value of 𝑓(𝑥, 𝑦) at (𝑥0, 𝑦0) is finite, and  

(ii) lim
𝑥→𝑥0
𝑦→𝑦0

 𝑓(𝑥, 𝑦) = 𝑓(𝑥0, 𝑦0) in whatever way 𝑥 → 𝑥0 𝑎𝑛𝑑 𝑦 → 𝑦0 

To illustrate the idea of continuity of a function of two variables given in the following 

examples: 

EX. 1. Show that 𝑓(𝑥, 𝑦) =
2𝑥𝑦

𝑥2 + 𝑦2 is discontinuous at origin, given that 𝑓(0, 0) = 0. 

Solution: Given  𝑓(𝑥, 𝑦) =
2𝑥𝑦

𝑥2 + 𝑦2 

If  𝑦 → 0 first and then 𝑥 → 0 

lim
𝑥→0

lim
𝑦→0

𝑓(𝑥, 𝑦) = lim
𝑥→0

lim
𝑦→0

2𝑥𝑦

𝑥2  +  𝑦2
= lim

𝑥→0

2𝑥(0)

𝑥2
= 0 

If  𝑥 → 0 first and then 𝑦 → 0 

lim
𝑦→0

lim
𝑥→0

 𝑓(𝑥, 𝑦) = lim
𝑦→0

lim
𝑥→0

2𝑥𝑦

𝑥2  +  𝑦2
= lim

𝑦→0

2𝑦(0)

𝑦2
= 0 

Let 𝑥 and 𝑦 both tend to zero simultaneously along the path 𝑦 = 𝑚𝑥. 

Then, lim
𝑦=𝑚𝑥

𝑥→0

 𝑓(𝑥, 𝑦) = lim
𝑦=𝑚𝑥

𝑥→0

2𝑥𝑦

𝑥2  +  𝑦2
= lim

𝑥→0

2𝑥. 𝑚𝑥

𝑥2  +  𝑚2𝑥2
=

2𝑚

1 +   𝑚2
 

This limit changes its value for different values of 𝑚. 

when 𝑚 = 1,
2𝑚

1 +  𝑚2 = 1 and for 𝑚 = 2,
2𝑚

1 +  𝑚2 =
4

5
  and so on. 

Hence lim
𝑦→0

2𝑥𝑦

𝑥2 + 𝑦2 ≠ 0, when 𝑥 → 0, 𝑦 → 0 in any manner. So the function is not 

continuous at the origin. 
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EX. 2. Discuss the continuity of 𝑓(𝑥, 𝑦) =
2𝑥𝑦2

𝑥2 + 𝑦4 at the origin, given that 𝑓(0, 0) = 0. 

Solution: Given 𝑓(𝑥, 𝑦) =
2𝑥𝑦2

𝑥2 + 𝑦4 

If  𝑦 → 0 first and then 𝑥 → 0 

lim
𝑥→0

lim
𝑦→0

𝑓(𝑥, 𝑦) = lim
𝑥→0

lim
𝑦→0

2𝑥𝑦2

𝑥2  +  𝑦4
= lim

𝑥→0

2𝑥(0)

𝑥2
= 0 

If  𝑥 → 0 first and then 𝑦 → 0 

lim
𝑦→0

lim
𝑥→0

 𝑓(𝑥, 𝑦) = lim
𝑦→0

lim
𝑥→0

2𝑥𝑦2

𝑥2  +  𝑦4
= lim

𝑦→0

2𝑦2(0)

𝑦4
= 0 

Let 𝑥 and 𝑦 both tend to zero simultaneously along the path 𝑦2 = 𝑥. 

Then, lim
𝑥=𝑦2

𝑦→0

 𝑓(𝑥, 𝑦) = lim
𝑥=𝑦2

𝑦→0

2𝑥𝑦2

𝑥2  +  𝑦4
= lim

𝑦→0

2 𝑦4

2 𝑦4
= 1 ≠ 0 

Hence, the function is discontinuous at the origin. 

 

1.6.  Derivative of a Function of a Complex Variable: For a real function of a single real 

variable say, 𝑦 = 𝑓(𝑥), the derivative of 𝑦 with Respect to 𝑥 is defined as 

𝑑𝑦

𝑑𝑥
= lim

∆𝑥→0

𝑓(𝑥 + ∆𝑥) − 𝑓(𝑥)

∆𝑥
 

Hence ∆𝑥 can approach zero in only one way. 

Let 𝑤 = 𝑓(𝑧) be a single-valued function of 𝑧. Then, the derivative of 𝑤 is defined to 

be 

𝑑𝑤

𝑑𝑧
= 𝑓 ′(𝑧) = lim

∆𝑧→0

𝑓(𝑧 + ∆𝑧) − 𝑓(𝑧)

∆𝑧
 

provided the above limit exists and is the same, in whatever manner ∆𝑧 approaches zero. 

 

We can show by a figure that ∆𝑧 can approach zero in several ways. 𝑃 is the point in 

the 𝑧-plane corresponding to 𝑧 = 𝑥 + 𝑖 𝑦. 𝑄 is the point 𝑧 + ∆𝑧. ∆𝑧 = ∆𝑥 + 𝑖 ∆𝑦, where 

𝑄  𝑧 + ∆𝑧 

∆𝑦 
∆𝑦 

∆𝑥 

∆𝑥 
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∆𝑥, ∆𝑦 are small increments in 𝑥 𝑎𝑛𝑑 𝑦 respectively. As ∆𝑧 → 0, 𝑖. 𝑒. , ∆𝑥, ∆𝑦𝑎𝑙𝑠𝑜 → 0 and 

the point 𝑄 approaches to 𝑃. Now 𝑄 can approach 𝑃 along the rectilinear path 𝑄𝐴𝑃 on which 

first ∆𝑥 and then ∆𝑦 approach zero or 𝑄 may approach 𝑃 along the rectilinear path 𝑄𝐵𝑃 on 

which first ∆𝑦 and then ∆𝑥 approach zero. More generally, 𝑄 can approach 𝑃 along infinitely 

many paths, 𝑖. 𝑒., ∆𝑧 approaches zero in several ways. 

Hence, in the definition of 𝑓 ′(𝑧), the derivative of 𝑓(𝑧), it is necessary that the limit 

of the difference quotient 

𝑖. 𝑒. , lim
∆𝑧→0

𝑓(𝑧 + ∆𝑧) − 𝑓(𝑧)

∆𝑧
 

should be the same, no matter how ∆𝑧 approaches zero. When this limit is unique, the 

function is said to be differentiable. This severe restriction narrows down greatly the class of 

functions of a complex variable that possess derivatives. 

Thus we find that 
𝑑𝑤

𝑑𝑧
 depends not only upon 𝑧 but also upon the manner in which ∆𝑧 

approaches zero. To illustrate this, consider the simple case,  

𝑤 = 𝑓(𝑧) = 𝑥 − 𝑖 𝑦 

Then 

𝑓(𝑧 + ∆𝑧) − 𝑓(𝑧)

∆𝑧
=

[(𝑥 + ∆𝑥) − 𝑖 (𝑦 + ∆𝑦)] − (𝑥 − 𝑖 𝑦)

∆𝑥 + 𝑖 ∆𝑦
 

=
∆𝑥 − 𝑖 ∆𝑦

∆𝑥 + 𝑖 ∆𝑦
 

 

 

Now, let ∆𝑧 → 0 is such a way that first ∆𝑦 and then ∆𝑥 approach zero, i.e., 𝑄  

approaches 𝑃 along the horizontal line. Then 

lim 
∆𝑧→0

∆𝑥 − 𝑖 ∆𝑦

∆𝑥 + 𝑖 ∆𝑦
= lim

∆𝑥→0

∆𝑥

∆𝑥
= 1 

But, suppose 𝑄  approaches 𝑃 along the vertical line so that first ∆𝑥 and then ∆𝑦 

approach zero. Then 
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lim 
∆𝑧→0

∆𝑥 − 𝑖 ∆𝑦

∆𝑥 + 𝑖 ∆𝑦
= lim 

∆𝑦→0

−𝑖 ∆𝑦

𝑖 ∆𝑦
= −1 

For other paths of approach of 𝑄 towards 𝑃, we can get as many distinct values of the 

above limit as we please. We therefore say that  𝑓(𝑧) = 𝑥 − 𝑖 𝑦 possesses no derivative. 

 

Definition: If a single-valued function 𝑤 = 𝑓(𝑧) possesses a derivative at 𝑧 = 𝑧0 and at 

every point in some neighbourhood of 𝑧0, then 𝑓(𝑧) is said to be analytic at 𝑧0 and 𝑧0 is 

called a regular point of the function. If 𝑓(𝑧) is analytic at every point of a region 𝑅, then we 

say that 𝑓(𝑧)is analytic in 𝑅. A point at which an analytic function ceases to have a derivative 

is called a singular point. An analytic function is also referred to as regular or holomorphic. 

 

1.7. Conditions under which 𝑤 = 𝑓(𝑧)is analytic: 

Let  𝑤 = 𝑓(𝑧) be an analytic function of a complex variable in a region 𝑅. Then 

𝑓′(𝑧)   𝑒xists at every point in 𝑅. Let us now find the conditions for the existence of the 

derivative of  𝑓(𝑧) at a point  𝑧.  

 Let  𝑧 = 𝑥 + 𝑖 𝑦 and 𝑤 = 𝑓(𝑧) = 𝑓(𝑥 + 𝑖 𝑦) = 𝑢(𝑥, 𝑦) + 𝑖 𝑣(𝑥, 𝑦) 

where  𝑢 and 𝑣 are functions of 𝑥 and 𝑦. Let ∆𝑥 and ∆𝑦 be the increments in 𝑥 and 𝑦 

respectively and let ∆𝑧 be the corresponding increment in 𝑧 

Then 𝑧 + ∆𝑧 = (𝑥 + ∆𝑥) + 𝑖(𝑦 + ∆𝑦) 

Hence ∆𝑧 = ∆𝑥 + 𝑖 ∆𝑦 

                Also 𝑓(𝑧 + ∆𝑧) = 𝑢(𝑥 + ∆𝑥, 𝑦 + ∆𝑦) + 𝑖 𝑣(𝑥 + ∆𝑥, 𝑦 + ∆𝑦) 

Hence 
𝑓(𝑧+∆𝑧)−𝑓(𝑧)

∆𝑧
=

[𝑢(𝑥+∆𝑥,𝑦+∆𝑦)+𝑖 𝑣(𝑥+∆𝑥,𝑦+∆𝑦)]−[𝑢(𝑥,𝑦)+𝑖 𝑣(𝑥,𝑦)]

∆𝑥+𝑖 ∆𝑦
 

As ∆𝑧 → 0, we have ∆𝑥 → 0 and ∆𝑦 → 0. 

Hence by definition, 

𝑓′(𝑧) = lim
∆𝑧→0

𝑓(𝑧 + ∆𝑧) − 𝑓(𝑧)

∆𝑧
 

𝑓′(𝑧) = lim
∆𝑥→0
∆𝑦→0

[𝑢(𝑥 + ∆𝑥, 𝑦 + ∆𝑦) + 𝑖 𝑣(𝑥 + ∆𝑥, 𝑦 + ∆𝑦)] − [𝑢(𝑥, 𝑦) + 𝑖 𝑣(𝑥, 𝑦)]

∆𝑥 + 𝑖 ∆𝑦
        (1) 

If 𝑓(𝑧) is analytic, 𝑓′(𝑧) must have a unique value, in whatever manner ∆𝑧 → 0. Now 

let ∆𝑧 → 0 in such a way that first ∆𝑦 and then ∆𝑥 → 0. Then from (1),  

𝑓′(𝑧) = lim
∆𝑥→0

[𝑢(𝑥 + ∆𝑥, 𝑦) + 𝑖 𝑣(𝑥 + ∆𝑥, 𝑦)] − [𝑢(𝑥, 𝑦) + 𝑖 𝑣(𝑥, 𝑦)]

∆𝑥
 

𝑖. 𝑒. , 𝑓′(𝑧) = lim
∆𝑥→0

[𝑢(𝑥 + ∆𝑥, 𝑦) − 𝑢(𝑥, 𝑦)] + 𝑖 [𝑣(𝑥 + ∆𝑥, 𝑦) − 𝑣(𝑥, 𝑦)]

∆𝑥
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                          = lim
∆𝑥→0

𝑢(𝑥 + ∆𝑥, 𝑦) − 𝑢(𝑥, 𝑦)

∆𝑥
+ 𝑖 lim

∆𝑥→0

 𝑣(𝑥 + ∆𝑥, 𝑦) − 𝑣(𝑥, 𝑦)

∆𝑥
 

    =
𝜕𝑢

𝜕𝑥
+ 𝑖

𝜕𝑣

𝜕𝑥
                                                                  (2) 

  (by definition of partial derivatives) 

Since 𝑓′(𝑧) is to be unique, it is necessary that the partial derivatives 
𝜕𝑢

𝜕𝑥
 and 

𝜕𝑣

𝜕𝑥
 must 

exists at the point (𝑥, 𝑦). 

Secondly, let ∆𝑧 → 0 such that ∆𝑥 → 0 first and then ∆𝑦 → 0. Then from (1) 

𝑓′(𝑧) = lim
∆𝑦→0

[𝑢(𝑥, 𝑦 + ∆𝑦) + 𝑖 𝑣(𝑥, 𝑦 + ∆𝑦)] − [𝑢(𝑥, 𝑦) + 𝑖 𝑣(𝑥, 𝑦)]

𝑖 ∆𝑦
 

𝑖. 𝑒. , 𝑓′(𝑧) = lim
∆𝑦→0

[𝑢(𝑥, 𝑦 + ∆𝑦) − 𝑢(𝑥, 𝑦)] + 𝑖 [𝑣(𝑥, 𝑦 + ∆𝑦) − 𝑣(𝑥, 𝑦)]

𝑖 ∆𝑦
 

                              = lim
∆𝑦→0

𝑢(𝑥, 𝑦 + ∆𝑦) − 𝑢(𝑥, 𝑦)

𝑖 ∆𝑦
+ lim

∆𝑦→0

 𝑣(𝑥, 𝑦 + ∆𝑦) − 𝑣(𝑥, 𝑦)

 ∆𝑦
 

=
1

𝑖

𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑦
=

𝜕𝑣

𝜕𝑦
− 𝑖 

𝜕𝑢

𝜕𝑦
                            (3) 

Hence 
𝜕𝑢

𝜕𝑦
 and 

𝜕𝑣

𝜕𝑦
 must exist at (𝑥, 𝑦). 

Now, if the derivative 𝑓′(𝑧) exists, it is necessary that the two expressions (2) and (3) 

which we have derived for it must be the same. Hence equating these expressions, we have 

𝜕𝑢

𝜕𝑥
+ 𝑖

𝜕𝑣

𝜕𝑥
=

𝜕𝑣

𝜕𝑦
− 𝑖 

𝜕𝑢

𝜕𝑦
 

Equating real and imaginary parts, we get 

𝜕𝑢

𝜕𝑥
=

𝜕𝑣

𝜕𝑦
           (4) 

and 
𝜕𝑣

𝜕𝑥
= −

𝜕𝑢

𝜕𝑦
      (5) 

𝑖. 𝑒. , 𝑢𝑥 = 𝑣𝑦  𝑎𝑛𝑑 𝑣𝑥 = −𝑢𝑦 

The equations (4) and (5) are called Cauchy-Riemann differential equations. 

  

Note: The Cauchy-Riemann equations are only the necessary conditions for the function 

𝑓(𝑧) = 𝑢 + 𝑖 𝑣 to be differentiable i.e., if the function is differentiable, then it must satisfy 

these equations.  But the converse is not necessarily true. A function may satisfy these 

equations at a point and yet it may not be differentiable at that point. 

Hence the conditions expressed by Cauchy-Riemann equations (C-R equations) are 

only necessary but not sufficient for a function to be analytic. 
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1.8. Sufficient Conditions for 𝑓(𝑧) to be Analytic: We shall now prove the following 

theorem 

The single valued continuous function 𝑤 = 𝑓(𝑧) = 𝑢 + 𝑖 𝑣 analytic in a region 𝑅, if 

the four partial derivatives 
𝜕𝑢

𝜕𝑥
,  

𝜕𝑢

𝜕𝑦
,  

𝜕𝑣

𝜕𝑥
 𝑎𝑛𝑑  

𝜕𝑣

𝜕𝑦
 exist, are continuous and satisfy the Cauchy-

Riemann equations at each point in𝑅. 

Proof: Let 𝑤 = 𝑓(𝑧) = 𝑢(𝑥, 𝑦) + 𝑖 𝑣(𝑥, 𝑦) 

It is now given that  

𝜕𝑢

𝜕𝑥
=

𝜕𝑣

𝜕𝑦
 𝑎𝑛𝑑 

𝜕𝑣

𝜕𝑥
= −

𝜕𝑢

𝜕𝑦
                             (1)  

Also these partial derivatives are continuous. 

Then ∆𝑢 = 𝑢(𝑥 + ∆𝑥, 𝑦 + ∆𝑦) − 𝑢(𝑥, 𝑦) 

   = [𝑢(𝑥 + ∆𝑥, 𝑦 + ∆𝑦) − 𝑢(𝑥 + ∆𝑥, 𝑦)] + [𝑢(𝑥 + ∆𝑥, 𝑦) − 𝑢(𝑥, 𝑦)] 

   = ∆𝑦.
𝜕

𝜕𝑦
𝑢(𝑥 + ∆𝑥, 𝑦 + 𝜃1. ∆𝑦) + ∆𝑥.

𝜕

𝜕𝑥
𝑢(𝑥 + 𝜃2. ∆𝑥, 𝑦) 

Using  the first Mean Value Theorem,  𝜃1 and 𝜃2 being both positive and less than 1. 

Now, at the point (𝑥, 𝑦) the derivatives  
𝜕𝑢

𝜕𝑥
 and 

𝜕𝑢

𝜕𝑦
 are continuous. 

Hence the above expression ∆𝑢 may be written as 

∆𝑢 = ∆𝑥. [
𝜕𝑢

𝜕𝑥
+ 𝜆1] + ∆𝑦. [

𝜕𝑢

𝜕𝑦
+ 𝜆2]              (2) 

 

where 𝜆1 and 𝜆2 both tend to zero as |∆𝑧| → 0 

Similarly, using the result that the derivatives 
𝜕𝑣

𝜕𝑥
 and  

𝜕𝑣

𝜕𝑦
 are continuous, we get 

∆𝑣 = ∆𝑥. [
𝜕𝑣

𝜕𝑥
+ 𝜇1] + ∆𝑦. [

𝜕𝑣

𝜕𝑦
+ 𝜇2]              (3) 

where 𝜇1 and 𝜇2 both tend to zero as |∆𝑧| → 0 

Now ∆𝑤 = ∆𝑢 + 𝑖 ∆𝑣 

   = {∆𝑥. [
𝜕𝑢

𝜕𝑥
+ 𝜆1] + ∆𝑦. [

𝜕𝑢

𝜕𝑦
+ 𝜆2]} + 𝑖 {∆𝑥. [

𝜕𝑣

𝜕𝑥
+ 𝜇1] + ∆𝑦. [

𝜕𝑣

𝜕𝑦
+ 𝜇2]} 

    = ∆𝑥 (
𝜕𝑢

𝜕𝑥
+ 𝑖 

𝜕𝑣

𝜕𝑥
) + ∆𝑦 (

𝜕𝑢

𝜕𝑦
+ 𝑖 

𝜕𝑣

𝜕𝑦
) + 𝜀1 ∆𝑥 + 𝜀2 ∆𝑦                 (4) 

where  𝜀1 = 𝜆1 + 𝑖 𝜇1 and 𝜀2 = 𝜆2 + 𝑖 𝜇2 and 𝜀1,𝜀2 → 0 as |∆𝑧| → 0. 

In (4), apply the conditions (1) i.e., put  
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𝜕𝑢

𝜕𝑥
=

𝜕𝑣

𝜕𝑦
 and 

𝜕𝑣

𝜕𝑥
= −

𝜕𝑢

𝜕𝑦
 

Then  ∆𝑤 = ∆𝑥 (
𝜕𝑢

𝜕𝑥
+ 𝑖 

𝜕𝑣

𝜕𝑥
) + ∆𝑦 (−

𝜕𝑣

𝜕𝑥
+ 𝑖 

𝜕𝑢

𝜕𝑥
) + 𝜀1 ∆𝑥 + 𝜀2 ∆𝑦 

= (∆𝑥 + 𝑖 ∆𝑦)
𝜕𝑢

𝜕𝑥
+ 𝑖 (∆𝑥 + 𝑖 ∆𝑦)

𝜕𝑣

𝜕𝑥
+ 𝜀1 ∆𝑥 + 𝜀2 ∆𝑦 

= (∆𝑥 + 𝑖 ∆𝑦) [
𝜕𝑢

𝜕𝑥
+ 𝑖 

𝜕𝑣

𝜕𝑥
] + 𝜀1 ∆𝑥 + 𝜀2 ∆𝑦 

Hence      
∆𝑤

∆𝑧
=

𝜕𝑢

𝜕𝑥
+ 𝑖 

𝜕𝑣

𝜕𝑥
+ 𝜀1

∆𝑥

∆𝑧
+ 𝜀2

∆𝑦

∆𝑧
                             (5) 

Now |∆𝑥| ≤ |∆𝑧| and |∆𝑦| ≤ |∆𝑧| 

               and so |
∆𝑥

∆𝑧
| ≤ 1 and |

∆𝑦

∆𝑧
| ≤ 1.  

Also 𝜀1,𝜀2 → 0 as |∆𝑧| → 0 

So proceeding to the limit as ∆𝑧 → 0, (5) gives 

𝑑𝑤

𝑑𝑧
=

𝜕𝑢

𝜕𝑥
+ 𝑖 

𝜕𝑣

𝜕𝑥
 

  𝑖. 𝑒. , 𝑓′(𝑧) exists and is equal to 
𝜕𝑢

𝜕𝑥
+ 𝑖 

𝜕𝑣

𝜕𝑥
 

We shall put the above discussion in 4.7 and 4.8 relating to differentiability in the 

form of a theorem as follows. 

If 𝑢 and 𝑣 are real single-valued functions of 𝑥  and 𝑦 which, with their four first 

order partial derivatives(
𝜕𝑢

𝜕𝑥
,

𝜕𝑢

𝜕𝑦
,

𝜕𝑣

𝜕𝑥
  and  

𝜕𝑣

𝜕𝑦
), are continuous throughout a region 𝑅, then the 

Cauchy-Riemann equations 

𝑢𝑥 = 𝑣𝑦 𝑎𝑛𝑑 𝑣𝑥 = −𝑢𝑦 

are both necessary and sufficient condition, so that 𝑓(𝑧) = 𝑢 + 𝑖 𝑣 may be analytic. The 

derivative of 𝑓(𝑧) is then given by either of the expressions 

𝑓′(𝑧) =
𝜕𝑢

𝜕𝑥
+ 𝑖 

𝜕𝑣

𝜕𝑥
 or 𝑓′(𝑧) =

𝜕𝑣

𝜕𝑦
− 𝑖 

𝜕𝑢

𝜕𝑦
  

  

1.9. Derive the Cauchy-Riemann equations  if 𝑓(𝑧) is expressed in polar coordinates. 

Solution: Let 𝑓(𝑧) = 𝑢(𝑟, 𝜃) + 𝑖 𝑣(𝑟, 𝜃) in polar coordinates. 

𝑧 = 𝑥 + 𝑖 𝑦 = 𝑟(𝑐𝑜𝑠𝜃 + 𝑖 𝑠𝑖𝑛𝜃) = 𝑟 𝑒𝑖𝜃 . 

Let ∆𝑟 𝑎𝑛𝑑 ∆𝜃 be the increments in 𝑟 𝑎𝑛𝑑 𝜃 respectively and let ∆𝑧 be the 

corresponding increment in 𝑧. 

∆𝑧 = ∆(𝑟 𝑒𝑖𝜃) 
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𝑓(𝑧 + ∆𝑧) = 𝑢(𝑟 + ∆𝑟, 𝜃 + ∆𝜃) + 𝑖 𝑣(𝑟 + ∆𝑟, 𝜃 + ∆𝜃) 

𝑓(𝑧 + ∆𝑧) − 𝑓(𝑧) = [𝑢(𝑟 + ∆𝑟, 𝜃 + ∆𝜃) + 𝑖 𝑣(𝑟 + ∆𝑟, 𝜃 + ∆𝜃)] − [𝑢(𝑟, 𝜃) + 𝑖 𝑣(𝑟, 𝜃)] 

      Hence        
𝑓(𝑧 + ∆𝑧) − 𝑓(𝑧)

∆𝑧

=
[𝑢(𝑟 + ∆𝑟, 𝜃 + ∆𝜃) + 𝑖 𝑣(𝑟 + ∆𝑟, 𝜃 + ∆𝜃)] − [𝑢(𝑟, 𝜃) + 𝑖 𝑣(𝑟, 𝜃)]

∆𝑧
 

=
[𝑢(𝑟 + ∆𝑟, 𝜃 + ∆𝜃) + 𝑖 𝑣(𝑟 + ∆𝑟, 𝜃 + ∆𝜃)] − [𝑢(𝑟, 𝜃) + 𝑖 𝑣(𝑟, 𝜃)]

∆(𝑟 𝑒𝑖𝜃)
 

By definition, 𝑓′(𝑧) = lim
∆𝑧→0

𝑓(𝑧 + ∆𝑧) − 𝑓(𝑧)

∆𝑧
 

= lim
∆𝑧→0

[𝑢(𝑟 + ∆𝑟, 𝜃 + ∆𝜃) + 𝑖 𝑣(𝑟 + ∆𝑟, 𝜃 + ∆𝜃)] − [𝑢(𝑟, 𝜃) + 𝑖 𝑣(𝑟, 𝜃)]

∆(𝑟 𝑒𝑖𝜃)
       (1)  

If 𝑓(𝑧) is analytic, 𝑓′(𝑧) must have a unique value in whatever manner ∆𝑧 → 0. 

First let ∆𝑧 → 0 along a radius vector through the origin. 

i.e., keep 𝜃 constant. 

Then ∆𝑧 = ∆(𝑟 𝑒𝑖𝜃) = 𝑒𝑖𝜃∆𝑟. 

As ∆𝑧 → 0, ∆𝑟 → 0. So (1) gives 

𝑓′(𝑧) = lim
∆𝑟→0

[𝑢(𝑟 + ∆𝑟, 𝜃) + 𝑖 𝑣(𝑟 + ∆𝑟, 𝜃)] − [𝑢(𝑟, 𝜃) + 𝑖 𝑣(𝑟, 𝜃)]

𝑒𝑖𝜃∆𝑟
 

= 𝑒−𝑖𝜃 lim
∆𝑟→0

[
𝑢(𝑟 + ∆𝑟, 𝜃) − 𝑢(𝑟, 𝜃)

∆𝑟
+ 𝑖 

𝑣(𝑟 + ∆𝑟, 𝜃) − 𝑣(𝑟, 𝜃)

∆𝑟
] 

= 𝑒−𝑖𝜃 [ lim
∆𝑟→0

𝑢(𝑟 + ∆𝑟, 𝜃) − 𝑢(𝑟, 𝜃)

∆𝑟
+ 𝑖 lim

∆𝑟→0

𝑣(𝑟 + ∆𝑟, 𝜃) − 𝑣(𝑟, 𝜃)

∆𝑟
] 

                         = 𝑒−𝑖𝜃 (
𝜕𝑢

𝜕𝑟
+ 𝑖 

𝜕𝑣

𝜕𝑟
)                                (2) 

Secondly, keep 𝑟 constant. 

Then ∆𝑧 = ∆(𝑟 𝑒𝑖𝜃) = 𝑖𝑟𝑒𝑖𝜃∆𝜃 

As ∆𝑧 → 0, ∆𝜃 → 0. So (1) gives 

               𝑓′(𝑧) = lim
∆𝜃→0

[𝑢(𝑟, 𝜃 + ∆𝜃) + 𝑖 𝑣(𝑟, 𝜃 + ∆𝜃)] − [𝑢(𝑟, 𝜃) + 𝑖 𝑣(𝑟, 𝜃)]

𝑖𝑟𝑒𝑖𝜃∆𝜃
 

 

=
1

𝑟𝑒𝑖𝜃
lim

∆𝜃→0

[𝑢(𝑟, 𝜃 + ∆𝜃) + 𝑖 𝑣(𝑟, 𝜃 + ∆𝜃)] − [𝑢(𝑟, 𝜃) + 𝑖 𝑣(𝑟, 𝜃)]

𝑖∆𝜃
 

 

=
1

𝑟𝑒𝑖𝜃
lim

∆𝜃→0

[𝑢(𝑟, 𝜃 + ∆𝜃) − 𝑢(𝑟, 𝜃)] + 𝑖[ 𝑣(𝑟, 𝜃 + ∆𝜃) −  𝑣(𝑟, 𝜃)]

𝑖∆𝜃
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       =
1

𝑟𝑒𝑖𝜃
[−𝑖 lim

∆𝜃→0

𝑢(𝑟, 𝜃 + ∆𝜃) − 𝑢(𝑟, 𝜃)

∆𝜃
+ lim

∆𝜃→0

𝑣(𝑟, 𝜃 + ∆𝜃) − 𝑣(𝑟, 𝜃)

∆𝜃
] 

 

                           =
1

𝑟
𝑒−𝑖𝜃 (−𝑖 

𝜕𝑢

𝜕𝜃
+

𝜕𝑣

𝜕𝜃
)                        (3) 

 

Since 𝑓(𝑧) is analytic, 𝑓′(𝑧) must have a unique value in whatever manner ∆𝑧 → 0. 

Then From (2) and (3), we get 

𝜕𝑢

𝜕𝑟
+ 𝑖 

𝜕𝑣

𝜕𝑟
=

1

𝑟
(−𝑖 

𝜕𝑢

𝜕𝜃
+

𝜕𝑣

𝜕𝜃
) 

Equating on both sides real and imaginary parts, we get 

𝜕𝑢

𝜕𝑟
=

1

𝑟

𝜕𝑣

𝜕𝜃
              (4) 

and 
𝜕𝑣

𝜕𝑟
= −

1

𝑟

𝜕𝑢

𝜕𝜃
              (5) 

These equations are the Cauchy-Riemann equations if 𝑓(𝑧) is expressed in polar 

coordinates. 

Note: Differentiating (4) partially with respect to 𝑟, we get 

𝜕2𝑢

𝜕𝑟2
= −

1

𝑟2

𝜕𝑣

𝜕𝜃
+

1

𝑟

𝜕2𝑣

𝜕𝑟 𝜕𝜃
               (6) 

Differentiating (5) partially with respect to 𝜃, we get 

𝜕2𝑢

𝜕𝜃2
= −𝑟 

𝜕2𝑣

 𝜕𝜃 𝜕𝑟
               (7) 

Thus using (4), (6) and (7), we get 

𝜕2𝑢

𝜕𝑟2
+

1

𝑟

𝜕𝑢

𝜕𝑟
+

1

𝑟2

𝜕2𝑢

𝜕𝜃2
= 0  (since

𝜕2𝑣

𝜕𝑟 𝜕𝜃
=

𝜕2𝑣

 𝜕𝜃 𝜕𝑟
) 

 

EX. 3. Show that  𝑤 = 𝑓(𝑧) = 𝑧̅ = 𝑥 − 𝑖 𝑦 is  not analytic anywhere in the complex plane. 

Solution:  Let  𝑤 = 𝑢 + 𝑖 𝑣 = 𝑥 − 𝑖 𝑦. 

Here 𝑢 = 𝑥 and 𝑣 = −𝑦 

Then 
𝜕𝑢

𝜕𝑥
= 1,

𝜕𝑢

𝜕𝑦
= 0,

𝜕𝑣

𝜕𝑥
= 0 𝑎𝑛𝑑 

𝜕𝑣

𝜕𝑦
= −1 

Hence 
𝜕𝑢

𝜕𝑦
= −

𝜕𝑣

𝜕𝑥
 but 

𝜕𝑢

𝜕𝑥
≠

𝜕𝑣

𝜕𝑦
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The second of the Cauchy-Riemann equations is satisfied everywhere, but not so the 

first. So 𝑤 = 𝑧̅ is not analytic anywhere in the complex plane. 

 

EX. 4. Show that  𝑤 = 𝑓(𝑧) = 𝑧 = 𝑥 + 𝑖 𝑦  is analytic anywhere in the complex plane. 

Solution: Let 𝑤 = 𝑢 + 𝑖 𝑣 = 𝑥 + 𝑖 𝑦. 

Here 𝑢 = 𝑥 and 𝑣 = 𝑦 

Then 
𝜕𝑢

𝜕𝑥
= 1,

𝜕𝑢

𝜕𝑦
= 0,

𝜕𝑣

𝜕𝑥
= 0 𝑎𝑛𝑑 

𝜕𝑣

𝜕𝑦
= 1 

Hence 
𝜕𝑢

𝜕𝑦
= −

𝜕𝑣

𝜕𝑥
 and 

𝜕𝑢

𝜕𝑥
=

𝜕𝑣

𝜕𝑦
 at all points in the complex plane. The C-R equations 

are identically satisfied. Further these four partial derivatives are continuous. 

Hence 𝑤 = 𝑓(𝑧) = 𝑧is analytic anywhere in the complex plane. 

 

EX. 5. Show that 𝑤 = 𝑓(𝑧) = 𝑒𝑧 is analytic everywhere in the complex plane and find 𝑓′(𝑧). 

Solution: Let 𝑤 = 𝑓(𝑧) = 𝑒𝑧 = 𝑒𝑥+𝑖 𝑦 = 𝑒𝑥(𝑐𝑜𝑠𝑦 + 𝑖 𝑠𝑖𝑛𝑦) = 𝑢 + 𝑖𝑣 

Here 𝑢 = 𝑒𝑥  𝑐𝑜𝑠𝑦 and 𝑣 = 𝑒𝑥  𝑠𝑖𝑛𝑦. 

Then 
𝜕𝑢

𝜕𝑥
= 𝑒𝑥  𝑐𝑜𝑠𝑦,

𝜕𝑢

𝜕𝑦
= −𝑒𝑥  𝑠𝑖𝑛𝑦,

𝜕𝑣

𝜕𝑥
= 𝑒𝑥  𝑠𝑖𝑛𝑦 𝑎𝑛𝑑 

𝜕𝑣

𝜕𝑦
= 𝑒𝑥  𝑐𝑜𝑠𝑦 

Clearly  
𝜕𝑢

𝜕𝑦
= −

𝜕𝑣

𝜕𝑥
 but 

𝜕𝑢

𝜕𝑥
=

𝜕𝑣

𝜕𝑦
 

The C-R equations are identically satisfied. Also the partial derivatives are 

continuous. 

Hence 𝑓′(𝑧) exists at all points of the 𝑧 plane i.e., 𝑓(𝑧) is analytic everywhere. 

𝑓′(𝑧) =
𝜕𝑢

𝜕𝑥
+ 𝑖

𝜕𝑣

𝜕𝑥
 

                = 𝑒𝑥  𝑐𝑜𝑠𝑦 + 𝑖 𝑒𝑥  𝑠𝑖𝑛𝑦 

              = 𝑒𝑥(𝑐𝑜𝑠𝑦 + 𝑖 𝑠𝑖𝑛𝑦) 

                = 𝑒𝑥𝑒𝑖𝑦 = 𝑒𝑥+𝑖𝑦 = 𝑒𝑧 

 

EX. 6.  Show that 𝑤 = 𝑓(𝑧) = 𝑧𝑧̅ is differentiable but not analytic at the point 𝑧 = 0. 

Solution: Let 𝑤 = 𝑓(𝑧) = 𝑧𝑧̅ = (𝑥 + 𝑖 𝑦)(𝑥 − 𝑖 𝑦) = 𝑥2 + 𝑦2 = 𝑢 + 𝑖 𝑣 

Here 𝑢 = 𝑥2 + 𝑦2 and 𝑣 = 0 

Then 
𝜕𝑢

𝜕𝑥
= 2𝑥,

𝜕𝑢

𝜕𝑦
= 2𝑦,

𝜕𝑣

𝜕𝑥
= 0 𝑎𝑛𝑑 

𝜕𝑣

𝜕𝑦
= 0 

Now 
𝜕𝑢

𝜕𝑥
=

𝜕𝑣

𝜕𝑦
 only when 𝑥 = 0 and 

𝜕𝑢

𝜕𝑦
= −

𝜕𝑣

𝜕𝑥
 only when 𝑦 = 0. 
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Hence the C-R equations are satisfied only when both 𝑥 and 𝑦 are zero. i.e., they are 

satisfied only at the origin. Hence 𝑓(𝑧) has a derivative at 𝑧 = 0. 

But the C-R equations are not satisfied for 𝑧 ≠ 0. Hence there is no neighbourhood 

about 𝑧 = 0 in which the function is differentiable. Hence it is not analytic at 𝑧 = 0. 

 

EX. 7. Test whether 𝑤 = 𝑓(𝑧) = 𝑧3 is analytic or not. 

Solution: Given 𝑤 = 𝑓(𝑧) = 𝑧3 = (𝑥 + 𝑖𝑦)3 = 𝑥3 + 3𝑖𝑥2𝑦 + 3𝑖2𝑥𝑦2 + 𝑖3𝑦3 

= (𝑥3 − 3𝑥𝑦2) + 𝑖(3𝑥2𝑦 − 𝑦3) = 𝑢 + 𝑖𝑣 

Here 𝑢 = 𝑥3 − 3𝑥𝑦2 and 𝑣 = 3𝑥2𝑦 − 𝑦3 

Then 
𝜕𝑢

𝜕𝑥
= 3𝑥2 − 3𝑦2,

𝜕𝑢

𝜕𝑦
= −6𝑥𝑦,

𝜕𝑣

𝜕𝑥
= 6𝑥𝑦 𝑎𝑛𝑑 

𝜕𝑣

𝜕𝑦
= 3𝑥2 − 3𝑦2 

Clearly, 
𝜕𝑢

𝜕𝑥
=

𝜕𝑣

𝜕𝑦
 and 

𝜕𝑢

𝜕𝑦
= −

𝜕𝑣

𝜕𝑥
 for all values of 𝑥 and 𝑦. 

The C-R equations are identically satisfied. Further these four partial derivatives are 

continuous. 

Hence 𝑤 = 𝑓(𝑧) = 𝑧3is analytic. 

 

EX. 8. Verify whether 𝑤 = 𝑠𝑖𝑛𝑥 𝑐𝑜𝑠 ℎ𝑦 + 𝑖 𝑐𝑜𝑠𝑥 𝑠𝑖𝑛 ℎ𝑦 is analytic or not. 

Solution: Given 𝑤 = 𝑠𝑖𝑛𝑥 𝑐𝑜𝑠 ℎ𝑦 + 𝑖 𝑐𝑜𝑠𝑥 𝑠𝑖𝑛 ℎ𝑦 = 𝑢 + 𝑖𝑣 

Here 𝑢 = 𝑠𝑖𝑛𝑥 𝑐𝑜𝑠 ℎ𝑦 and 𝑣 = 𝑐𝑜𝑠𝑥 𝑠𝑖𝑛 ℎ𝑦 

Then 
𝜕𝑢

𝜕𝑥
= 𝑐𝑜𝑠𝑥 𝑐𝑜𝑠ℎ𝑦,

𝜕𝑢

𝜕𝑦
= 𝑠𝑖𝑛𝑥 𝑠𝑖𝑛 ℎ𝑦,

𝜕𝑣

𝜕𝑥
= −𝑠𝑖𝑛𝑥 𝑠𝑖𝑛 ℎ𝑦 𝑎𝑛𝑑 

𝜕𝑣

𝜕𝑦
= 𝑐𝑜𝑠𝑥 𝑐𝑜𝑠ℎ𝑦 

Clearly, 
𝜕𝑢

𝜕𝑥
=

𝜕𝑣

𝜕𝑦
 and 

𝜕𝑢

𝜕𝑦
= −

𝜕𝑣

𝜕𝑥
 for all values of 𝑥 and 𝑦. 

The C-R equations are identically satisfied. Further these four partial derivatives are 

continuous. 

Hence 𝑤 = 𝑠𝑖𝑛𝑥 𝑐𝑜𝑠 ℎ𝑦 + 𝑖 𝑐𝑜𝑠𝑥 𝑠𝑖𝑛 ℎ𝑦 is analytic. 

 

EX. 9. State whether 𝑠𝑖𝑛( 𝑥 − 𝑖𝑦) is analytic or not. 

Solution: Given 𝑤 = 𝑠𝑖𝑛( 𝑥 − 𝑖𝑦) = 𝑠𝑖𝑛𝑥 cos  𝑖𝑦 − 𝑐𝑜𝑠𝑥 sin 𝑖𝑦 

= 𝑠𝑖𝑛𝑥 𝑐𝑜𝑠 ℎ𝑦 − 𝑖 𝑐𝑜𝑠𝑥 𝑠𝑖𝑛 ℎ𝑦 = 𝑢 + 𝑖𝑣 

Here 𝑢 = 𝑠𝑖𝑛𝑥 𝑐𝑜𝑠 ℎ𝑦 and 𝑣 = −𝑐𝑜𝑠𝑥 𝑠𝑖𝑛 ℎ𝑦 

Then 
𝜕𝑢

𝜕𝑥
= 𝑐𝑜𝑠𝑥 𝑐𝑜𝑠ℎ𝑦,

𝜕𝑢

𝜕𝑦
= 𝑠𝑖𝑛𝑥 𝑠𝑖𝑛 ℎ𝑦,

𝜕𝑣

𝜕𝑥
= 𝑠𝑖𝑛𝑥 𝑠𝑖𝑛 ℎ𝑦 𝑎𝑛𝑑 

𝜕𝑣

𝜕𝑦

= −𝑐𝑜𝑠𝑥 𝑐𝑜𝑠ℎ𝑦 

Clearly 
𝜕𝑢

𝜕𝑥
≠

𝜕𝑣

𝜕𝑦
 and 

𝜕𝑢

𝜕𝑦
≠ −

𝜕𝑣

𝜕𝑥
. 
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The C-R equations are not satisfied.  

Hence 𝑤 = 𝑠𝑖𝑛( 𝑥 − 𝑖𝑦) is not analytic. 

 

EX. 10. If 𝑓(𝑧) = 𝑢 + 𝑖𝑣 is analytic, then 𝑣 + 𝑖𝑢is analytic or not. 

Solution: Given 𝑓(𝑧) = 𝑢 + 𝑖𝑣 is analytic 

Then 𝑢 and 𝑣 are satisfy C-R equations 

𝑖. 𝑒. ,
𝜕𝑢

𝜕𝑥
=

𝜕𝑣

𝜕𝑦
                  (1) 

and 
𝜕𝑢

𝜕𝑦
= −

𝜕𝑣

𝜕𝑥
                    (2) 

If 𝑣 + 𝑖𝑢 is analytic, we must have  

𝜕𝑣

𝜕𝑥
=

𝜕𝑢

𝜕𝑦
 𝑎𝑛𝑑 

𝜕𝑣

𝜕𝑦
= −

𝜕𝑢

𝜕𝑥
 

i.e., we must have 
𝜕𝑢

𝜕𝑥
= −

𝜕𝑣

𝜕𝑦
 and

𝜕𝑢

𝜕𝑦
=

𝜕𝑣

𝜕𝑥
.  

But these are contrary to (1) and (2). So 𝑣 + 𝑖𝑢 is not analytic. 

 

EX. 11. If 𝑓(𝑧) = 𝑢 + 𝑖𝑣 is analytic function, find the condition under which 𝑣 + 𝑖𝑢 will be 

analytic. 

Solution: Given 𝑓(𝑧) = 𝑢 + 𝑖𝑣 is analytic 

Then 𝑢 and 𝑣 are satisfy C-R equations 

𝑖. 𝑒. ,
𝜕𝑢

𝜕𝑥
=

𝜕𝑣

𝜕𝑦
                  (1) 

and 
𝜕𝑢

𝜕𝑦
= −

𝜕𝑣

𝜕𝑥
(2) 

If 𝑣 + 𝑖𝑢 is analytic, we must have  

𝜕𝑣

𝜕𝑥
=

𝜕𝑢

𝜕𝑦
                        (3) 

𝑎𝑛𝑑 
𝜕𝑣

𝜕𝑦
= −

𝜕𝑢

𝜕𝑥
            (4) 

Combining (1) and (4), we have  

𝜕𝑢

𝜕𝑥
= −

𝜕𝑢

𝜕𝑥
  𝑖. 𝑒. ,

𝜕𝑢

𝜕𝑥
= 0         (5) 

Combining (2) and (3), we have 

𝜕𝑢

𝜕𝑦
= −

𝜕𝑢

𝜕𝑦
 𝑖. 𝑒. ,

𝜕𝑢

𝜕𝑦
= 0          (6) 

From (5) and (6) it is clear that 𝑢 is a constant, independent of 𝑥 and 𝑦. 
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Similarly, we can prove that  
𝜕𝑣

𝜕𝑥
= 0 𝑎𝑛𝑑 

𝜕𝑣

𝜕𝑦
= 0         

𝑖. 𝑒. , 𝑣 is a constant, independent of 𝑥 and 𝑦. 

So the required conditions are 𝑢 and 𝑣 must be both constants. 

 

EX. 12. (a) If 𝑢 + 𝑖𝑣 as well as 𝑢 − 𝑖𝑣 are analytic. What can you say about 𝑢 𝑎𝑛𝑑 𝑣. 

(b) If both 𝑓(𝑧)𝑎𝑛𝑑 𝑓(̅𝑧) are analytic functions, show that 𝑓(𝑧) is a constant. 

Solution: (a) since 𝑓(𝑧) = 𝑢 + 𝑖𝑣 is analytic 

Then 𝑢 and 𝑣 are satisfy C-R equations 

𝑖. 𝑒. ,
𝜕𝑢

𝜕𝑥
=

𝜕𝑣

𝜕𝑦
                  (1) 

and 
𝜕𝑢

𝜕𝑦
= −

𝜕𝑣

𝜕𝑥
(2) 

Since 𝑓(̅𝑧) = 𝑢 − 𝑖𝑣 is also analytic. 

Then 𝑢 and 𝑣 are satisfy C-R equations 

𝑖. 𝑒. ,
𝜕𝑢

𝜕𝑥
= −

𝜕𝑣

𝜕𝑦
                  (3) 

and 
𝜕𝑢

𝜕𝑦
=

𝜕𝑣

𝜕𝑥
                    (4) 

Combining (1) and (3), we have  

𝜕𝑢

𝜕𝑥
= −

𝜕𝑢

𝜕𝑥
  𝑖. 𝑒. ,

𝜕𝑢

𝜕𝑥
= 0         (5) 

Combining (2) and (4), we have 

𝜕𝑢

𝜕𝑦
= −

𝜕𝑢

𝜕𝑦
 𝑖. 𝑒. ,

𝜕𝑢

𝜕𝑦
= 0          (6) 

From (5) and (6) it is clear that 𝑢 is a constant, independent of 𝑥 and 𝑦. 

Similarly, we can prove that  
𝜕𝑣

𝜕𝑥
= 0 and 

𝜕𝑣

𝜕𝑦
= 0         

𝑖. 𝑒. , 𝑣 is a constant, independent of 𝑥 and 𝑦. 

So the required conditions are 𝑢 and 𝑣 must be both constants. 

(b) Let 𝑓(𝑧) = 𝑢 + 𝑖𝑣. Then 𝑓(̅𝑧) = 𝑢 − 𝑖𝑣 

It is given that 𝑓(𝑧)𝑎𝑛𝑑 𝑓(̅𝑧) are analytic functions, so 𝑢 and 𝑣 must be both 

constants (refer (a)). 

Therefore 𝑓(𝑧) is a constant. 
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EX. 13.  If 𝑢 + 𝑖𝑣 is analytic, show that 𝑣 − 𝑖𝑢 and – 𝑣 + 𝑖𝑢 are also analytic. 

Solution: We know that if 𝑢 + 𝑖𝑣 is analytic, 𝑘(𝑢 + 𝑖𝑣) is also analytic, where 𝑘 is a 

constant. 

Hence (i) taking 𝑘 = 𝑖 we have 𝑖(𝑢 + 𝑖𝑣) = −𝑣 + 𝑖𝑢 is also analytic 

(ii) taking 𝑘 = −𝑖 we have −𝑖(𝑢 + 𝑖𝑣) = 𝑣 − 𝑖𝑢 is also analytic  

 

EX. 14. Show that 𝑤 = 𝑓(𝑧) = 𝑧𝑛 is analytic for positive integral values of 𝑛 and find 𝑓′(𝑧). 

Solution: Using polar coordinates, let 𝑓(𝑧) = 𝑢(𝑟, 𝜃) + 𝑖 𝑣(𝑟, 𝜃) and let  𝑧 = 𝑟𝑒𝑖𝜃. 

Then   𝑓(𝑧) = 𝑢(𝑟, 𝜃) + 𝑖 𝑣(𝑟, 𝜃) 

                       = 𝑧𝑛 = (𝑟𝑒𝑖𝜃)
𝑛

 

                       = 𝑟𝑛(cos 𝑛𝜃 + 𝑖 sin 𝑛𝜃) 

Here 𝑢 = 𝑟𝑛𝑐𝑜𝑠 𝑛𝜃 and 𝑣 = 𝑟𝑛𝑠𝑖𝑛 𝑛𝜃 

Then 
𝜕𝑢

𝜕𝑟
= 𝑛𝑟𝑛−1 cos 𝑛𝜃 ,

𝜕𝑢

𝜕𝜃
= −𝑛𝑟𝑛 sin 𝑛𝜃 ,

𝜕𝑣

𝜕𝑟
= 𝑛𝑟𝑛−1𝑠𝑖𝑛 𝑛𝜃 and 

𝜕𝑣

𝜕𝜃

= 𝑛𝑟𝑛𝑐𝑜𝑠 𝑛𝜃 

Clearly  
𝜕𝑢

𝜕𝑟
=

1

𝑟

𝜕𝑣

𝜕𝜃
 and 

𝜕𝑣

𝜕𝑟
= −

1

𝑟

𝜕𝑢

𝜕𝜃
. 

Hence the C-R equations are satisfied. Further the partial derivatives are continuous. 

So 𝑓(𝑧) = 𝑧𝑛 is analytic. 

Now 𝑓′(𝑧) = 𝑒−𝑖𝜃 (
𝜕𝑢

𝜕𝑟
+ 𝑖

𝜕𝑣

𝜕𝑟
) = 𝑒−𝑖𝜃(𝑛𝑟𝑛−1 cos 𝑛𝜃 + 𝑖 𝑛𝑟𝑛−1𝑠𝑖𝑛 𝑛𝜃) 

= 𝑒−𝑖𝜃  𝑛𝑟𝑛−1(cos 𝑛𝜃 + 𝑖 𝑠𝑖𝑛 𝑛𝜃) 

= 𝑒−𝑖𝜃  𝑛𝑟𝑛−1𝑒𝑖𝑛𝜃  

     = 𝑛𝑟𝑛−1𝑒𝑖(𝑛−1)𝜃 = 𝑛(𝑟𝑒𝑖𝜃)
𝑛−1

 

= 𝑛𝑧𝑛−1 

 

EX. 15. Show that 𝑤 = 𝑓(𝑧) = 𝑙𝑜𝑔𝑧 is analytic everywhere in the complex plane except at 

the origin and that its derivative is 
1

𝑧
. 

Solution: Using polar coordinates, let 𝑓(𝑧) = 𝑢(𝑟, 𝜃) + 𝑖 𝑣(𝑟, 𝜃) and let  𝑧 = 𝑟𝑒𝑖𝜃. 

Then 𝑓(𝑧) = 𝑢(𝑟, 𝜃) + 𝑖 𝑣(𝑟, 𝜃) = 𝑙𝑜𝑔𝑧 

                     = 𝑙𝑜𝑔(𝑟𝑒𝑖𝜃) = 𝑙𝑜𝑔𝑟 + 𝑖𝜃 

Here 𝑢 = 𝑙𝑜𝑔𝑟 and 𝑣 = 𝜃 

Then 
𝜕𝑢

𝜕𝑟
=

1

𝑟
,
𝜕𝑢

𝜕𝜃
= 0,

𝜕𝑣

𝜕𝑟
= 0 and 

𝜕𝑣

𝜕𝜃
= 1 
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Clearly  
𝜕𝑢

𝜕𝑟
=

1

𝑟

𝜕𝑣

𝜕𝜃
 and 

𝜕𝑣

𝜕𝑟
= −

1

𝑟

𝜕𝑢

𝜕𝜃
. 

Hence the C-R equations are satisfied. Further the partial derivatives are continuous at 

all point except when 𝑟 = 0, i.e., except at the origin. 

So 𝑓(𝑧) = 𝑙𝑜𝑔𝑧  is analytic everywhere except at the origin. 

Now 𝑓′(𝑧) = 𝑒−𝑖𝜃 (
𝜕𝑢

𝜕𝑟
+ 𝑖

𝜕𝑣

𝜕𝑟
) = 𝑒−𝑖𝜃 (

1

𝑟
) =

1

𝑟𝑒𝑖𝜃
=

1

𝑧
 

 

EX. 16. Prove that the function 𝑓(𝑧) where 

𝑓(𝑧) =
𝑥3(1 + 𝑖) − 𝑦3(1 − 𝑖)

𝑥2 + 𝑦2
, 𝑤ℎ𝑒𝑛 𝑧 ≠ 0, 𝑓(0) = 0 

is continuous at 𝑧 = 0. Prove also that the C-R equations are satisfied by 𝑓(𝑧) at 𝑧 = 0 and 

yet 𝑓′(𝑧) does not exist at 𝑧 = 0. 

𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧: Given that  𝑓(𝑧) =
𝑥3(1 + 𝑖) − 𝑦3(1 − 𝑖)

𝑥2 + 𝑦2
, 𝑤ℎ𝑒𝑛 𝑧 ≠ 0 

lim
𝑧→0

𝑓(𝑧) = lim
𝑦→0
𝑥→0

𝑥3(1 + 𝑖) − 𝑦3(1 − 𝑖)

𝑥2 + 𝑦2
 

= lim
𝑥→0

𝑥3(1 + 𝑖)

𝑥2
= 0 

lim
𝑧→0

𝑓(𝑧) = lim
𝑥→0
𝑦→0

𝑥3(1 + 𝑖) − 𝑦3(1 − 𝑖)

𝑥2 + 𝑦2
 

= lim
𝑦→0

−𝑦3(1 − 𝑖)

𝑦2
= 0 

Also 𝑓(0) = 0 be given. 

Hence  

lim
𝑧→0

𝑓(𝑧) = 𝑓(0) 

When 𝑥 → 0 first and then 𝑦 → 0 and also When 𝑦 → 0 first and then x → 0 . 

Let 𝑥 𝑎𝑛𝑑 𝑦 both tend to zero simultaneously along the path 𝑦 = 𝑚𝑥𝑛. 

For 𝑛 = 1, this is a straight line and for 𝑛 = 2, 3, …, we will get different curves 

passing through the points (𝑥, 𝑦) and the origin. Then 

lim
𝑧→0

𝑓(𝑧) = lim
𝑦=𝑚𝑥𝑛

𝑥→0

𝑥3(1 + 𝑖) − 𝑦3(1 − 𝑖)

𝑥2 + 𝑦2
 

= lim
𝑥→0

𝑥3(1 + 𝑖) − (𝑚𝑥𝑛)3(1 − 𝑖)

𝑥2 + (𝑚𝑥𝑛)2
 



Complex Analysis 
 

20 
 

= lim
𝑥→0

𝑥3[1 + 𝑖 − 𝑚3𝑥3𝑛−3(1 − 𝑖)]

𝑥2[1 + 𝑚2𝑥2𝑛−2]
 

= lim
𝑥→0

𝑥[1 + 𝑖 − 𝑚3𝑥3𝑛−3(1 − 𝑖)]

1 + 𝑚2𝑥2𝑛−2
 

            = lim
𝑥→0

𝑥[1 + 𝑖 − 𝑚3(𝑥𝑛−1)3(1 − 𝑖)]

1 + 𝑚2(𝑥𝑛−1)2
= 0 

(because when 𝑛 > 1, 𝑛 − 1 is positive and lim
𝑥→0

𝑥𝑛−1 = 0 ) 

When 𝑛 = 1 the above limit 

= lim
𝑥→0

𝑥[1 + 𝑖 − 𝑚3(1 − 𝑖)]

1 + 𝑚2
= 0 

Hence lim
𝑧→0

 𝑓(𝑧) = 𝑓(0) in whatever manner 𝑧 → 0. 

Therefore 𝑓(𝑧) is continuous at the origin. 

Now 𝑓(𝑧) =
𝑥3 − 𝑦3

𝑥2 + 𝑦2
+ 𝑖 

𝑥3 + 𝑦3

𝑥2 + 𝑦2
= 𝑢(𝑥, 𝑦) + 𝑖 𝑣(𝑥, 𝑦) 

Here 𝑢(𝑥, 𝑦) =
𝑥3 − 𝑦3

𝑥2 + 𝑦2
and 𝑣(𝑥, 𝑦) =

𝑥3 + 𝑦3

𝑥2 + 𝑦2
 

Since 𝑓(0) = 0, 𝑢(0, 0) = 0 𝑎𝑛𝑑 𝑣(0, 0) = 0. 

Now at origin 

𝜕𝑢

𝜕𝑥
= lim

𝑥→0

𝑢(𝑥, 0) − 𝑢(0, 0)

𝑥
 

= lim
𝑥→0

𝑥3

𝑥3
= 1 

𝜕𝑢

𝜕𝑦
= lim

𝑦→0

𝑢(0, 𝑦) − 𝑢(0, 0)

𝑦
 

= lim
𝑦→0

−𝑦3

𝑦3
= −1 

𝜕𝑣

𝜕𝑥
= lim

𝑥→0

𝑣(𝑥, 0) − 𝑣(0, 0)

𝑥
 

= lim
𝑥→0

𝑥3

𝑥3
= 1 

𝜕𝑣

𝜕𝑦
= lim

𝑦→0

𝑣(0, 𝑦) − 𝑣(0, 0)

𝑦
 

= lim
𝑦→0

𝑦3

𝑦3
= 1 

Hence at origin,  



Complex Analysis 
 

21 
 

𝜕𝑢

𝜕𝑥
=

𝜕𝑣

𝜕𝑦
 𝑎𝑛𝑑 

𝜕𝑣

𝜕𝑥
= −

𝜕𝑢

𝜕𝑦
 

So the C-R equations are satisfied at the origin. 

Now, by the definition 

𝑓′(0) = lim
𝑧→0

𝑓(𝑧) − 𝑓(0)

𝑧
= lim

𝑧→0

𝑓(𝑧)

𝑧
 

= lim
𝑧→0

𝑥3(1 + 𝑖) − 𝑦3(1 − 𝑖)

(𝑥2 + 𝑦2) (𝑥 + 𝑖 𝑦)
 

 Let 𝑦 → 0 first and then 𝑥 → 0. 

𝑓′(0) = lim
𝑦→0
𝑥→0

𝑥3(1 + 𝑖) − 𝑦3(1 − 𝑖)

(𝑥2 + 𝑦2) (𝑥 + 𝑖 𝑦)
 

= lim
𝑥→0

𝑥3(1 + 𝑖)

𝑥3
= 1 + 𝑖 

If  𝑥 → 0 first and then 𝑦 → 0. 

𝑓′(0) = lim
𝑥→0
𝑦→0

𝑥3(1 + 𝑖) − 𝑦3(1 − 𝑖)

(𝑥2 + 𝑦2) (𝑥 + 𝑖 𝑦)
 

                                = lim
𝑦→0

−𝑦3(1 − 𝑖)

𝑖 𝑦3
=

−(1 − 𝑖)

𝑖 
= 𝑖 + 1 

Generally when 𝑧 → 0 along the path 𝑦 = 𝑚𝑥, 

𝑓′(0) = lim
𝑦=𝑚𝑥

𝑥→0

𝑥3(1 + 𝑖) − 𝑦3(1 − 𝑖)

(𝑥2 + 𝑦2) (𝑥 + 𝑖 𝑦)
 

               = lim
𝑥→0

𝑥3(1 + 𝑖) − (𝑚𝑥)3(1 − 𝑖)

(𝑥2 + 𝑚2𝑥2) (𝑥 + 𝑖 𝑚𝑥)
 

=
(1 + 𝑖) − 𝑚3(1 − 𝑖)

(1 + 𝑚2) (1 + 𝑖 𝑚)
 

This assumes different values, as 𝑚 varies, 𝑓′(𝑧) has no unique value at origin, i.e., 

𝑓(𝑧) is not differentiable at that point. 

Hence we find that even at a point, if 𝑓(𝑧) is continuous and satisfies the C-R 

equations, the function need not be differentiable. 

 

EX. 17. Show that the function 𝑓(𝑧) = √|𝑥𝑦| is not regular at the origin, although C-R 

equations are satisfied.  

Solution: Let 𝑓(𝑧) = √|𝑥𝑦| = 𝑢 + 𝑖𝑣 

Here 𝑢 = √|𝑥𝑦| and 𝑣 = 0 
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Now at origin 

𝜕𝑢

𝜕𝑥
= lim

𝑥→0

𝑢(𝑥, 0) − 𝑢(0, 0)

𝑥
 

= lim
𝑥→0

0 − 0

𝑥
= 0 

𝜕𝑢

𝜕𝑦
= lim

𝑦→0

𝑢(0, 𝑦) − 𝑢(0, 0)

𝑦
 

= lim
𝑦→0

0 − 0

𝑦
= 0 

𝜕𝑣

𝜕𝑥
= lim

𝑥→0

𝑣(𝑥, 0) − 𝑣(0, 0)

𝑥
 

= lim
𝑥→0

0 − 0

𝑥
= 0 

𝜕𝑣

𝜕𝑦
= lim

𝑦→0

𝑣(0, 𝑦) − 𝑣(0, 0)

𝑦
 

= lim
𝑦→0

0 − 0

𝑦
= 0 

Clearly 
𝜕𝑢

𝜕𝑥
=

𝜕𝑣

𝜕𝑦
 and 

𝜕𝑣

𝜕𝑥
= −

𝜕𝑢

𝜕𝑦
. 

So the C-R equations are satisfied at the origin. 

Now, by definition 

𝑓′(0) = lim
𝑧→0

𝑓(𝑧) − 𝑓(0)

𝑧
= lim

𝑧→0

𝑓(𝑧)

𝑧
 

= lim
𝑧→0

√|𝑥𝑦|

𝑥 + 𝑖𝑦
 

If 𝑧 → 0 along the line 𝑦 = 𝑚𝑥, we get 

𝑓′(0) = lim
𝑥→0

√|𝑥. 𝑚𝑥|

𝑥 + 𝑖𝑚𝑥
= lim

𝑥→0

√|𝑚|

1 + 𝑖𝑚
=

√|𝑚|

1 + 𝑖𝑚
 

Now this limit is not unique since it depends on 𝑚 therefore 𝑓′(0) does not exist. 

Hence the function 𝑓(𝑧) = √|𝑥𝑦| is not regular at the origin, although C-R equations 

are satisfied.  

1. 10. Differentiation Formulas: We have already defined the derivative of 𝑤 = 𝑓(𝑧) to be 

𝑑𝑤

𝑑𝑧
= 𝑓′(𝑧) = lim

∆𝑧→0

𝑓(𝑧 + ∆𝑧) − 𝑓(𝑧)

∆𝑧
 

This definition is identical in form to that of the derivative of a function of a real 

variable. Hence the fundamental formulas for differentiation in the domain of complex 
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numbers are the same as those in the case of real variables. Thus we have the following 

formulas: 

(i) If 𝑘 is a complex constant, then
𝑑

𝑑𝑧
(𝑘) = 0. 

(ii) If 𝑘 is a complex constant and 𝑤 is a differentiable function,
𝑑

𝑑𝑧
(𝑘𝑤) = 𝑘

𝑑𝑤

𝑑𝑧
. 

(iii) If 𝑤1(𝑧) and 𝑤2(𝑧) are two differentiable functions, then
𝑑

𝑑𝑧
(𝑤1 ∓ 𝑤2) =

𝑑𝑤1

𝑑𝑧
∓

𝑑𝑤2

𝑑𝑧
. 

(iv) 
𝑑

𝑑𝑧
(𝑤1. 𝑤2) = 𝑤1.

𝑑𝑤2

𝑑𝑧
+ 𝑤2.

𝑑𝑤1

𝑑𝑧
 

(v) 
𝑑

𝑑𝑧
(

𝑤1

𝑤2
) =

𝑤2.
𝑑𝑤1

𝑑𝑧
−𝑤1.

𝑑𝑤2
𝑑𝑧

𝑤2
2  

(vi) If 𝑤 is a function of 𝑤1(𝑧), 
𝑑𝑤

𝑑𝑧
=

𝑑𝑤

𝑑𝑤1
.

𝑑𝑤1

𝑑𝑧
 

(vii) If 𝑛 is a positive integer,
𝑑

𝑑𝑧
(𝑧𝑛) = 𝑛. 𝑧𝑛−1. This can be extended to the case 

when 𝑛 is a negative integer or any fraction. 

 

EX. 18.  Find where the function 𝑤 = 𝑓(𝑧) =
1

𝑧
  ceases to be analytic. 

Solution: Given that 𝑤 = 𝑓(𝑧) =
1

𝑧
 

𝑑𝑤

𝑑𝑧
=

𝑑

𝑑𝑧
(

1

𝑧
) = −

1

𝑧2
 𝑖𝑓 𝑧 ≠ 0 

For 𝑧 = 0, 
𝑑𝑤

𝑑𝑧
 does not exist. So, 𝑤 is analytic everywhere except at the point 𝑧 = 0 

which is singular point of 𝑓(𝑧). 

 

EX. 19. Show that an analytic function with constant real part is constant and an analytic 

function with constant modulus is also constant. 

Solution: Let 𝑤 = 𝑓(𝑧) = 𝑢 + 𝑖 𝑣 be an analytic function. 

(a) Let 𝑢(𝑥, 𝑦) = 𝑎 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 𝑐1 

Then 
𝜕𝑢

𝜕𝑥
= 0 and 

𝜕𝑢

𝜕𝑦
= 0 

Since 𝑤 is analytic, the C-R equations are satisfied. 

Therefore 
𝜕𝑣

𝜕𝑦
=

𝜕𝑢

𝜕𝑥
= 0 and 

𝜕𝑣

𝜕𝑥
= −

𝜕𝑢

𝜕𝑦
= 0 

Since 
𝜕𝑣

𝜕𝑥
= 0 and  

𝜕𝑣

𝜕𝑦
= 0, it is clear that 𝑣 is independent of 𝑥 and 𝑦. 

𝑖. 𝑒. , 𝑣(𝑥, 𝑦) = 𝑎 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 𝑐2 

Hence 𝑤 = 𝑓(𝑧) = 𝑢 + 𝑖 𝑣 = 𝑐1 + 𝑖 𝑐2 = 𝑎 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 
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(b) |𝑓(𝑧)| = |𝑢 + 𝑖 𝑣| = √𝑢2 + 𝑣2 = 𝑎 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

𝑖. 𝑒. , 𝑢2 + 𝑣2 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 𝑐                               (1) 

Differentiating (1) partially with respect to 𝑥 𝑎𝑛𝑑 𝑦, we get 

2𝑢
𝜕𝑢

𝜕𝑥
+ 2𝑣

𝜕𝑣

𝜕𝑥
= 0 𝑎𝑛𝑑 2𝑢

𝜕𝑢

𝜕𝑦
+ 2𝑣

𝜕𝑣

𝜕𝑦
= 0  

𝑖. 𝑒. , 𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑥
= 0 𝑎𝑛𝑑 𝑢

𝜕𝑢

𝜕𝑦
+ 𝑣

𝜕𝑣

𝜕𝑦
= 0  

Using the C-R equations , we get 

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑥
= 0 𝑎𝑛𝑑 𝑣

𝜕𝑢

𝜕𝑥
− 𝑢

𝜕𝑣

𝜕𝑥
= 0 

The determinant of the coefficients of 
𝜕𝑢

𝜕𝑥
 and 

𝜕𝑣

𝜕𝑥
 of the above two equations is 

= |
𝑢 𝑣
𝑣 −𝑢

| = −(𝑢2 + 𝑣2) = −𝑐 

and this is not equal to zero 

Hence the solutions of the above two equations are 

𝜕𝑢

𝜕𝑥
= 0 and 

𝜕𝑣

𝜕𝑥
= 0 

Since 
𝜕𝑢

𝜕𝑥
=

𝜕𝑣

𝜕𝑦
 𝑎𝑛𝑑 

𝜕𝑢

𝜕𝑦
= −

𝜕𝑣

𝜕𝑥
, we have  

𝜕𝑢

𝜕𝑦
= 0 and 

𝜕𝑣

𝜕𝑦
= 0 

Therefore both 𝑢 and 𝑣 are independent of 𝑥 and 𝑦. 

𝑢(𝑥, 𝑦) = 𝑎 and 𝑣(𝑥, 𝑦) = 𝑏 

Hence 𝑤 = 𝑓(𝑧) = 𝑢 + 𝑖 𝑣 = 𝑎 + 𝑖 𝑏 = a constant. 

 

EX. 20. Show that an analytic function with constant argument is argument. 

Solution: Let  𝑤 = 𝑓(𝑧) = 𝑢 + 𝑖 𝑣 be analytic function and 𝜃 its argument. 

We know that 𝑡𝑎𝑛𝜃 =
𝑣

𝑢
 

As 𝜃 is constant, 𝑡𝑎𝑛𝜃 is also constant.  

Therefore 
𝑣

𝑢
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑡𝑛𝑡 = 𝑘, 𝑘 is real 

Therefore 𝑣 = 𝑘𝑢             (1) 

Differentiating (1) partially with respect to 𝑥 and 𝑦, we get 

𝜕𝑣

𝜕𝑥
= 𝑘

𝜕𝑢

𝜕𝑥
             (2) 
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and 
𝜕𝑣

𝜕𝑦
= 𝑘

𝜕𝑢

𝜕𝑦
             (3) 

But 𝑢 and 𝑣 are C − R equations, 𝑖. 𝑒. ,
𝜕𝑢

𝜕𝑥
=

𝜕𝑣

𝜕𝑦
             (4) 

and 
𝜕𝑢

𝜕𝑦
= −

𝜕𝑣

𝜕𝑥
           (5) 

putting (3) in (4), we get 

𝜕𝑢

𝜕𝑥
= 𝑘

𝜕𝑢

𝜕𝑦
= −𝑘

𝜕𝑣

𝜕𝑥
 using (5) 

= −𝑘. 𝑘
𝜕𝑢

𝜕𝑥
 using (2) 

𝑖. 𝑒. , (1 + 𝑘2)
𝜕𝑢

𝜕𝑥
= 0 

1 + 𝑘2 ≠ 0, 𝑠𝑜 
𝜕𝑢

𝜕𝑥
= 0 

∴ 𝑢  is independent of 𝑥                          (6) 

Putting 
𝜕𝑢

𝜕𝑥
= 0 in (2), we get 

𝜕𝑣

𝜕𝑥
= 0                 

Putting 
𝜕𝑣

𝜕𝑥
= 0 in (5), we get 

𝜕𝑢

𝜕𝑦
= 0 

∴ 𝑢  is independent of 𝑦                          (7) 

From (6) and (7) we have 𝑢 is a constant, independent of 𝑥 and 𝑦. 

Since 𝑣 = 𝑘𝑢 

Therefore 𝑣 is also a constant, independent of 𝑥 and 𝑦. 

Therefore 𝑤 = 𝑓(𝑧) = 𝑢 + 𝑖 𝑣 = 𝑎 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡.  

 

1.11. Properties of Analytic Functions: 

Property 1. Both the real part and the imaginary part of any analytic function satisfy 

Laplace’s equation 

𝜕2∅

𝜕𝑥2
+

𝜕2∅

𝜕𝑦2
= 0 

Proof: Let 𝑓(𝑧) = 𝑢 + 𝑖 𝑣 be analytic in some domain of the 𝑧-plane.  

Then 𝑢 and 𝑣 satisfy the C-R equations  

𝜕𝑢

𝜕𝑥
=

𝜕𝑣

𝜕𝑦
                                         (1) 

 and 
𝜕𝑢

𝜕𝑦
= −

𝜕𝑣

𝜕𝑥
                            (2)    
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Differentiating (1) with respect to 𝑥 and (2) with respect to 𝑦 partially, we get 

𝜕

𝜕𝑥
(

𝜕𝑢

𝜕𝑥
) =

𝜕

𝜕𝑥
(

𝜕𝑣

𝜕𝑦
) and

𝜕

𝜕𝑦
(

𝜕𝑢

𝜕𝑦
) =

𝜕

𝜕𝑦
(−

𝜕𝑣

𝜕𝑥
) 

𝒊. 𝒆. ,
𝜕2𝑢

𝜕𝑥2
=

𝜕2𝑣

𝜕𝑥𝜕𝑦
                (3) 

and 
𝜕2𝑢

𝜕𝑦2
= −

𝜕2𝑣

𝜕𝑦𝜕𝑥
             (4) 

Adding (3) and (4), we get 

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
=

𝜕2𝑣

𝜕𝑥𝜕𝑦
−

𝜕2𝑣

𝜕𝑦𝜕𝑥
 

                                    ∴
𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
= 0                      (5) (since 

𝜕2𝑣

𝜕𝑥𝜕𝑦
=

𝜕2𝑣

𝜕𝑦𝜕𝑥
) 

Similarly we can show that 

𝜕2𝑣

𝜕𝑥2
+

𝜕2𝑣

𝜕𝑦2
= 0                      (6) 

(5) and (6) shows that 𝑢 and 𝑣 satsfy the Laplace’s equation 

𝜕2∅

𝜕𝑥2
+

𝜕2∅

𝜕𝑦2
= 0                     (7) 

which is Laplace’s partial differential equation in the two independent variables  𝑥 and 𝑦. 

This equation occurs frequently in mathematical physics. It is satisfied by the potential at a 

point not occupied by matter in a two-dimensional gravitational field. It is also satisfied by 

the velocity potential and stream function of two-dimensional irrotational flow of an 

incompressible non-viscous fluid. 

Note: In proving results (5) and (6), it has assumed that the second order partial derivatives 

of 𝑢 and 𝑣 with respect to 𝑥 and 𝑦 all exist and further are continuous. 

Any function which possesses continuous second order partial derivatives and which 

satisfies Laplace’s equation is called a harmonic function. Two harmonic functions, 𝑢 and 𝑣 

which are such that 𝑢 + 𝑖 𝑣 is an analytic function are called conjugate harmonic functions. 

The importance of analytic function of a complex variable is that such a function 

furnishes us with distinct solutions of Laplace’s equation. It is this connection of analytic 

function with Laplace’s equation that has given a great importance to the theory of functions 

of a complex variable in applied mathematics. 

The equation (7) is written as ∇2∅ = 0, where 

∇2≡
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
 



Complex Analysis 
 

27 
 

∇2 is called the Laplacian operator. 

 

Property 2. If 𝑤 = 𝑓(𝑧) = 𝑢 + 𝑖 𝑣 is an analytic function, the curves of the family 𝑢(𝑥, 𝑦) =

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 𝑐1 cut orthogonally the curves of the family 𝑣(𝑥, 𝑦) =  𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 𝑐2. 

Proof: Given that 𝑤 = 𝑓(𝑧) = 𝑢 + 𝑖 𝑣 is an analytic function 

Then 𝑢 and 𝑣 are satisfy C-R equations 

𝜕𝑢

𝜕𝑥
=

𝜕𝑣

𝜕𝑦
                                   (1) 

    and 
𝜕𝑢

𝜕𝑦
= −

𝜕𝑣

𝜕𝑥
                             (2)    

Suppose 𝑢(𝑥, 𝑦) = 𝑐1 is the equation of the family of curves for different values of 𝑐1. 

Similarly, 𝑣(𝑥, 𝑦) = 𝑐2 is the equation of the family of curves for different values of 𝑐2. 

Since 𝑢(𝑥, 𝑦) = 𝑐1, by the total differentiation,  

𝑑𝑢 =
𝜕𝑢

𝜕𝑥
𝑑𝑥 +

𝜕𝑢

𝜕𝑦
𝑑𝑦 

Hence 
𝑑𝑢

𝑑𝑥
=

𝜕𝑢

𝜕𝑥
+

𝜕𝑢

𝜕𝑦
 .

𝑑𝑦

𝑑𝑥
= 0 since 𝑢 = 𝑐1 

So 
𝑑𝑦

𝑑𝑥
= −

(
𝜕𝑢
𝜕𝑥)

(
𝜕𝑢
𝜕𝑦

)
                                              (3) 

This is the slope of the general curve of the 𝑢-family. 

Similarly for the 𝑣 –family, 

𝑑𝑦

𝑑𝑥
= −

(
𝜕𝑣
𝜕𝑥)

(
𝜕𝑣
𝜕𝑦

)
                                              (4) 

Using (1) and (2), (4) can be written as 

𝑑𝑦

𝑑𝑥
=

(
𝜕𝑢
𝜕𝑦)

(
𝜕𝑢
𝜕𝑥

)
 

The product of the slopes of the two families is 

= −
(

𝜕𝑢
𝜕𝑥)

(
𝜕𝑢
𝜕𝑦

)
 𝑋 

(
𝜕𝑢
𝜕𝑦)

(
𝜕𝑢
𝜕𝑥

)
= −1. 

Hence the curves cut each other orthogonally. The two families are said to be the 

orthogonal trajectories of one another. 
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𝐑𝐞𝐬𝐮𝐥𝐭 𝟏. To prove that 
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
= 4

𝜕2

𝜕𝑧𝜕𝑧̅
 

Proof: Let 𝑧 = 𝑥 + 𝑖𝑦 𝑎𝑛𝑑 𝑧̅ = 𝑥 − 𝑖𝑦 so that 

𝑥 =
𝑧 + 𝑧̅

2
 𝑎𝑛𝑑 𝑦 =

𝑧 − 𝑧̅

2𝑖
= −

𝑖(𝑧 − 𝑧̅)

2
 

This implies 
𝜕𝑥

𝜕𝑧
=

1

2
=

𝜕𝑥

𝜕𝑧̅
 ,

𝜕𝑦

𝜕𝑧
= −

𝑖

2
= −

𝜕𝑦

𝜕𝑧̅
 

Let 𝑓 = 𝑓(𝑥, 𝑦). Then 𝑓 = 𝑓(𝑧, 𝑧̅) 

We have  

𝜕𝑓

𝜕𝑧
=

𝜕𝑓

𝜕𝑥

𝜕𝑥

𝜕𝑧
+

𝜕𝑓

𝜕𝑦

𝜕𝑦

𝜕𝑧
 

=
1

2
(

𝜕𝑓

𝜕𝑥
−  𝑖

𝜕𝑓

𝜕𝑦
) 

𝜕𝑓

𝜕𝑧̅
=

𝜕𝑓

𝜕𝑥

𝜕𝑥

𝜕𝑧̅
+

𝜕𝑓

𝜕𝑦

𝜕𝑦

𝜕𝑧̅
 

      =
1

2
(

𝜕𝑓

𝜕𝑥
+  𝑖

𝜕𝑓

𝜕𝑦
) 

                  Now 
𝜕2𝑓

𝜕𝑧𝜕𝑧̅
=

𝜕

𝜕𝑧
(

𝜕𝑓

𝜕𝑧̅
) 

                         =
1

4
(

𝜕

𝜕𝑥
−  𝑖

𝜕

𝜕𝑦
) (

𝜕

𝜕𝑥
+  𝑖

𝜕

𝜕𝑦
) 𝑓 

                         =
1

4
(

𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
) 𝑓 

∴
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
= 4

𝜕2

𝜕𝑧𝜕𝑧̅
 

 

Result 2. If 𝑓(𝑧) is a regular function of 𝑧; Prove that  

(
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
) |𝑓(𝑧)|2 = 4|𝑓′(𝑧)|2 

𝐏𝐫𝐨𝐨𝐟: Recall that 
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
= 4

𝜕2

𝜕𝑧𝜕𝑧̅
 

⇒ (
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
) |𝑓(𝑧)|2 = 4

𝜕2

𝜕𝑧𝜕𝑧̅
 𝑓(𝑧)𝑓(𝑧̅) 𝑎𝑠 |𝑧|2 = 𝑧 𝑧̅ 

                            = 4
𝜕

𝜕𝑧
[

𝜕

𝜕𝑧̅
 𝑓(𝑧)𝑓(𝑧̅)] 

                           = 4
𝜕

𝜕𝑧
[ 𝑓(𝑧)𝑓′(𝑧̅)] 
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                           = 4𝑓′(𝑧)𝑓′(𝑧̅) = 4|𝑓′(𝑧)|2 

(since f(z) is treated as constant in differentiating with respect to z̅) 

 

Result 3. If 𝑤 = 𝑓(𝑧) is a regular function of 𝑧 such that 𝑓′(𝑧) ≠ 0. Prove that 

(
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
) 𝑙𝑜𝑔 |𝑓′(𝑧)| = 0 

If |𝑓′(𝑧)| is the product of a function of 𝑥 and function of 𝑦, then show that 𝑓′(𝑧) =

𝑒𝛼𝑧2+𝛽𝑧+𝛾 where 𝛼 is the real and 𝛽, 𝛾 are complex constants. 

𝐏𝐫𝐨𝐨𝐟: Recall that        
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
= 4

𝜕2

𝜕𝑧𝜕𝑧̅
 

⇒ (
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
) 𝑙𝑜𝑔 |𝑓′(𝑧)| = 4

𝜕2

𝜕𝑧𝜕𝑧̅
 𝑙𝑜𝑔 |𝑓′(𝑧)| 

                                       = 2
𝜕2

𝜕𝑧𝜕𝑧̅
 𝑙𝑜𝑔 |𝑓′(𝑧)|2 

                                       = 2
𝜕2

𝜕𝑧𝜕𝑧̅
 𝑙𝑜𝑔{𝑓′(𝑧)𝑓′(𝑧̅)}  𝑎𝑠 |𝑧|2 = 𝑧 𝑧̅ 

                                      = 2
𝜕2

𝜕𝑧𝜕𝑧̅
 𝑙𝑜𝑔{𝑓′(𝑧)} + 2

𝜕2

𝜕𝑧𝜕𝑧̅
 𝑙𝑜𝑔{𝑓′(𝑧̅)} 

 

                                     = 2
𝜕

𝜕𝑧̅
{

𝑓′′(𝑧)

𝑓′(𝑧)
} + 2

𝜕

𝜕𝑧
{

𝑓′′(𝑧̅)

𝑓′(𝑧̅)
} 

                                     = 0 + 0 = 0 

It follows from the fact that 𝑓(𝑧) is treated as constant in differentiation with respect to 𝑧̅. 

Hence (
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
) 𝑙𝑜𝑔 |𝑓′(𝑧)| = 0                            (1) 

Let |𝑓′(𝑧)| = ∅(𝑥). 𝜓(𝑦) 

From (1),  

(
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
) 𝑙𝑜𝑔 (∅(𝑥). 𝜓(𝑦)) = 0 

𝜕2

𝜕𝑥2
[𝑙𝑜𝑔 ∅(𝑥) + 𝑙𝑜𝑔 𝜓(𝑦) ] +

𝜕2

𝜕𝑦2
[𝑙𝑜𝑔 ∅(𝑥) + 𝑙𝑜𝑔 𝜓(𝑦) ] = 0 

𝜕2

𝜕𝑥2
[𝑙𝑜𝑔 ∅(𝑥)] +

𝜕2

𝜕𝑦2
[𝑙𝑜𝑔 𝜓(𝑦) ] = 0 

𝑑2

𝑑𝑥2
[𝑙𝑜𝑔 ∅(𝑥)] +

𝑑2

𝑑𝑦2
[𝑙𝑜𝑔 𝜓(𝑦) ] = 0 
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𝑑2

𝑑𝑥2
[𝑙𝑜𝑔 ∅(𝑥)] = −

𝑑2

𝑑𝑦2
[𝑙𝑜𝑔 𝜓(𝑦) ] = 2𝑝, 𝑠𝑎𝑦 

For L.H.S. and R.H.S both are independent of each other. 

𝑑2

𝑑𝑥2
[𝑙𝑜𝑔 ∅(𝑥)] = 2𝑝, given an integration 

𝑑

𝑑𝑥
[𝑙𝑜𝑔 ∅(𝑥)] = 2𝑝𝑥 + 𝑞 

Again integrating, 𝑙𝑜𝑔 ∅(𝑥) = 𝑝𝑥2 + 𝑞𝑥 + 𝑟 

Similarly, −𝑙𝑜𝑔 𝜓(𝑦) = 𝑝𝑦2 + 𝑞1𝑦 + 𝑟1 

𝑙𝑜𝑔 (∅(𝑥). 𝜓(𝑦)) = 𝑙𝑜𝑔 ∅(𝑥) + 𝑙𝑜𝑔 𝜓(𝑦) 

= 𝑝𝑥2 + 𝑞𝑥 + 𝑟 − 𝑝𝑦2 − 𝑞1𝑦 − 𝑟1 

= 𝑝( 𝑥2 − 𝑦2) + (𝑞𝑥 − 𝑞1𝑦) + (𝑟 − 𝑟1) 

or |𝑓′(𝑧)| = ∅(𝑥). 𝜓(𝑦) 

       = 𝑒𝑥𝑝 [𝑝( 𝑥2 − 𝑦2) + (𝑞𝑥 − 𝑞1𝑦) + (𝑟 − 𝑟1)]                 (2) 

 Now |𝑒𝑥𝑝(𝛼𝑧2 + 𝛽𝑧 + 𝛾)| = |𝑒𝑥𝑝{𝛼(𝑥 + 𝑖𝑦)2 + 𝛽(𝑥 + 𝑖𝑦) + 𝛾}| 

= |𝑒𝑥𝑝{[𝛼(𝑥2 − 𝑦2) + 2𝑖𝛼𝑥𝑦] + (𝑎 + 𝑖𝑏)(𝑥 + 𝑖𝑦) + (𝑐 + 𝑖𝑑)}| 

as 𝛼 is a real. 

 = |𝑒𝑥𝑝{𝛼(𝑥2 − 𝑦2) + 𝑎𝑥 − 𝑏𝑦 + 𝑐} + 𝑒𝑥𝑝{𝑖(2𝛼𝑥𝑦 + 𝑏𝑥 + 𝑎𝑦 + 𝑑)}| 

= |𝑒𝑥𝑝{𝛼(𝑥2 − 𝑦2) + 𝑎𝑥 − 𝑏𝑦 + 𝑐}| 

As |𝑒𝑖𝑝| = 1 for any real 𝑝, which of the same form as (2). 

Hence we can write 

𝑓′(𝑧) =  𝑒𝑥𝑝(𝛼𝑧2 + 𝛽𝑧 + 𝛾) 

 

Result 4. If 𝑓(𝑧) is an analytic function of 𝑧, prove that  

(
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
) |𝑅𝑓(𝑧)|2 = 2|𝑓′(𝑧)|2 

Proof: Let 𝑓(𝑧) = 𝑢 + 𝑖𝑣, then 𝑅𝑓(𝑧) = 𝑢. 

𝜕

𝜕𝑥
(𝑢2) = 2𝑢

𝜕𝑢

𝜕𝑥
 

𝜕2

𝜕𝑥2
(𝑢2) = 2 [(

𝜕𝑢

𝜕𝑥
)

2

+ 𝑢
𝜕2𝑢

𝜕𝑥2
]                 (1) 

Similarly, 

𝜕2

𝜕𝑦2
(𝑢2) = 2 [(

𝜕𝑢

𝜕𝑦
)

2

+ 𝑢
𝜕2𝑢

𝜕𝑦2
]                 (2) 

Adding (1) and (2), we get 
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(
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
) |𝑅𝑓(𝑧)|2 = 2 [(

𝜕𝑢

𝜕𝑥
)

2

+ 𝑢
𝜕2𝑢

𝜕𝑥2
] + 2 [(

𝜕𝑢

𝜕𝑦
)

2

+ 𝑢
𝜕2𝑢

𝜕𝑦2
] 

= 2 [(
𝜕𝑢

𝜕𝑥
)

2

+ (
𝜕𝑢

𝜕𝑦
)

2

+ 𝑢 {
𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
}]                 (3) 

But 𝑢 satisfies Laplace’s equation and 𝑓(𝑧) is an analytic function, 𝑢 and 𝑣 satisfies 

C-R equations, that is  

𝜕𝑢

𝜕𝑥
=

𝜕𝑣

𝜕𝑦
 𝑎𝑛𝑑 

𝜕𝑢

𝜕𝑦
= −

𝜕𝑣

𝜕𝑥
 

(3) becomes 

(
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
) |𝑅𝑓(𝑧)|2 = 2 [(

𝜕𝑢

𝜕𝑥
)

2

+ (
𝜕𝑣

𝜕𝑥
)

2

]                   (4) 

But 𝑓′(𝑧) =
𝜕𝑤

𝜕𝑥
=

𝜕𝑢

𝜕𝑥
+ 𝑖

𝜕𝑣

𝜕𝑥
 then 𝑓′(𝑧̅) =

𝜕𝑢

𝜕𝑥
− 𝑖

𝜕𝑣

𝜕𝑥
 

|𝑓′(𝑧)|2 = 𝑓′(𝑧)𝑓′(𝑧̅) = (
𝜕𝑢

𝜕𝑥
+ 𝑖

𝜕𝑣

𝜕𝑥
) (

𝜕𝑢

𝜕𝑥
− 𝑖

𝜕𝑣

𝜕𝑥
) = (

𝜕𝑢

𝜕𝑥
)

2

+ (
𝜕𝑣

𝜕𝑥
)

2

 

In view of this, the last gives 

(
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
) |𝑅𝑓(𝑧)|2 = 2|𝑓′(𝑧)|2 

 

Result 5. If 𝑢(𝑥, 𝑦) and 𝑣(𝑥, 𝑦) are harmonic functions in a region 𝑅, prove that  

(
𝜕𝑢

𝜕𝑦
−

𝜕𝑣

𝜕𝑥
) + 𝑖 (

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
) 

is an analytic function of 𝑧 = 𝑥 + 𝑖𝑦. 

Proof: Suppose 𝑢(𝑥, 𝑦) and 𝑣(𝑥, 𝑦) satisfy Laplace’s equation. 

𝑖. 𝑒. ,
𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
= 0                (1) 

𝑎𝑛𝑑 
𝜕2𝑣

𝜕𝑥2
+

𝜕2𝑣

𝜕𝑦2
= 0              (2) 

Also suppose 

𝑠 =
𝜕𝑢

𝜕𝑦
−

𝜕𝑣

𝜕𝑥
 𝑎𝑛𝑑 𝑡 =

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
 

To prove that 𝑠 + 𝑖𝑡 is an analytic function, we have to show that  

(i) 
𝜕𝑠

𝜕𝑥
=

𝜕𝑡

𝜕𝑦
 𝑎𝑛𝑑 

𝜕𝑠

𝜕𝑦
= −

𝜕𝑡

𝜕𝑥
 

(ii) 
𝜕𝑠

𝜕𝑥
,

𝜕𝑡

𝜕𝑦
 ,

𝜕𝑠

𝜕𝑦
 𝑎𝑛𝑑 −

𝜕𝑡

𝜕𝑥
 are continuous 

𝜕𝑠

𝜕𝑥
−

𝜕𝑡

𝜕𝑦
= − (

𝜕2𝑣

𝜕𝑥2
+

𝜕2𝑣

𝜕𝑦2
) = 0                (3) 𝑓𝑟𝑜𝑚 (2) 
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𝜕𝑠

𝜕𝑦
+

𝜕𝑡

𝜕𝑥
= (

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
) = 0                (4) 𝑓𝑟𝑜𝑚 (1) 

From (3) and (4), the result (i) follows. 

Existence of (1) and (2) implies that the result (ii). 

 

1.12. Construction of an Analytic Function whose Real or Imaginary Part is known: 

Let 𝑓(𝑧) = 𝑢 + 𝑖𝑣 be an analytic function, whose real part 𝑢 alone is known 

beforehand. We can find 𝑣, the imaginary part and also the function 𝑓(𝑧). The 

procedure is as follows: 

First Method: 

𝑑𝑣 =
𝜕𝑣

𝜕𝑥
𝑑𝑥 +

𝜕𝑣

𝜕𝑦
𝑑𝑦 

But 𝑢 𝑎𝑛𝑑 𝑣 are satisfy C-R equations 

𝑖. 𝑒. ,
𝜕𝑢

𝜕𝑥
=

𝜕𝑣

𝜕𝑦
 𝑎𝑛𝑑 

𝜕𝑣

𝜕𝑥
= −

𝜕𝑢

𝜕𝑦
 

Hence  

𝑑𝑣 = −
𝜕𝑢

𝜕𝑦
𝑑𝑥 +

𝜕𝑢

𝜕𝑥
𝑑𝑦                        (1) 

Now 
𝜕

𝜕𝑦
(−

𝜕𝑢

𝜕𝑦
) = −

𝜕2𝑢

𝜕𝑦2
 and 

𝜕

𝜕𝑥
(

𝜕𝑢

𝜕𝑥
) =

𝜕2𝑢

𝜕𝑥2
 

As 𝑢 satisfies Laplace’s equation,  

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
= 0 

𝑖. 𝑒. ,
𝜕2𝑢

𝜕𝑥2
= −

𝜕2𝑢

𝜕𝑦2
 

Hence  
𝜕

𝜕𝑦
(−

𝜕𝑢

𝜕𝑦
) =

𝜕

𝜕𝑥
(

𝜕𝑢

𝜕𝑥
) 

and so the R.H.S. of (1) is a perfect differential. 

Also 
𝜕𝑢

𝜕𝑦
 and 

𝜕𝑢

𝜕𝑥
 are known, since 𝑢 is given. 

Hence integrating (1), 𝑣 = ∫ (−
𝜕𝑢

𝜕𝑦
𝑑𝑥 +

𝜕𝑢

𝜕𝑥
𝑑𝑦) + 𝑐 

where 𝑐 is an arbitrary constant. Thus 𝑣 is known and the function 𝑓(𝑧) = 𝑢 + 𝑖𝑣 is 

determined. 
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Second Method: 

We know that  𝑓′(𝑧) =
𝜕𝑤

𝜕𝑥
=

𝜕

𝜕𝑥
(𝑢 + 𝑖𝑣) =

𝜕𝑢

𝜕𝑥
+ 𝑖

𝜕𝑣

𝜕𝑥
=

𝜕𝑢

𝜕𝑥
− 𝑖

𝜕𝑢

𝜕𝑦
              (1) 

(since 
𝜕𝑣

𝜕𝑥
= −

𝜕𝑢

𝜕𝑦
 from C − R equations) 

  Since 𝑢 is given, 
𝜕𝑢

𝜕𝑦
 and 

𝜕𝑢

𝜕𝑥
 are known. 

Hence integrating (1), 𝑓(𝑧) = ∫ (
𝜕𝑢

𝜕𝑥
− 𝑖

𝜕𝑢

𝜕𝑦
) 𝑑𝑧 + 𝑐. 

It is implied that the expression  
𝜕𝑢

𝜕𝑥
− 𝑖

𝜕𝑢

𝜕𝑦
 

must be expressed in terms of 𝑧 = 𝑥 + 𝑖𝑦, and then the above integration is to be 

effected. 

 

Third Method (Milne-Thomson Method): 

To find 𝑓(𝑧), when the real part 𝑢(𝑥, 𝑦) is given. 

Let 𝑓(𝑧) = 𝑢(𝑥, 𝑦) + 𝑖 𝑣(𝑥, 𝑦)              (1) 

Since 𝑧 = 𝑥 + 𝑖𝑦, 𝑧̅ = 𝑥 − 𝑖𝑦, we have 

𝑥 =
𝑧 + 𝑧̅

2
, 𝑦 =

𝑧 − 𝑧̅

2𝑖
 

So 𝑓(𝑧) = 𝑢 (
𝑧 + 𝑧̅

2
,
𝑧 − 𝑧̅

2𝑖
) + 𝑖 𝑣 (

𝑧 + 𝑧̅

2
,
𝑧 − 𝑧̅

2𝑖
) 

Consider this as a formal identity in the two independent variables 𝑧, 𝑧̅. 

Putting  𝑧̅ = 𝑧, we get 

𝑓(𝑧) = 𝑢(𝑧, 0) + 𝑖 𝑣(𝑧, 0)             (2) 

(1) Is the same as (1), if we replace 𝑥 𝑏𝑦 𝑧 𝑎𝑛𝑑 𝑦 𝑏𝑦 0. 

                 Now 𝑓′(𝑧) =
𝜕𝑤

𝜕𝑥
=

𝜕

𝜕𝑥
(𝑢 + 𝑖𝑣) =

𝜕𝑢

𝜕𝑥
+ 𝑖

𝜕𝑣

𝜕𝑥
=

𝜕𝑢

𝜕𝑥
− 𝑖

𝜕𝑢

𝜕𝑦
 

(since 
𝜕𝑣

𝜕𝑥
= −

𝜕𝑢

𝜕𝑦
 from C − R equations) 

                  Let 
𝜕𝑢

𝜕𝑥
= ∅1(𝑥, 𝑦)and 

𝜕𝑢

𝜕𝑦
= ∅2(𝑥, 𝑦). 

 Then 𝑓′(𝑧) = ∅1(𝑥, 𝑦) − 𝑖 ∅2(𝑥, 𝑦)                     (3) 

 Now, to express 𝑓′(𝑧) completely in terms of 𝑧, we replace 𝑥 𝑏𝑦 𝑧 and 𝑦 by 0 in the 

expression (3). 

𝑓′(𝑧) = ∅1(𝑧, 0) − 𝑖 ∅2(𝑧, 0) 
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                   Hence 𝑓(𝑧) = ∫(∅1(𝑧, 0) − 𝑖 ∅2(𝑧, 0))𝑑𝑧 ± 𝐶 

Similarly, given the imaginary part 𝑣, we can find 𝑢 such that 𝑢 + 𝑖𝑣 is analytic. Let 

us use Milne-Thomson Method. 

               Now 𝑓′(𝑧) =
𝜕𝑤

𝜕𝑥
=

𝜕

𝜕𝑥
(𝑢 + 𝑖𝑣) =

𝜕𝑢

𝜕𝑥
+ 𝑖

𝜕𝑣

𝜕𝑥
=

𝜕𝑣

𝜕𝑦
+ 𝑖

𝜕𝑣

𝜕𝑥
 

(since 
𝜕𝑢

𝜕𝑥
=

𝜕𝑣

𝜕𝑦
 from C − R equations) 

                𝑓′(𝑧) = 𝜓1(𝑥, 𝑦) − 𝑖 𝜓2(𝑥, 𝑦) 

               where 
𝜕𝑣

𝜕𝑦
= 𝜓1(𝑥, 𝑦) and 

𝜕𝑣

𝜕𝑥
= 𝜓2(𝑥, 𝑦) 

Now, to express 𝑓′(𝑧) completely in terms of 𝑧, we replace 𝑥 𝑏𝑦 𝑧 and 𝑦 by 0 in the 

above expression 

𝑓′(𝑧) = 𝜓1(𝑧, 0) − 𝑖 𝜓2(𝑧, 0) 

                Hence           𝑓(𝑧) = ∫(𝜓1(𝑧, 0) − 𝑖 𝜓2(𝑧, 0))𝑑𝑧 ± 𝐶. 

 

1.13. The Complex Potential Function:  

We have seen that every analytic function𝑓(𝑧) = 𝑢(𝑥, 𝑦) + 𝑖 𝑣(𝑥, 𝑦) defines two 

families of curves 

   𝑢(𝑥, 𝑦) = 𝑐1 and 𝑣(𝑥, 𝑦) = 𝑐2 

which form an orthogonal system. This property of analytic functions is of great use in field 

and flow problems. We consider two dimensional regions in which there is sort of steady 

flow like fluid flow, heat flow or electric current flow. The paths of fluid particles are called 

stream lines and their orthogonal trajectories are termed as equi-potentials. 

In physical applications, the analytic function  

𝑤 = ∅(𝑥, 𝑦) + 𝑖 𝜓(𝑥, 𝑦) 

is referred to as the complex potential function. Its real part ∅(𝑥, 𝑦) represents the velocity 

potential function and the imaginary part 𝜓(𝑥, 𝑦) represents the stream function. Both ∅ and 

𝜓 will satisfy Laplace’s equation and given any one of them, we can find the other. 

Also the magnitude of the fluid velocity 𝑣 or the electric intensity  

𝐸 𝑖𝑠 |
𝑑𝑤

𝑑𝑧
| 

EX. 21. Show that the function 𝑢 =
1

2
𝑙𝑜𝑔(𝑥2 + 𝑦2) is harmonic and determine its conjugate. 

Solution: Given 𝑢 =
1

2
𝑙𝑜𝑔(𝑥2 + 𝑦2) 
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                  We have 
𝜕𝑢

𝜕𝑥
=

𝑥

𝑥2 + 𝑦2
,
𝜕𝑢

𝜕𝑦
=

𝑦

𝑥2 + 𝑦2
 

Now 
𝜕2𝑢

𝜕𝑥2
=

(𝑥2 + 𝑦2). 1 − 𝑥. 2𝑥

(𝑥2 + 𝑦2)2
=

𝑦2 − 𝑥2

(𝑥2 + 𝑦2)2
 

Similarly,
𝜕2𝑢

𝜕𝑦2
=

𝑥2 − 𝑦2

(𝑥2 + 𝑦2)2
 

Clearly,
𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
= 0. 

Hence 𝑢 is harmonic. Let 𝑣 be the conjugate of 𝑢. Then  

𝑑𝑣 =
𝜕𝑣

𝜕𝑥
𝑑𝑥 +

𝜕𝑣

𝜕𝑦
𝑑𝑦 

                                                              = −
𝜕𝑢

𝜕𝑦
𝑑𝑥 +

𝜕𝑢

𝜕𝑥
𝑑𝑦  (using 𝐶 − 𝑅 equations) 

                           =
−𝑦

𝑥2 + 𝑦2
𝑑𝑥 +

𝑥

𝑥2 + 𝑦2
𝑑𝑦 

=
𝑥𝑑𝑦 − 𝑦𝑑𝑥

𝑥2 + 𝑦2
 

                   =
𝑥2

𝑥2 + 𝑦2
(

𝑥𝑑𝑦 − 𝑦𝑑𝑥

𝑥2
) 

   =
𝑥2

𝑥2 + 𝑦2
𝑑 (

𝑦

𝑥
) 

   =
1

1 + (
𝑦
𝑥)

2 𝑑 (
𝑦

𝑥
)     = 𝑑 (𝑡𝑎𝑛−1

𝑦

𝑥
) 

Hence Integrating  

𝑣 = 𝑡𝑎𝑛−1
𝑦

𝑥
+ 𝐶 

 

EX. 22. Find the analytic function whose real part is 
𝑥

𝑥2+𝑦2. 

Solution: Let 𝑓(𝑧) = 𝑢 + 𝑖𝑣 where 𝑢 =
𝑥

𝑥2+𝑦2 

                   We have 
𝜕𝑢

𝜕𝑥
=

𝑦2 − 𝑥2

(𝑥2 + 𝑦2)2
,
𝜕𝑢

𝜕𝑦
= −

2𝑥𝑦

(𝑥2 + 𝑦2)2
  

Now 

𝑓′(𝑧) =
𝜕𝑤

𝜕𝑥
=

𝜕𝑢

𝜕𝑥
+ 𝑖

𝜕𝑣

𝜕𝑥
=

𝜕𝑢

𝜕𝑥
− 𝑖

𝜕𝑢

𝜕𝑦
 

=
𝑦2 − 𝑥2

(𝑥2 + 𝑦2)2
+ 𝑖

2𝑥𝑦

(𝑥2 + 𝑦2)2
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=
(𝑦 + 𝑖𝑥)2

(𝑥2 + 𝑦2)2
=

(𝑦 + 𝑖𝑥)2

(𝑦 + 𝑖𝑥)2(𝑦 − 𝑖𝑥)2
 

=
1

(𝑦 − 𝑖𝑥)2
=

𝑖2

(𝑖𝑦 + 𝑥)2
= −

1

𝑧2
 

Integrating, 𝑓(𝑧) =
1

𝑧
+ 𝑐 

 

EX. 23. Find the analytic function whose imaginary part is 𝑒𝑥(𝑥 𝑠𝑖𝑛 𝑦 + 𝑦 𝑐𝑜𝑠 𝑦). 

Solution: Let 𝑓(𝑧) = 𝑢 + 𝑖𝑣 where 𝑣 = 𝑒𝑥(𝑥 𝑠𝑖𝑛 𝑦 + 𝑦 𝑐𝑜𝑠 𝑦) 

We have 
𝜕𝑣

𝜕𝑥
= 𝑒𝑥( 𝑠𝑖𝑛 𝑦 + 𝑥 𝑠𝑖𝑛 𝑦 + 𝑦 𝑐𝑜𝑠 𝑦) 

and 
𝜕𝑣

𝜕𝑦
= 𝑒𝑥(𝑥 𝑐𝑜𝑠 𝑦 + 𝑐𝑜𝑠 𝑦 − 𝑦 𝑠𝑖𝑛 𝑦) 

Now 𝑓′(𝑧) =
𝜕𝑤

𝜕𝑥
=

𝜕𝑢

𝜕𝑥
+ 𝑖

𝜕𝑣

𝜕𝑥
=

𝜕𝑣

𝜕𝑦
+ 𝑖

𝜕𝑣

𝜕𝑥
 

= 𝑒𝑥(𝑥 𝑐𝑜𝑠 𝑦 + 𝑐𝑜𝑠 𝑦 − 𝑦 𝑠𝑖𝑛 𝑦) + 𝑖𝑒𝑥( 𝑠𝑖𝑛 𝑦 + 𝑥 𝑠𝑖𝑛 𝑦 + 𝑦 𝑐𝑜𝑠 𝑦) 

By Milne-Thomson’s method, 𝑓′(𝑧) is expressed in terms of 𝑧 by replacing 𝑥 by 𝑧 

and 𝑦 by 0. 

Hence 𝑓′(𝑧) = 𝑒𝑧(𝑧 + 1). 

Integrating, 𝑓(𝑧) = (𝑧 + 1)𝑒𝑧 − 𝑒𝑧 + 𝑐 = 𝑧𝑒𝑧 + 𝑐 

 where 𝑐 is a complex constant. 

 

EX. 24. Find the analytic function 𝑓(𝑧) = 𝑢 + 𝑖𝑣 of which the real part 

𝑢 = 𝑒𝑥(𝑥 𝑐𝑜𝑠 𝑦 − 𝑦 𝑠𝑖𝑛 𝑦) 

Solution: Given  

𝑢 = 𝑒𝑥(𝑥 𝑐𝑜𝑠 𝑦 − 𝑦 𝑠𝑖𝑛 𝑦) 

We have  

𝜕𝑢

𝜕𝑥
= 𝑒𝑥( 𝑐𝑜𝑠 𝑦 + 𝑥 𝑐𝑜𝑠 𝑦 − 𝑦 𝑠𝑖𝑛 𝑦) 

and 
𝜕𝑢

𝜕𝑦
= 𝑒𝑥(−𝑥 𝑠𝑖𝑛 𝑦 − 𝑠𝑖𝑛 𝑦 − 𝑦 𝑐𝑜𝑠 𝑦) 

Now 

𝑓′(𝑧) =
𝜕𝑤

𝜕𝑥
=

𝜕𝑢

𝜕𝑥
+ 𝑖

𝜕𝑣

𝜕𝑥
=

𝜕𝑢

𝜕𝑥
− 𝑖

𝜕𝑢

𝜕𝑦
 

= 𝑒𝑥( 𝑐𝑜𝑠 𝑦 + 𝑥 𝑐𝑜𝑠 𝑦 − 𝑦 𝑠𝑖𝑛 𝑦) − 𝑖𝑒𝑥(−𝑥 𝑠𝑖𝑛 𝑦 − 𝑠𝑖𝑛 𝑦 − 𝑦 𝑐𝑜𝑠 𝑦) 

By Milne-Thomson’s method, 𝑓′(𝑧) is expressed in terms of 𝑧 by replacing 𝑥 by 𝑧 

and 𝑦 by 0. 
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Hence 

𝑓′(𝑧) = 𝑒𝑧(𝑧 + 1) 

Integrating, 𝑓(𝑧) = (𝑧 + 1)𝑒𝑧 − 𝑒𝑧 + 𝑐 = 𝑧𝑒𝑧 + 𝑐 

 where 𝑐 is a complex constant. 

 

EX. 25. Find the analytic function 𝑓(𝑧) = 𝑢 + 𝑖𝑣 of which the real part 

𝑢 =
𝑠𝑖𝑛 2𝑥

𝑐𝑜𝑠ℎ 2𝑦 − 𝑐𝑜𝑠 2𝑥
 

Solution: Let 𝑓(𝑧) = 𝑢 + 𝑖𝑣, where 

𝑢 =
𝑠𝑖𝑛 2𝑥

𝑐𝑜𝑠ℎ 2𝑦 − 𝑐𝑜𝑠 2𝑥
 

 We have 
𝜕𝑢

𝜕𝑥
=

(𝑐𝑜𝑠ℎ 2𝑦 − 𝑐𝑜𝑠 2𝑥). 2𝑐𝑜𝑠 2𝑥 − 𝑠𝑖𝑛 2𝑥. (2 𝑠𝑖𝑛 2𝑥)

(𝑐𝑜𝑠ℎ 2𝑦 − 𝑐𝑜𝑠 2𝑥)2
 

  

and 
𝜕𝑢

𝜕𝑦
=

𝑠𝑖𝑛 2𝑥. (2 𝑠𝑖𝑛ℎ 2𝑦)

(𝑐𝑜𝑠ℎ 2𝑦 − 𝑐𝑜𝑠 2𝑥)2
 

Now 𝑓′(𝑧) =
𝜕𝑤

𝜕𝑥
=

𝜕𝑢

𝜕𝑥
+ 𝑖

𝜕𝑣

𝜕𝑥
=

𝜕𝑢

𝜕𝑥
− 𝑖

𝜕𝑢

𝜕𝑦
 

 

=
(𝑐𝑜𝑠ℎ 2𝑦 − 𝑐𝑜𝑠 2𝑥). 2𝑐𝑜𝑠 2𝑥 − 𝑠𝑖𝑛 2𝑥. (2 𝑠𝑖𝑛 2𝑥)

(𝑐𝑜𝑠ℎ 2𝑦 − 𝑐𝑜𝑠 2𝑥)2
− 𝑖

𝑠𝑖𝑛 2𝑥. (2 𝑠𝑖𝑛ℎ 2𝑦)

(𝑐𝑜𝑠ℎ 2𝑦 − 𝑐𝑜𝑠 2𝑥)2
 

By Milne-Thomson’s method, 𝑓′(𝑧) is expressed in terms of 𝑧 by replacing 𝑥 by 𝑧 

and 𝑦 by 0. 

Hence 

𝑓′(𝑧) =
2 𝑐𝑜𝑠 2𝑧 − 2

(1 − 𝑐𝑜𝑠 2𝑧)2
=

−2

1 − 𝑐𝑜𝑠 2𝑧
=

−2

2 𝑠𝑖𝑛2𝑧
= −𝑐𝑜𝑠𝑒𝑐2𝑧 

Integrating,  

𝑓(𝑧) = 𝑐𝑜𝑡 𝑧 + 𝑖𝑐 

Taking  the constant of integration as imaginary. Since 𝑢 does not contain any 

constant. 

 

EX. 26. An incompressible fluid flowing over the 𝑥𝑦-plane has the velocity potential  

∅ = 𝑥2 − 𝑦2 +
𝑥

𝑥2 + 𝑦2
 

Examine if this is possible and find a stream function 𝝍. 
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Solution: Given  

∅ = 𝑥2 − 𝑦2 +
𝑥

𝑥2 + 𝑦2
                     (1) 

Then 

𝜕∅

𝜕𝑥
= 2𝑥 +

(𝑥2 + 𝑦2). 1 − 𝑥. 2𝑥

(𝑥2 + 𝑦2)2
= 2𝑥 +

𝑦2 − 𝑥2

(𝑥2 + 𝑦2)2
                  (2) 

𝜕2∅

𝜕𝑥2
= 2 +

(𝑥2 + 𝑦2)2. (−2𝑥) − (𝑦2 − 𝑥2). 2(𝑥2 + 𝑦2). 2𝑥

(𝑥2 + 𝑦2)4
 

= 2 −
2𝑥(𝑥2 + 𝑦2 + 2𝑦2 − 2𝑥2)

(𝑥2 + 𝑦2)3
 

        = 2 −
2𝑥(3𝑦2 − 𝑥2)

(𝑥2 + 𝑦2)3
                       (3) 

𝜕∅

𝜕𝑦
= −2𝑦 −

𝑥. 2𝑦

(𝑥2 + 𝑦2)2
= −2𝑦 −

2𝑥𝑦

(𝑥2 + 𝑦2)2
                  (4) 

 

𝜕2∅

𝜕𝑦2
= −2 − 2𝑥 [

(𝑥2 + 𝑦2)2. 1 − 𝑦. 2(𝑥2 + 𝑦2). 2𝑦

(𝑥2 + 𝑦2)4
] 

           = −2 −
2𝑥. (𝑥2 − 3𝑦2)

(𝑥2 + 𝑦2)3
(5) 

Clearly 
𝜕2∅

𝜕𝑥2
+

𝜕2∅

𝜕𝑦2
= 0. 

That is ∅ satisfies Laplace’s equation. 

Hence it can be a possible form of the velocity potential function. 

To find the stream function 𝝍, we know that ∅ + 𝑖𝝍 is analytic. 

Therefore ∅ and 𝝍 satisfy C-R equations. 

𝑖𝑒. ,
𝜕ψ

𝜕𝑦
=

𝜕∅

𝜕𝑥
                     (6) 

𝑎𝑛𝑑 
𝜕ψ

𝜕𝑥
= −

𝜕∅

𝜕𝑦
               (7) 

Taking (7) and using the result given by (4), we have 

𝜕ψ

𝜕𝑥
= 2𝑦 +

2𝑥𝑦

(𝑥2 + 𝑦2)2
               (8) 

 Integrating with respect to 𝑥, we get 

𝜓 = 2𝑥𝑦 + ∫
2𝑥𝑦

(𝑥2 + 𝑦2)2
𝑑𝑥 + 𝐹(𝑦) 

where 𝐹(𝑦) is an arbitrary function of  𝑦. 



Complex Analysis 
 

39 
 

𝑖. 𝑒. , 𝜓 = 2𝑥𝑦 −
𝑦

𝑥2 + 𝑦2
+ 𝐹(𝑦)              (9) 

Differentiating (9) with respect to 𝑦, we get 

𝜕𝜓

𝜕𝑦
= 2𝑥 − [

(𝑥2 + 𝑦2). 1 − 𝑦. 2𝑦

(𝑥2 + 𝑦2)2
] + 𝐹′(𝑦) 

    = 2𝑥 +
𝑦2 − 𝑥2

(𝑥2 + 𝑦2)2
+ 𝐹′(𝑦)                    (10) 

But from (6) and (2), we have 

𝜕ψ

𝜕𝑦
=

𝜕∅

𝜕𝑥
= 2𝑥 +

𝑦2 − 𝑥2

(𝑥2 + 𝑦2)2
             (11) 

Comparing (10) and (11), we get 

𝐹′(𝑦) = 0 

𝑖. 𝑒. , 𝐹(𝑦) = 𝐶, an arbitrary constant. 

Hence from (9), 𝜓 = 2𝑥𝑦 −
𝑦

𝑥2+𝑦2 + 𝐶. 

Taking 𝐶 = 0, we get the simplest form of the stream function 

𝜓 = 2𝑥𝑦 −
𝑦

𝑥2 + 𝑦2
 

 

EX. 27. In a two dimensional fluid flow the stream function is  

𝜓 = −
𝑦

𝑥2 + 𝑦2
 

Find the velocity potential ∅. 

Solution: Given  

𝜓 = −
𝑦

𝑥2 + 𝑦2
 

is a stream function, i.e., it must satisfy Laplace’s equation, ∇2𝜓 = 0 

Now  

𝜓 = −
𝑦

𝑥2 + 𝑦2
 

We have  
𝜕ψ

𝜕𝑥
=

2𝑥𝑦

(𝑥2 + 𝑦2)2
 

𝜕ψ

𝜕𝑦
=

(𝑦2 − 𝑥2)

(𝑥2 + 𝑦2)2
 

𝜕2𝜓

𝜕𝑥2
=

2𝑦. (𝑦2 − 3𝑥2)

(𝑥2 + 𝑦2)3
 

𝜕2𝜓

𝜕𝑦2
= −

2𝑦. (𝑦2 − 3𝑥2)

(𝑥2 + 𝑦2)3
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∴
𝜕2𝜓

𝜕𝑥2
+

𝜕2𝜓

𝜕𝑦2
= 0 𝑜𝑟 ∇2𝜓 = 0 

Hence 𝜓 satisfy Laplace’s equation. 

Now ∅ is the velocity potential, let 𝑤 = ∅ + 𝑖𝜓 

𝑑𝑤

𝑑𝑧
=

𝜕𝑤

𝜕𝑥
=

𝜕∅

𝜕𝑥
+ 𝑖

𝜕𝜓

𝜕𝑥
=

𝜕𝜓

𝜕𝑦
+ 𝑖

𝜕𝜓

𝜕𝑥
 

=
(𝑦2 − 𝑥2)

(𝑥2 + 𝑦2)2
+ 𝑖

2𝑥𝑦

(𝑥2 + 𝑦2)2
 

By Milne-Thomson’s method, 𝑓′(𝑧) is expressed in terms of 𝑧 by replacing 𝑥 by 𝑧 and 𝑦 by 0. 

Hence 
𝑑𝑤

𝑑𝑧
= 𝑓′(𝑧) =

−1

𝑧2
 

Integrating, 

𝑤 = 𝑓(𝑧) =
1

𝑧
+ 𝑐 

Where 𝑐 is a complex constant. 

∅ + 𝑖𝜓 =
1

𝑧
+ 𝑐 =

1

𝑥 + 𝑖𝑦
+ 𝑐 

=
𝑥 − 𝑖𝑦

𝑥2 + 𝑦2
+ 𝑐 

                                              =
𝑥 − 𝑖𝑦

𝑥2 + 𝑦2
+ 𝑎 + 𝑖𝑏, 𝑤ℎ𝑒𝑟𝑒 𝑐 = 𝑎 + 𝑖𝑏 

Equating real parts on both sides, we get 

Velocity potential = ∅ =
𝑥

𝑥2+𝑦2 + 𝑎. 

 

EX. 28. If 𝑓(𝑧) = 𝑢 + 𝑖𝑣 is analytic function and 𝑢 − 𝑣 = 𝑒𝑥(𝑐𝑜𝑠 𝑦 − 𝑠𝑖𝑛 𝑦), find 𝑓(𝑧) in 

terms of 𝑧. 

Solution: Let 𝑓(𝑧) = 𝑢 + 𝑖𝑣                       (1) 

So that 𝑖𝑓(𝑧) = 𝑖𝑢 − 𝑣                  (2) 

Adding (1) and (2), we get 

(1 + 𝑖)𝑓(𝑧) = (𝑢 − 𝑣) + 𝑖(𝑢 + 𝑣) 

𝑖. 𝑒. , 𝐹(𝑧) = 𝑈 + 𝑖𝑉                  (3) 

Where 𝑈 = 𝑢 − 𝑣 , 𝑉 = 𝑢 + 𝑣 𝑎𝑛𝑑 𝐹(𝑧) = (1 + 𝑖)𝑓(𝑧) 

If 𝑓(𝑧) is analytic, then 𝐹(𝑧) is also analytic. 

Given 𝑈 = 𝑢 − 𝑣 = 𝑒𝑥(𝑐𝑜𝑠 𝑦 − 𝑠𝑖𝑛 𝑦) 

We have  
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𝜕𝑈

𝜕𝑥
= 𝑒𝑥(𝑐𝑜𝑠 𝑦 − 𝑠𝑖𝑛 𝑦) 

𝜕𝑈

𝜕𝑦
= 𝑒𝑥(−𝑐𝑜𝑠 𝑦 − 𝑠𝑖𝑛 𝑦) 

Now 𝐹′(𝑧) =
𝜕𝑈

𝜕𝑥
+ 𝑖

𝜕𝑉

𝜕𝑥
=

𝜕𝑈

𝜕𝑥
− 𝑖

𝜕𝑈

𝜕𝑦
 

                       = 𝑒𝑥(𝑐𝑜𝑠 𝑦 − 𝑠𝑖𝑛 𝑦) − 𝑖𝑒𝑥(−𝑐𝑜𝑠 𝑦 − 𝑠𝑖𝑛 𝑦) 

By Milne-Thomson’s method, 𝐹′(𝑧) is expressed in terms of 𝑧 by replacing 𝑥 by 𝑧 

and 𝑦 by 0. 

Hence 

𝐹′(𝑧) == 𝑒𝑧(1 + 𝑖) 
Integrating, 

𝐹(𝑧) = (1 + 𝑖)𝑒𝑧 + 𝐶 

𝑖. 𝑒. , (1 + 𝑖)𝑓(𝑧) = (1 + 𝑖)𝑒𝑧 + 𝐶 

𝑓(𝑧) = 𝑒𝑧 + 𝑐 where 𝑐 is a complex constant. 

 

EX. 29. If  𝑢 + 𝑣 =
𝑥

𝑥2+𝑦2, when 𝑓(1) = 1 and 𝑓(𝑧) is analytic function of 𝑧, find 𝑓(𝑧)in 

terms of 𝑧. 

Solution: Let 𝑓(𝑧) = 𝑢 + 𝑖𝑣                       (1) 

So that     𝑖𝑓(𝑧) = 𝑖𝑢 − 𝑣                  (2) 

Adding (1) and (2), we get 

(1 + 𝑖)𝑓(𝑧) = (𝑢 − 𝑣) + 𝑖(𝑢 + 𝑣) 

𝑖. 𝑒. , 𝐹(𝑧) = 𝑈 + 𝑖𝑉                  (3) 

Where 𝑈 = 𝑢 − 𝑣 , 𝑉 = 𝑢 + 𝑣 𝑎𝑛𝑑 𝐹(𝑧) = (1 + 𝑖)𝑓(𝑧) 

If 𝑓(𝑧) is analytic, then 𝐹(𝑧) is also analytic. 

Here 𝑉 = 𝑢 + 𝑣 =
𝑥

𝑥2 + 𝑦2
 

We have 

𝜕𝑉

𝜕𝑥
=

𝑦2 − 𝑥2

(𝑥2 + 𝑦2)2
 

𝜕𝑉

𝜕𝑦
= −

2𝑥𝑦

(𝑥2 + 𝑦2)2
 

Now         𝐹′(𝑧) =
𝜕𝑈

𝜕𝑥
+ 𝑖

𝜕𝑉

𝜕𝑥
=

𝜕𝑉

𝜕𝑦
+ 𝑖

𝜕𝑉

𝜕𝑥
 

                              = −
2𝑥𝑦

(𝑥2 + 𝑦2)2
+ 𝑖

𝑦2 − 𝑥2

(𝑥2 + 𝑦2)2
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By Milne-Thomson’s method, 𝐹′(𝑧) is expressed in terms of 𝑧 by replacing 𝑥 by 𝑧 

and 𝑦 by 0. 

Hence 

𝐹′(𝑧) =
−𝑖

𝑧2
 

Integrating, 

𝐹(𝑧) =
𝑖

𝑧
+ 𝐶 

𝑖. 𝑒. , (1 + 𝑖)𝑓(𝑧) =
𝑖

𝑧
+ 𝐶 

𝑓(𝑧) =
𝑖

1 + 𝑖

1

𝑧
+ 𝑐 𝑤ℎ𝑒𝑟𝑒 𝑐 is a complex constant. 

 

EX.30. If 𝑢 + 𝑣 = (𝑥 − 𝑦)(𝑥2 + 4𝑥𝑦 + 𝑦2) and 𝑓(𝑧) is analytic function of 𝑧, find 𝑓(𝑧) in 

terms of 𝑧. 

Solution: Let     𝑓(𝑧) = 𝑢 + 𝑖𝑣                                     (1) 

So that      𝑖𝑓(𝑧) = 𝑖𝑢 − 𝑣                                (2) 

Adding (1) and (2), we get 

(1 + 𝑖)𝑓(𝑧) = (𝑢 − 𝑣) + 𝑖(𝑢 + 𝑣) 

𝑖. 𝑒. , 𝐹(𝑧) = 𝑈 + 𝑖𝑉                  (3) 

Where 𝑈 = 𝑢 − 𝑣 , 𝑉 = 𝑢 + 𝑣 𝑎𝑛𝑑 𝐹(𝑧) = (1 + 𝑖)𝑓(𝑧) 

If 𝑓(𝑧) is analytic, then 𝐹(𝑧) is also analytic. 

 Here 𝑉 = 𝑢 + 𝑣 = (𝑥 − 𝑦)(𝑥2 + 4𝑥𝑦 + 𝑦2) 

We have 

𝜕𝑉

𝜕𝑥
= (𝑥 − 𝑦)(2𝑥 + 4𝑦) + (𝑥2 + 4𝑥𝑦 + 𝑦2) 

𝜕𝑉

𝜕𝑦
= (𝑥 − 𝑦)(4𝑥 + 2𝑦) − (𝑥2 + 4𝑥𝑦 + 𝑦2) 

Now 𝐹′(𝑧) =
𝜕𝑈

𝜕𝑥
+ 𝑖

𝜕𝑉

𝜕𝑥
=

𝜕𝑉

𝜕𝑦
+ 𝑖

𝜕𝑉

𝜕𝑥
 

= (𝑥 − 𝑦)(4𝑥 + 2𝑦) − (𝑥2 + 4𝑥𝑦 + 𝑦2) + 𝑖[(𝑥 − 𝑦)(2𝑥 + 4𝑦) + (𝑥2 + 4𝑥𝑦 + 𝑦2)] 

By Milne-Thomson’s method, 𝐹′(𝑧) is expressed in terms of 𝑧 by replacing 𝑥 by 𝑧 

and 𝑦 by 0. 

Hence 

𝐹′(𝑧) = 3(1 + 𝑖)𝑧2 

Integrating, 

𝐹(𝑧) = (1 + 𝑖)𝑧3 + 𝐶 
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𝑖. 𝑒. , (1 + 𝑖)𝑓(𝑧) = (1 + 𝑖)𝑧3 + 𝐶 

𝑓(𝑧) = 𝑧3 + 𝑐 𝑤ℎ𝑒𝑟𝑒 𝑐 𝑖𝑠 𝑎 𝑐𝑜𝑚𝑝𝑙𝑒𝑥 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 

 

𝐄𝐗. 𝟑𝟏.  If 𝑢 + 𝑣 =
2 𝑠𝑖𝑛 2𝑥

𝑒2𝑦 + 𝑒−2𝑦 − 2 𝑐𝑜𝑠 2𝑥
 and 𝑓(𝑧) is analytic function of 𝑧, find 𝑓(𝑧)  

in terms of 𝑧. 

Solution: Let 𝑓(𝑧) = 𝑢 + 𝑖𝑣                                        (1) 

So that      𝑖𝑓(𝑧) = 𝑖𝑢 − 𝑣                                (2) 

Adding (1) and (2), we get 

(1 + 𝑖)𝑓(𝑧) = (𝑢 − 𝑣) + 𝑖(𝑢 + 𝑣) 

𝑖. 𝑒. , 𝐹(𝑧) = 𝑈 + 𝑖𝑉                  (3) 

Where 𝑈 = 𝑢 − 𝑣 , 𝑉 = 𝑢 + 𝑣 𝑎𝑛𝑑 𝐹(𝑧) = (1 + 𝑖)𝑓(𝑧) 

If 𝑓(𝑧) is analytic, then 𝐹(𝑧) is also analytic. 

𝐻𝑒𝑟𝑒 𝑉 = 𝑢 + 𝑣 =
2 𝑠𝑖𝑛 2𝑥

𝑒2𝑦 + 𝑒−2𝑦 − 2 𝑐𝑜𝑠 2𝑥
=

 𝑠𝑖𝑛 2𝑥

𝑐𝑜𝑠ℎ 2𝑦 − 𝑐𝑜𝑠 2𝑥
 

We have 

𝜕𝑉

𝜕𝑥
=

(𝑐𝑜𝑠ℎ 2𝑦 − 𝑐𝑜𝑠 2𝑥). 2 𝑐𝑜𝑠 2𝑥 − 𝑠𝑖𝑛 2𝑥. 2 𝑠𝑖𝑛 2𝑥

(𝑐𝑜𝑠ℎ 2𝑦 − 𝑐𝑜𝑠 2𝑥)2
 

=
2 𝑐𝑜𝑠 2𝑥. 𝑐𝑜𝑠ℎ 2𝑦 − 2

(𝑐𝑜𝑠ℎ 2𝑦 − 𝑐𝑜𝑠 2𝑥)2
 

𝜕𝑉

𝜕𝑦
=

2 𝑠𝑖𝑛 2𝑥. 𝑠𝑖𝑛ℎ 2𝑦

(𝑐𝑜𝑠ℎ 2𝑦 − 𝑐𝑜𝑠 2𝑥)2
 

𝑁𝑜𝑤 𝐹′(𝑧) =
𝜕𝑈

𝜕𝑥
+ 𝑖

𝜕𝑉

𝜕𝑥
=

𝜕𝑉

𝜕𝑦
+ 𝑖

𝜕𝑉

𝜕𝑥
 

=
2 𝑠𝑖𝑛 2𝑥. 𝑠𝑖𝑛ℎ 2𝑦

(𝑐𝑜𝑠ℎ 2𝑦 − 𝑐𝑜𝑠 2𝑥)2
+ 𝑖

2 𝑐𝑜𝑠 2𝑥. 𝑐𝑜𝑠ℎ 2𝑦 − 2

(𝑐𝑜𝑠ℎ 2𝑦 − 𝑐𝑜𝑠 2𝑥)2
 

By Milne-Thomson’s method, 𝐹′(𝑧) is expressed in terms of 𝑧 by replacing 𝑥 by 𝑧 

and 𝑦 by 0. 

Hence 

𝐹′(𝑧) = 2𝑖
𝑐𝑜𝑠 2𝑧 − 1

(1 − 𝑐𝑜𝑠 2𝑧)2
=

−2𝑖

1 − 𝑐𝑜𝑠 2𝑧
 

=
−2𝑖

2 𝑠𝑖𝑛2𝑧
= −𝑖 𝑐𝑜𝑠𝑒𝑐2𝑧 

Integrating, 

𝐹(𝑧) = 𝑖 𝑐𝑜𝑡 𝑧 + 𝐶 

𝑖. 𝑒. , (1 + 𝑖)𝑓(𝑧) = 𝑖 𝑐𝑜𝑡 𝑧 + 𝐶 
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𝑓(𝑧) =
𝑖

1 + 𝑖
 𝑐𝑜𝑡 𝑧 + 𝑐 where 𝑐 is a complex constant. 

 

𝐄𝐗. 𝟑𝟐. If 𝑢 − 𝑣 =
cos  𝑥+𝑠𝑖𝑛 𝑥−𝑒−𝑦

2 𝑐𝑜𝑠 𝑥−𝑒𝑦−𝑒−𝑦  ,  when 𝑓 (
𝜋

2
) = 0 and 𝑓(𝑧) is analytic function of 𝑧, 

find 𝑓(𝑧) in terms of z. 

Solution: Let    𝑓(𝑧) = 𝑢 + 𝑖𝑣                                     (1) 

So that      𝑖𝑓(𝑧) = 𝑖𝑢 − 𝑣                                (2) 

Adding (1) and (2), we get 

(1 + 𝑖)𝑓(𝑧) = (𝑢 − 𝑣) + 𝑖(𝑢 + 𝑣) 

𝑖. 𝑒. , 𝐹(𝑧) = 𝑈 + 𝑖𝑉                  (3) 

Where 𝑈 = 𝑢 − 𝑣 , 𝑉 = 𝑢𝑣 𝑎𝑛𝑑 𝐹(𝑧) = (1 + 𝑖)𝑓(𝑧) 

If 𝑓(𝑧) is analytic, then 𝐹(𝑧) is also analytic. 

Given 𝑈 = 𝑢 − 𝑣 =
cos  𝑥 + 𝑠𝑖𝑛 𝑥 − 𝑒−𝑦

2 𝑐𝑜𝑠 𝑥 − 𝑒𝑦 − 𝑒−𝑦
=

cos  𝑥 + 𝑠𝑖𝑛 𝑥 − 𝑒−𝑦

2 (𝑐𝑜𝑠 𝑥 −  𝑐𝑜𝑠ℎ 𝑦)
 

We have  

𝜕𝑈

𝜕𝑥
=

( 𝑐𝑜𝑠 𝑥 − 𝑐𝑜𝑠ℎ 𝑦). (cos  𝑥 − 𝑠𝑖𝑛 𝑥) + (cos  𝑥 + 𝑠𝑖𝑛 𝑥 − 𝑒−𝑦). (𝑠𝑖𝑛 𝑥)

2(𝑐𝑜𝑠 𝑥 − 𝑐𝑜𝑠ℎ 𝑦)2
 

         
𝜕𝑈

𝜕𝑦
=

(𝑐𝑜𝑠 𝑥 − 𝑐𝑜𝑠ℎ 𝑦). 𝑒−𝑦 + (cos  𝑥 + 𝑠𝑖𝑛 𝑥 − 𝑒−𝑦). (𝑠𝑖𝑛ℎ 𝑦)

2(𝑐𝑜𝑠 𝑥 − 𝑐𝑜𝑠ℎ 𝑦)2
 

Now 𝐹′(𝑧) =
𝜕𝑈

𝜕𝑥
+ 𝑖

𝜕𝑉

𝜕𝑥
=

𝜕𝑈

𝜕𝑥
− 𝑖

𝜕𝑈

𝜕𝑦
 

=
( 𝑐𝑜𝑠 𝑥 − 𝑐𝑜𝑠ℎ 𝑦). (cos  𝑥 − 𝑠𝑖𝑛 𝑥) + (cos  𝑥 + 𝑠𝑖𝑛 𝑥 − 𝑒−𝑦). (𝑠𝑖𝑛 𝑥)

2(𝑐𝑜𝑠 𝑥 − 𝑐𝑜𝑠ℎ 𝑦)2

− 𝑖
(𝑐𝑜𝑠 𝑥 − 𝑐𝑜𝑠ℎ 𝑦). 𝑒−𝑦 + (cos  𝑥 + 𝑠𝑖𝑛 𝑥 − 𝑒−𝑦). (𝑠𝑖𝑛ℎ 𝑦)

2(𝑐𝑜𝑠 𝑥 − 𝑐𝑜𝑠ℎ 𝑦)2
 

By Milne-Thomson’s method, 𝐹′(𝑧) is expressed in terms of 𝑧 by replacing 𝑥 by 𝑧 

and 𝑦 by 0. 

Hence 

𝐹′(𝑧) =
(𝑐𝑜𝑠 𝑧 − 1). (𝑐𝑜𝑠 𝑧 − 𝑠𝑖𝑛 𝑧) + (𝑐𝑜𝑠 𝑧 + 𝑠𝑖𝑛 𝑧 − 1). 𝑠𝑖𝑛 𝑧

2(𝑐𝑜𝑠 𝑧 − 1)2
− 𝑖

(𝑐𝑜𝑠 𝑧 − 1)

2(𝑐𝑜𝑠 𝑧 − 1)2
 

= (1 + 𝑖)
1

2(1 − 𝑐𝑜𝑠 𝑧)
= (1 + 𝑖)

1

4
𝑐𝑜𝑠𝑒𝑐2

𝑧

2
 

Integrating, 

𝐹(𝑧) = −
(1 + 𝑖)

2
𝑐𝑜𝑡 

𝑧

2
+ 𝐶 
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𝑖. 𝑒. , (1 + 𝑖)𝑓(𝑧) = −
(1 + 𝑖)

2
𝑐𝑜𝑡 

𝑧

2
+ 𝐶 

𝑓(𝑧) = −
1

2
𝑐𝑜𝑡 

𝑧

2
+ 𝑐 

Given 𝑓 (
𝜋

2
) = 0, then 

𝑓 (
𝜋

2
) = −

1

2
𝑐𝑜𝑡 

𝜋

4
+ 𝑐 

0 = −
1

2
 + 𝑐 

𝑐 =
1

2
 

Hence 

𝑓(𝑧) =
1

2
(1 − 𝑐𝑜𝑡 

𝑧

2
) 
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Unit-II 

INTEGRATION IN THE COMPLEX PLANE 

 

2.1. Introduction:  

In our usual study of the subject of calculus, we practically very often relate the 

definite integral most closely to differentiation, thus forgetting the real meaning of the 

definite integral. This is because most of the definite integrals relating to functions of a real 

variable can be evaluated by knowing their antiderivatives. But in the case of functions of a 

complex variable, certain integrals of analytic functions can be evaluated without knowing 

the antiderivatives. For this purpose, it is very necessary that the definition of the definite 

integral must be thoroughly understood. Because of the two dimensional character of 

complex variables, first we shall develop the idea of a definite integral in the real cartesian 

plane. 

 

2.2  Line Integrals:  

Let 𝑓(𝑥, 𝑦) be a real function of the real variables 𝑥 and 𝑦, continuous in both 𝑥 and 𝑦 

and 𝐶 be a continuous curve of finite length with initial point 𝐴(𝑥0,  𝑦0) and terminal point 

𝐵(𝑥𝑛 ,  𝑦𝑛). 𝑓(𝑥, 𝑦) has no relation to the equation of 𝐶 and is merely a function defined at 

every point in some region of the 𝑥𝑦-plane containing the curve 𝐶. Further, the curve 𝐶 is 

such that it is cut by a line parallel to either coordinate axis in only one point. 

We divide the arc 𝐴𝐵 into 𝑛 arcs ∆𝑠1, ∆𝑠2, … . . ∆𝑠𝑛 whose projections on the 𝑥-axis 

are ∆𝑥1, ∆𝑥2, … . . ∆𝑥𝑛 and whose projections on the 𝑦-axis are ∆𝑦1, ∆𝑦2, … . . ∆𝑦𝑛 respectively 

as shown in fig. 1. Let ∆𝑠𝑘 be a typical arc and (𝑥𝑘, 𝑦𝑘) be the coordinates of an arbitrary 

point in it. 

We find the value of the function 𝑓(𝑥, 𝑦) ate each of the points (𝑥𝑘, 𝑦𝑘) and form the 

products 𝑓(𝑥𝑘, 𝑦𝑘). ∆𝑠𝑘, 𝑓(𝑥𝑘, 𝑦𝑘). ∆𝑥𝑘 and 𝑓(𝑥𝑘, 𝑦𝑘). ∆𝑦𝑘 . On assuming these products over 

all the subdivisions of the arc 𝐴𝐵, we have the sums 

∑ 𝑓(𝑥𝑘, 𝑦𝑘). ∆𝑠𝑘

𝑛

𝑘=1

, ∑ 𝑓(𝑥𝑘, 𝑦𝑘). ∆𝑥𝑘

𝑛

𝑘=1

 𝑎𝑛𝑑 ∑ 𝑓(𝑥𝑘, 𝑦𝑘). ∆𝑦𝑘

𝑛

𝑘=1

 

The limiting values of these sums as 𝑛 becomes infinite in such a way that each ∆𝑠𝑘 

approaches zero are known as line integrals. 
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They are written as 

∫ 𝑓(𝑥, 𝑦)𝑑𝑠 

𝐶

,    ∫ 𝑓(𝑥, 𝑦)𝑑𝑥 

𝐶

  and ∫ 𝑓(𝑥, 𝑦)𝑑𝑦 

𝐶

respectively. 

𝐶 is called the field of integration. 

 

 

 From these definitions, it is clear that the following familiar properties of ordinary 

definite integrals are true for the integrals, provided that the curve joining 𝐴 and 𝐵 remains 

the same: 

∫ 𝑐

𝐵

𝐴

 𝐹 𝑑𝑡 = 𝑐 ∫ 𝐹

𝐵

𝐴

 𝑑𝑡, 𝑐 being any constant . 

∫ 𝐹

𝐵

𝐴

 𝑑𝑡 = − ∫ 𝐹

𝐴

𝐵

 𝑑𝑡 

∫(𝐹1 ± 𝐹2)

𝐵

𝐴

 𝑑𝑡 = ∫ 𝐹1

𝐵

𝐴

 𝑑𝑡 ± ∫ 𝐹2

𝐵

𝐴

 𝑑𝑡 

∫ 𝐹

𝐵

𝐴

 𝑑𝑡 = ∫ 𝐹

𝐶

𝐴

 𝑑𝑡 + ∫ 𝐹

𝐵

𝐶

 𝑑𝑡 

The ordinary real definite integral like ∫ 𝑓(𝑥)
𝑏

𝑎
 𝑑𝑥 can be regarded as a line integral 

in which the integrand is a function of 𝑥 alone and the curve 𝐶 is the 𝑥-axis. Also, the 
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evaluation of line integrals can be reduced to the evaluation of ordinary definite integrals, as 

shown in the following examples. 

 

EX.1. Evaluate 

∫ 𝑥𝑦

(1,   2)

(0,   0)

 𝑑𝑠 

along the three different paths shown in the figure below. 

    

Solution:  (i) Let us first integrate from (0, 0) to (1, 2) along the parabola 𝑦2 = 4𝑥. 

Differentiating the curve’s equation with respect to 𝑥, we get 

2𝑦
𝑑𝑦

𝑑𝑥
= 4 𝑖. 𝑒. ,

𝑑𝑦

𝑑𝑥
=

2

𝑦
 

We know that 

(
𝑑𝑠

𝑑𝑥
)

2

= 1 + (
𝑑𝑦

𝑑𝑥
)

2

 

 𝑖. 𝑒. , (
𝑑𝑠

𝑑𝑥
)

2

= 1 +
4

𝑦2 = 1 +
4

4𝑥
=

𝑥+1

𝑥
 

∴
𝑑𝑠

𝑑𝑥
=

√𝑥 + 1

√𝑥
 𝑜𝑟 𝑑𝑠 =

√𝑥 + 1

√𝑥
 𝑑𝑥  

Also 𝑦 = 2√𝑥 along the path 𝑂𝑃. We can now express the line integral completely in 

terms of 𝑥. 

∫ 𝑥𝑦

(1,   2)

(0,   0)

 𝑑𝑠 = ∫ 𝑥

𝑥=1

𝑥=0

. 2√𝑥.
√𝑥 + 1

√𝑥
 𝑑𝑥  

= 2 ∫ 𝑥

1

0

√𝑥 + 1 𝑑𝑥 

Put 𝑥 + 1 = 𝑢2then 𝑑𝑥 = 2𝑢 𝑑𝑢 

When 𝑥 = 1, 𝑢 = √2 and when 𝑥 = 0, 𝑢 = 1. 
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∴ ∫ 𝑥𝑦

(1,   2)

(0,   0)

 𝑑𝑠 = 2 ∫ (𝑢2 − 1)

√2

1

𝑢. 2𝑢 𝑑𝑢 

   = 2 ∫ (𝑢4 − 𝑢2)

√2

1

𝑑𝑢 

                      =
8

15
(√2 + 1)                        (1) 

(ii) Let us now evaluate the line integral along the rectilinear path 𝑂𝑀𝑃. We do the 

integration in two stages. 

∫ 𝑥𝑦

𝑃(1,   2)

𝑂(0,   0)

 𝑑𝑠 = ∫ 𝑥𝑦

𝑀(1,   0)

𝑂(0,   0)

 𝑑𝑠 + ∫ 𝑥𝑦

𝑃(1,   2)

𝑀(1,   0)

 𝑑𝑠 

Along the first path 𝑂𝑀, 𝑑𝑠 = 𝑑𝑥 and 𝑦 = 0. 

∴ ∫ 𝑥𝑦

𝑀(1,   0)

𝑂(0,   0)

 𝑑𝑠 = ∫ 𝑥

𝑥=1

𝑥=0

. 0 𝑑𝑥 = 0 

Along the path 𝑀𝑃, 𝑑𝑠 = 𝑑𝑦 and 𝑥 = 1. 

∴ ∫ 𝑥𝑦

𝑃(1,   2)

𝑀(1,   0)

 𝑑𝑠 = ∫ 1

𝑦=2

𝑦=0

. 𝑦. 𝑑𝑦 = [
𝑦2

2
]

0

2

= 2 

𝐻𝑒𝑛𝑐𝑒 ∫ 𝑥𝑦

𝑃(1,   2)

𝑂(0,   0)

 𝑑𝑠 = 0 + 2 = 2                      (2) 

(iii) Let us now evaluate the line integral along 𝑂𝑁𝑃. 

∫ 𝑥𝑦

𝑃(1,   2)

𝑂(0,   0)

 𝑑𝑠 = ∫ 𝑥𝑦

𝑁(0,   2)

𝑂(0,   0)

 𝑑𝑠 + ∫ 𝑥𝑦

𝑃(1,   2)

𝑁(0,   2)

 𝑑𝑠 

Along the first path 𝑂𝑁, 𝑥 = 0 and 𝑑𝑠 = 𝑑𝑦. So the value of the first integral will be 

equal to zero. 

Along 𝑁𝑃, 𝑦 = 2 and 𝑑𝑠 = 𝑑𝑥. 

Hence the second integral 

= ∫ 𝑥

𝑥=1

𝑥=0

. 2 𝑑𝑥 = 1 
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∴ ∫ 𝑥𝑦

𝑃(1,   2)

𝑂(0,   0)

 𝑑𝑠 = 0 + 1 = 1                 (3) 

From results (1), (2) and (3), we find that, in general, a line integral depends not only on the  

terminal points of integration but also upon the particular path which joins them. 

 

Note: If the paths were traversed in the opposite sense i.e., from (1, 2) to (0, 0), the values of 

the integral will be  

−
8

15
(√2 + 1), −2 and − 1 respectively. 

 

EX.2. Find the value of  

∫ [𝑥2𝑦𝑑𝑥 + (𝑥2 − 𝑦2)𝑑𝑦]

(1,   3)

(0,   0)

 

along (i) 𝑦 = 3𝑥2              (ii) 𝑦 = 3𝑥. 

Solution: Let 𝐼 denote the given line integral. It can be changed completely in terms of 𝑥. 

(i) Since 𝑦 = 3𝑥2 then 𝑑𝑦 = 6𝑥 𝑑𝑥 

Substituting for 𝑦 and 𝑑𝑦 in terms of 𝑥, we have 

𝐼 = ∫ [3𝑥4𝑑𝑥 + (𝑥2 − 9𝑥4)6𝑥 𝑑𝑥]

𝑥=1

𝑥=0

 

   = ∫ (3𝑥4 + 6𝑥3 − 54𝑥5)

𝑥=1

𝑥=0

𝑑𝑥 

   = [
3𝑥5

5
+

6𝑥4

4
−

54𝑥6

6
]

0

1

= −
69

10
 

 

(ii) Since 𝑦 = 3𝑥 then 𝑑𝑦 = 3𝑑𝑥 

Substituting for 𝑦 and 𝑑𝑦 in terms of 𝑥, we have 

𝐼 = ∫ [3𝑥3𝑑𝑥 + (𝑥2 − 9𝑥2)3 𝑑𝑥]

𝑥=1

𝑥=0

 

    = ∫ (3𝑥3 − 24𝑥2)

𝑥=1

𝑥=0

𝑑𝑥 

     = [
3𝑥4

4
−

24𝑥3

3
]

0

1

= −
29

4
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EX.3. Find the value of  

∫ [3𝑥2𝑦𝑑𝑥 + (𝑥3 − 3𝑦2)𝑑𝑦]

(1,   3)

(0,   0)

 

along (i) 𝑦 = 3𝑥2              (ii) 𝑦 = 3𝑥. 

Solution: Let 𝐼 denote the given line integral. It can be changed completely in terms of 𝑥. 

(i) Since 𝑦 = 3𝑥2 then 𝑑𝑦 = 6𝑥 𝑑𝑥 

Substituting for 𝑦 and 𝑑𝑦 in terms of 𝑥, we have 

𝐼 = ∫ [9𝑥4𝑑𝑥 + (𝑥3 − 27𝑥4)6𝑥 𝑑𝑥]

𝑥=1

𝑥=0

 

= ∫ (15𝑥4 − 162𝑥5)

𝑥=1

𝑥=0

𝑑𝑥 

= [
15𝑥5

5
−

162𝑥6

6
]

0

1

= −24 

(ii) Since 𝑦 = 3𝑥 then 𝑑𝑦 = 3𝑑𝑥 

Substituting for 𝑦 and 𝑑𝑦 in terms of 𝑥, we have 

𝐼 = ∫ [9𝑥3𝑑𝑥 + (𝑥3 − 27𝑥2)3 𝑑𝑥]

𝑥=1

𝑥=0

 

    = ∫ (12𝑥3 − 81𝑥2)

𝑥=1

𝑥=0

𝑑𝑥 

    = [
12𝑥4

4
−

81𝑥3

3
]

0

1

= −24 

Note: The two values of𝐼 in this problem are the same. In fact, we can verfy that the value of 

𝐼 over any other path connecting the points (0, 0) and (1, 3) is also −24.  Thus the value of 

this integral depends only on the end points and not upon the curve joining them. The reason 

for this remarkable behaviour will be learnt later on. 

 

𝑬𝑿. 𝟒. Evaluate ∫ (𝑥2 − 𝑖𝑦)

1+𝑖

0

𝑑𝑧 along the paths (𝑖) 𝑦 = 𝑥   (𝑖𝑖) 𝑦 = 𝑥2. 

Solution: (𝑖) Along 𝑂𝐵 whose equation is 𝑦 = 𝑥 ⇒ 𝑑𝑦 = 𝑑𝑥 and 𝑥 varies from 0 to 1. 
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                     ∴  ∫ (𝑥2 − 𝑖𝑦)

1+𝑖

0

𝑑𝑧 = ∫ (𝑥2 − 𝑖𝑦)

(1,1)

(0,0)

(𝑑𝑥 + 𝑖 𝑑𝑦) 

                    ∴  ∫(𝑥2 − 𝑖𝑦)

𝑂𝐵

𝑑𝑧 = ∫ (𝑥2 − 𝑖𝑦)

1

𝑥=0

(𝑑𝑥 + 𝑖 𝑑𝑦) 

                   = ∫ (𝑥2 − 𝑖𝑥)

1

𝑥=0

(𝑑𝑥 + 𝑖 𝑑𝑥)               = (1 + 𝑖) ∫ (𝑥2 − 𝑖𝑥)

1

𝑥=0

𝑑𝑥 

                                                          = (1 + 𝑖) [
𝑥3

3
− 𝑖

𝑥2

2
]

0

1

 

                                                            = (1 + 𝑖) (
1

3
−

𝑖

2
) 

(𝑖𝑖) Along the parabola whose equation is 𝑦 = 𝑥2 ⇒ 𝑑𝑦 = 2𝑥 𝑑𝑥. 

                     Now ∫ (𝑥2 − 𝑖𝑦)

1+𝑖

0

𝑑𝑧 = ∫ (𝑥2 − 𝑖𝑦)

(1,1)

(0,0)

(𝑑𝑥 + 𝑖 𝑑𝑦) 

                           ∴  ∫(𝑥2 − 𝑖𝑦)

𝑂𝐶

𝑑𝑧 = ∫(𝑥2 − 𝑖𝑥2)

1

𝑥=0

(𝑑𝑥 + 𝑖2𝑥 𝑑𝑥) 

                                                               = (1 − 𝑖) ∫ 𝑥2

1

𝑥=0

(1 + 2𝑖𝑥)𝑑𝑥 

                                                               = (1 − 𝑖) ∫ (𝑥2 + 2𝑖𝑥3)

1

𝑥=0

𝑑𝑥 

                                                               = (1 − 𝑖) [
𝑥3

3
+ 𝑖

𝑥4

2
]

0

1

 

                                                               = (1 − 𝑖) (
1

3
+

𝑖

2
) 
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EX.5. Integrate 𝑓(𝑧) = 𝑥2 + 𝑖𝑥𝑦 from 𝐴(1, 1)to 𝐵(2, 8) along 

(i) The straight line 𝐴𝐵 (ii) The curve 𝐶: 𝑥 = 𝑡, 𝑦 = 𝑡3 

𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧: (i) ∫ 𝑓(𝑧)

𝐶

𝑑𝑧 = ∫ (𝑥2 + 𝑖𝑥𝑦)

(2,8)

(1,1)

(𝑑𝑥 + 𝑖𝑑𝑦) 

Along 𝐴𝐵: Equation of 𝐴𝐵 passing through 𝐴(1, 1)to 𝐵(2, 8) is 

𝑦 − 1

8 − 1
=

𝑥 − 1

2 − 1
⇒ 𝑦 = 7𝑥 − 6 and 𝑑𝑦 = 7𝑑𝑥 

∴  ∫ 𝑓(𝑧)

𝐴𝐵

𝑑𝑧 = ∫ [𝑥2 + 𝑖𝑥(7𝑥 − 6)](𝑑𝑥 + 7𝑖𝑑𝑥)

2

𝑥=1

 

                          = (7𝑖 + 1) ∫[(7𝑖 + 1)𝑥2 − 6𝑖𝑥]

2

𝑥=1

𝑑𝑥 

                          = (7𝑖 + 1) [(7𝑖 + 1)
𝑥3

3
− 3𝑖𝑥2]

1

2

 

                          =
7𝑖 + 1

3
(22𝑖 + 7) 

 

 (ii) Along 𝐶 whose parametric equations are  

                                              𝑥 = 𝑡, 𝑦 = 𝑡3 

Then 𝑑𝑥 = 𝑑𝑡, 𝑑𝑦 = 3𝑡2𝑑𝑡 

𝐴(1, 1) ⇒ 𝑡 = 1 and  𝐵(2, 8) ⇒ 𝑡 = 2 

              ∫ 𝑓(𝑧)

𝐶

𝑑𝑧 = ∫ (𝑥2 + 𝑖𝑥𝑦)

(2,8)

(1,1)

(𝑑𝑥 + 𝑖𝑑𝑦) 

∴          ∫ 𝑓(𝑧)

𝐶

𝑑𝑧 = ∫ (𝑡2 + 𝑖𝑡4)

𝑡=2

𝑡=1

(𝑑𝑡 + 𝑖3𝑡2𝑑𝑡) 

                                    = ∫(𝑡2 + 𝑖𝑡4)

2

1

(1 + 𝑖3𝑡2) 𝑑𝑡 

                                    = ∫(𝑡2 + 𝑖𝑡4 + 3𝑖𝑡4 − 3𝑡6)

2

1

𝑑𝑡 

                                    = ∫[𝑡2 + (1 + 3𝑖)𝑡4 − 3𝑡6]

2

1

𝑑𝑡 
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                                    = [
𝑡3

3
+ (1 + 3𝑖)

𝑡5

5
− 3

𝑡7

7
]

1

2

 

                                    =
1

105
[−4818 + 𝑖1953] 

 
 

 

𝑬𝑿. 𝟔. Evaluate ∫ (𝑥 − 2𝑦)𝑑𝑥 + (𝑦2 − 𝑥2)𝑑𝑦
𝐶

   where C is the boundary of the first 

quadrant of the circle 𝑥2 + 𝑦2 = 4. 

Solution: Parametric equations of the circle are 

 𝑥 = 2 𝑐𝑜𝑠 𝜃 and 𝑦 = 2 𝑠𝑖𝑛 𝜃, where 0 ≤ 𝜃 ≤ 2𝜋 

Then 𝑑𝑥 = −2 𝑠𝑖𝑛 𝜃 𝑑𝜃 𝑎𝑛𝑑 𝑑𝑦 = 2 𝑐𝑜𝑠 𝜃 𝑑𝜃  

∴ ∫ (𝑥 − 2𝑦)𝑑𝑥 + (𝑦2 − 𝑥2)𝑑𝑦

𝐶

 

                = ∫ [(2 𝑐𝑜𝑠 𝜃 − 4 𝑠𝑖𝑛 𝜃)(−2 𝑠𝑖𝑛 𝜃 𝑑𝜃) + (4 𝑠𝑖𝑛2𝜃 − 4 𝑐𝑜𝑠2𝜃)(2 𝑐𝑜𝑠 𝜃 𝑑𝜃)]

𝜋 2⁄

0

 

= −4 [
1

2
∫ 𝑠𝑖𝑛 2𝜃 𝑑𝜃

𝜋/2

0

− ∫ (1 − 𝑐𝑜𝑠 2𝜃) 𝑑𝜃

𝜋/2

0

− 2 ∫ 𝑠𝑖𝑛2𝜃 𝑐𝑜𝑠 𝜃 𝑑𝜃

𝜋/2

0

   

+ 2 ∫
1

4
(𝑐𝑜𝑠 3𝜃 + 3 𝑐𝑜𝑠 𝜃) 𝑑𝜃

𝜋/2

0

] 

                 = 2𝜋 −
14

3
      

 

EX. 𝟕. 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 ∫ 𝑧22+𝑖

0
𝑑𝑧 𝑎𝑙𝑜𝑛𝑔 

(i) the real axis to 2 and then vertically to (2 + 𝑖). 

(ii) the imaginary axis to 𝑖 and then horizontally to (2 + 𝑖). 
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𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧: 𝐼 = ∫ 𝑧2

2+𝑖

0

𝑑𝑧 = ∫ 𝑧2

𝑂𝐴

𝑑𝑧 + ∫ 𝑧2

𝐴𝐵

𝑑𝑧                          (1) 

We have 𝑧 = 𝑥 + 𝑖𝑦 then 𝑑𝑧 = 𝑑𝑥 + 𝑖𝑑𝑦 

(i) Along 𝑂𝐴, 𝑦 = 0 

∴     𝑧 = 𝑥 + 𝑖𝑦 = 𝑥 and 𝑑𝑧 = 𝑑𝑥 

∴      ∫ 𝑧2

𝑂𝐴

𝑑𝑧 = ∫ 𝑥2

2

0

𝑑𝑥 = [
𝑥3

3
]

0

2

=
8

3
                                            (2) 

(ii) Along 𝐴𝐵, 𝑥 = 2 

∴     𝑧 = 𝑥 + 𝑖𝑦 = 2 + 𝑖𝑦 and 𝑑𝑧 = 𝑖𝑑𝑦 

Also 𝑧2 = (2 + 𝑖𝑦)2 = 4 + 4𝑖𝑦 − 𝑦2  

and 𝑦 varies from 0 to 1. 

∴      ∫ 𝑧2

𝑂𝐴

𝑑𝑧 = 𝑖 ∫(4 + 4𝑖𝑦 − 𝑦2)

1

0

𝑑𝑦 

                           = 𝑖 [4𝑦 + 2𝑖𝑦2 −
𝑦3

3
]

0

1

= −2 +
11𝑖

3
                     (3) 

From (1), (2) and (3), we have 

                       𝐼 =
8

3
− 2 +

11𝑖

3
=

1

3
(2 + 11𝑖) 

(ii) Along 𝑂𝑃, 𝑥 = 0 

∴     𝑧 = 𝑥 + 𝑖𝑦 = 𝑖𝑦 and 𝑑𝑧 = 𝑖𝑑𝑦 

Also 𝑧2 = (𝑖𝑦)2 = −𝑦2 and 𝑦 varies from 0 to 1. 

∴      ∫ 𝑧2

𝑂𝑃

𝑑𝑧 = ∫(−𝑦2)

1

0

𝑖𝑑𝑦 = −𝑖 [
𝑦3

3
]

0

1

= −
𝑖

3
                       (4) 

Along 𝑃𝑄, 𝑦 = 1 then 𝑧 = 𝑥 + 𝑖 and 𝑑𝑧 = 𝑑𝑥 and 𝑥 varies from 0 to 2. 

∴       𝑧2 = (𝑥 + 𝑖)2 = 𝑥2 − 1 + 2𝑖𝑥 

∴      ∫ 𝑧2

𝑃𝑄

𝑑𝑧 = ∫(𝑥2 − 1 + 2𝑖𝑥)

2

0

𝑑𝑥 = [
𝑥3

3
− 𝑥 + 𝑖𝑥2]

0

2

=
2

3
+ 4𝑖               (5) 

From (1), (4) and (5), we have 

                           𝐼 = −
𝑖

3
+

2

3
+ 4𝑖 =

2 + 11𝑖

3
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Note: From the, we conclude that the complex line integral is independent of the path of 

integration. 

𝑬𝑿. 𝟖. Evaluate (𝑎) ∫ 3𝑥2𝑦 𝑑𝑥 + (𝑥3 − 3𝑦2)𝑑𝑦

(1,3)

(0,0)

    (𝑏) ∫ 𝑥2𝑦 𝑑𝑥 + (𝑥2 − 𝑦2)𝑑𝑦

(1,3)

(0,0)

 

along the curve (𝑖) 𝑦 = 3𝑥   (𝑖𝑖) 𝑦 = 3𝑥2. 

Solution: Let 𝐼 denote the given integral. it can be changed completely in terms of 𝑥. 

(𝑖) Since 𝑦 = 3𝑥, 𝑑𝑦 = 3 𝑑𝑥  

Substituting for 𝑦 and 𝑑𝑦 in terms of 𝑥, we have 

(𝑎)    𝐼 = ∫ 9𝑥3 𝑑𝑥

1

0

+ ∫(𝑥3 − 27𝑥2)(3𝑑𝑥)

1

0

 

             = ∫(12𝑥3 − 81𝑥2)𝑑𝑥

1

0

= [12
𝑥4

4
− 81

𝑥3

3
]

0

1

= −24 

(𝑏)    𝐼 = ∫ 3𝑥3 𝑑𝑥

1

0

+ ∫(𝑥2 − 9𝑥2)(3𝑑𝑥)

1

0

 

             = ∫(3𝑥3 − 24𝑥2)𝑑𝑥

1

0

= [3
𝑥4

4
− 24

𝑥3

3
]

0

1

= −
29

4
 

(𝑖𝑖) Since 𝑦 = 3𝑥2, 𝑑𝑦 = 6𝑥 𝑑𝑥  

Substituting for 𝑦 and 𝑑𝑦 in terms of 𝑥, we have 

(𝑎)    𝐼 = ∫ 9𝑥4 𝑑𝑥

1

0

+ ∫(𝑥3 − 27𝑥4)(6𝑥 𝑑𝑥)

1

0

 

             = ∫(15𝑥4 − 162𝑥5)𝑑𝑥

1

0

= [15
𝑥5

5
− 162

𝑥6

6
]

0

1

= −24 

(𝑏)    𝐼 = ∫ 3𝑥4 𝑑𝑥

1

0

+ ∫(𝑥2 − 9𝑥4)(6𝑥 𝑑𝑥)

1

0

 

             = ∫(6𝑥3 + 3𝑥4 − 54𝑥5)𝑑𝑥

1

0

= [6
𝑥4

4
+ 3

𝑥5

5
− 54

𝑥6

6
]

0

1

=
3

2
+

3

5
− 9 = −

69

10
 

Note: In the above problem (a), we find that the two values of 𝐼 are the same. In fact, we can 

also see that the value of 𝐼 over any other path joining the points (0,0) and (1,3) is −24. 
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Thus the value of this integral depends only on the end points and not upon the curve 

connecting them. 

𝑬𝑿. 𝟗. Evaluate ∫ (3𝑥2 + 4𝑥𝑦 + 𝑖𝑥2)

(1,1)

(0,0)

𝑑𝑧 along 𝑦 = 𝑥2. 

Solution: Let 𝑧 = 𝑥 + 𝑖𝑦 so that 𝑑𝑧 = 𝑑𝑥 + 𝑖𝑑𝑦 

            Now ∫ (3𝑥2 + 4𝑥𝑦 + 𝑖𝑥2)

(1,1)

(0,0)

𝑑𝑧 = ∫ (3𝑥2 + 4𝑥𝑦 + 𝑖𝑥2)

(1,1)

(0,0)

(𝑑𝑥 + 𝑖𝑑𝑦)    (1) 

Along 𝑦 = 𝑥2, 𝑑𝑦 = 2𝑥 𝑑𝑥. 

On putting the values of 𝑦 and 𝑑𝑦, (1) becomes 

∫ (3𝑥2 + 4𝑥𝑦 + 𝑖𝑥2)

(1,1)

(0,0)

 𝑑𝑧 = ∫(3𝑥2 + 4𝑥3 + 𝑖𝑥2)

1

0

(𝑑𝑥 + 𝑖2𝑥 𝑑𝑥) 

                                                     = ∫[(3 + 𝑖)𝑥2 + 4𝑥3]

1

0

(1 + 𝑖2𝑥)𝑑𝑥 

                                                     = ∫[(3 + 𝑖)𝑥2 + 2(3𝑖 + 1)𝑥3 + 𝑖8𝑥4]

1

0

𝑑𝑥 

                                                     = [(3 + 𝑖)
𝑥3

3
+ 2(3𝑖 + 1)

𝑥4

4
+ 𝑖8

𝑥5

5
]

0

1

 

                                                     =
3

2
+ 𝑖

103

30
 

 

𝑬𝑿. 𝟏𝟎. Evaluate ∫ (𝑦2 + 2𝑥𝑦)𝑑𝑥 + (𝑥2 − 2𝑥𝑦)𝑑
𝐶

𝑦   

where 𝐶 is the region bounded by  𝑦 = 𝑥2  and  𝑥 = 𝑦2 . 

Solution: Given curves are  𝑦 = 𝑥2              (1)  

                                           and  𝑥 = 𝑦2               (2) 

The two curves (1) and (2) intersect at the points (0, 0) and (1, 1). 

The positive direction in traversing 𝐶 is as shown in figure. 

Along 𝑦 = 𝑥2, 𝑑𝑦 = 2𝑥 𝑑𝑥, the line integral is 

                               = ∫[(𝑥4 + 2𝑥3)𝑑𝑥 + (𝑥2 − 2𝑥3)]

1

𝑥=0

2𝑥 𝑑𝑥 
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                               = ∫(4𝑥3 − 3𝑥4)𝑑𝑥

1

0

= [4
𝑥4

4
− 3

𝑥5

5
]

0

1

 

                               = 1 −
3

5
=

2

5
                                      (3) 

Along 𝑥 = 𝑦2, 𝑑𝑥 = 2𝑦 𝑑𝑦, the line integral is 

                               = ∫[(𝑦2 + 2𝑦3)2𝑦 𝑑𝑦 + (𝑦4 − 2𝑦3)]

0

𝑦=1

 𝑑𝑦 

                               = ∫(2𝑦3 + 5𝑦4 − 2𝑦3)

0

1

𝑑𝑦 

                               = [𝑦5]1
0 = −1                                  (4) 

Hence,  the line integral over 𝐶 =
2

5
− 1 = −

3

5
     [adding (3) and (4)]. 

 
 

𝑬𝑿. 𝟏𝟏. Evaluate ∫ 𝑧2𝑑𝑧

3+𝑖

0

, along (𝑖) the line 𝑦 =
𝑥

3
 (𝑖𝑖) parabola 𝑥 = 3𝑦2. 

Solution: Let 𝐼 denote the given integral. Then we have 

                 𝐼 = ∫ 𝑧2𝑑𝑧

3+𝑖

0

= ∫ (𝑥 + 𝑖𝑦)2

(3,1)

(0,0)

(𝑑𝑥 + 𝑖𝑑𝑦) 

                                           = ∫ (𝑥2 − 𝑦2 + 𝑖2𝑥𝑦)

(3,1)

(0,0)

(𝑑𝑥 + 𝑖𝑑𝑦) 

                                           = ∫ [(𝑥2 − 𝑦2)𝑑𝑥 − 2𝑥𝑦𝑑𝑦]

(3,1)

(0,0)

+ 𝑖 ∫ [2𝑥𝑦𝑑𝑥 + (𝑥2 − 𝑦2)𝑑𝑦]

(3,1)

(0,0)

 

(i) 𝐼 can be changed completely in terms of 𝑥. 

Since 𝑦 =
𝑥

3
, 𝑑𝑦 =

1

3
𝑑𝑥 

Substituting for 𝑦 and 𝑑𝑦, we have 
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               𝐼 = ∫ [(𝑥2 −
𝑥2

9
) 𝑑𝑥 −

2

3
𝑥2 (

1

3
𝑑𝑥)]

3

𝑥=0

+ 𝑖 ∫ [
2

3
𝑥2𝑑𝑥 + (𝑥2 −

𝑥2

9
)

1

3
𝑑𝑥]

3

𝑥=0

 

                  = ∫
6

9
𝑥2𝑑𝑥 + 𝑖 ∫

26

27
𝑥2

3

𝑥=0

3

𝑥=0

𝑑𝑥 =
6

3
[
𝑥3

3
]

0

3

+ 𝑖
26

27
[
𝑥3

3
]

0

3

 

                  = 6 +
26

3
𝑖 

(ii) 𝐼 can be changed completely in terms of 𝑥. 

Since 𝑦 =
𝑥

3
, 𝑑𝑦 =

1

3
𝑑𝑥 

Substituting for 𝑦 and 𝑑𝑦, we have 

               𝐼 = ∫[(9𝑦2 − 𝑦2)6𝑦 𝑑𝑦 − 6𝑦3𝑑𝑦]

1

𝑦=0

+ 𝑖 ∫[6𝑦2(6𝑦𝑑𝑦) + (9𝑦2 − 𝑦2)]

1

𝑦=0

 

                 = ∫ 42𝑦3𝑑𝑦

1

𝑦=0

+ 𝑖 ∫(36𝑦3 + 8𝑦2)𝑑𝑦

1

𝑦=0

 

                 = [42
𝑦4

4
+ 𝑖 (36

𝑦4

4
+ 8

𝑦3

3
)]

0

1

       =
21

2
+ 𝑖

35

3
 

 

2.3  Properties of Line Integrals: 

Theorem 1. Let𝑃 and 𝑄 be two functions of 𝑥 and 𝑦, such that 𝑃, 𝑄,
𝜕𝑃

𝜕𝑦
 and 

𝜕𝑄

𝜕𝑥
 are continuous 

and single valued at every point of a simply connected region 𝑅. The necessary and sufficient 

condition that ∫ (𝑃 𝑑𝑥 + 𝑄 𝑑𝑦) = 0
𝐶

 around every closed curve 𝐶 drawn in 𝑅 is that 
𝜕𝑄

𝜕𝑥
=

𝜕𝑃

𝜕𝑦
 

at all points in 𝑅. 

Proof: First let us prove the sufficiency of the condition. 

Suppose 
𝜕𝑄

𝜕𝑥
=

𝜕𝑃

𝜕𝑦
 identically in 𝑅. 

Let 𝑅1 be the subregion of 𝑅  bounded by the particular closed curve 𝐶1.  

Applying Green’s theorem to 𝑅1, 

∫ (𝑃 𝑑𝑥 + 𝑄 𝑑𝑦) =

𝐶1

∬ (
𝜕𝑄

𝜕𝑥
−

𝜕𝑃

𝜕𝑦
) 𝑑𝑥 𝑑𝑦

𝑅1

= 0  

Since 
𝜕𝑄

𝜕𝑥
=

𝜕𝑃

𝜕𝑦
 at all points in 𝑅 and so at all points in 𝑅1 also. 

We shall now prove the necessity of the condition. 

Suppose ∫ (𝑃 𝑑𝑥 + 𝑄 𝑑𝑦) = 0
𝐶

 around every closed curve 𝐶 in 𝑅. 
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Suppose that 
𝜕𝑄

𝜕𝑥
=

𝜕𝑃

𝜕𝑦
> 0 at some point (𝑥0, 𝑦0) of 𝑅. 

Since 
𝜕𝑃

𝜕𝑦
 and 

𝜕𝑄

𝜕𝑥
 are continuous functions of 𝑥 and 𝑦, 

𝜕𝑄

𝜕𝑥
−

𝜕𝑃

𝜕𝑦
 is also a continuous function of 

𝑥 and 𝑦. 

Hence there must be a region 𝑆 about (𝑥0, 𝑦0) in which  

𝜕𝑄

𝜕𝑥
−

𝜕𝑃

𝜕𝑦
 

has the same sign as at (𝑥0, 𝑦0). 

i.e., in the region 𝑆,  
𝜕𝑄

𝜕𝑥
−

𝜕𝑃

𝜕𝑦
> 0. 

Let 𝐶1 be the boundary of 𝑆. Applying Green’s theorem to 𝑆, we have 

∫ (𝑃 𝑑𝑥 + 𝑄 𝑑𝑦) =

𝐶1

∬ (
𝜕𝑄

𝜕𝑥
−

𝜕𝑃

𝜕𝑦
) 𝑑𝑥 𝑑𝑦

𝑆

 

and this is >0, as the integrand is positive. 

 Hence we get that 

∫ (𝑃 𝑑𝑥 + 𝑄 𝑑𝑦) > 0.

𝐶1

 

 But this is against the hypothesis that ∫(𝑃 𝑑𝑥 + 𝑄 𝑑𝑦) = 0 around every closed curve 

in 𝑅.  

 Therefore 
𝜕𝑄

𝜕𝑥
−

𝜕𝑃

𝜕𝑦
 cannot be >0 at (𝑥0, 𝑦0). 

 Similarly we can show that 
𝜕𝑄

𝜕𝑥
−

𝜕𝑃

𝜕𝑦
 cannot be negative at (𝑥0, 𝑦0). 

 Therefore 
𝜕𝑄

𝜕𝑥
−

𝜕𝑃

𝜕𝑦
 must be = 0 at (𝑥0, 𝑦0). 

But (𝑥0, 𝑦0) is any point in 𝑅. 

Therefore 
𝜕𝑄

𝜕𝑥
−

𝜕𝑃

𝜕𝑦
 must be ≡ 0 at (𝑥0, 𝑦0). 

Or 
𝜕𝑄

𝜕𝑥
=

𝜕𝑃

𝜕𝑦
 at every point in 𝑅. 

 

Theorem 2. Let 𝑃 and 𝑄 satisfy the conditions of theorem 1. The necessary and sufficient 

condition that  

∫(𝑃 𝑑𝑥 + 𝑄 𝑑𝑦)

𝐵

𝐴
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be independent of the path connecting 𝐴 and 𝐵 is that 
𝜕𝑄

𝜕𝑥
=

𝜕𝑃

𝜕𝑦
 at all points in 𝑅.                                                      

Proof: First let us prove the sufficiency of the condition. 

Suppose 
𝜕𝑄

𝜕𝑥
=

𝜕𝑃

𝜕𝑦
 identically in 𝑅. 

 

Figure 14 

Let 𝐶1 and 𝐶2 be any two curves connecting the two points 𝐴 and 𝐵. Together they form a 

simple closed curve in 𝑅 and so we can apply the last theorem. Therefore  

∫ (𝑃 𝑑𝑥 + 𝑄 𝑑𝑦) = 0

𝐶1+𝐶2

 

𝑖. 𝑒. , ∫ (𝑃 𝑑𝑥 + 𝑄 𝑑𝑦)

𝐶1

+ ∫ (𝑃 𝑑𝑥 + 𝑄 𝑑𝑦)

𝐶2

= 0 

𝑖. 𝑒. , ∫(𝑃 𝑑𝑥 + 𝑄 𝑑𝑦)

𝐵

𝐴

+ ∫(𝑃 𝑑𝑥 + 𝑄 𝑑𝑦)

𝐴

𝐵

= 0 

Therefore  

∫(𝑃 𝑑𝑥 + 𝑄 𝑑𝑦)

𝐵

𝐴

= − ∫(𝑃 𝑑𝑥 + 𝑄 𝑑𝑦)

𝐴

𝐵

= ∫(𝑃 𝑑𝑥 + 𝑄 𝑑𝑦)

𝐵

𝐴

 

  along𝐶1along𝐶2along𝐶2 

𝑖. 𝑒. , ∫ (𝑃 𝑑𝑥 + 𝑄 𝑑𝑦)

𝐶1

= ∫ (𝑃 𝑑𝑥 + 𝑄 𝑑𝑦)

𝐶2

 

i.e., the line integral taken over any two paths from 𝐴 to 𝐵, has the same value. So it is 

independent of the path joining the point 𝐴 and 𝐵 i.e., it is a function of the end points alone. 

 We shall now prove the necessity of the condition. 

                           Suppose ∫(𝑃 𝑑𝑥 + 𝑄 𝑑𝑦)

𝐵

𝐴

 

Is independent of the path from 𝐴 to 𝐵. 
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Then for any two curves 𝐶1 and 𝐶2 connecting 𝐴 and 𝐵 we have 

∫ (𝑃 𝑑𝑥 + 𝑄 𝑑𝑦)

𝐶1

= ∫ (𝑃 𝑑𝑥 + 𝑄 𝑑𝑦)

𝐶2

 

𝑖. 𝑒. , ∫ (𝑃 𝑑𝑥 + 𝑄 𝑑𝑦)

𝐴𝐸𝐵

= ∫ (𝑃 𝑑𝑥 + 𝑄 𝑑𝑦)

𝐴𝐷𝐵

, from figure 

= − ∫ (𝑃 𝑑𝑥 + 𝑄 𝑑𝑦)

𝐵𝐷𝐴

 

Therefore ∫ (𝑃 𝑑𝑥 + 𝑄 𝑑𝑦)

𝐴𝐸𝐵

+ ∫ (𝑃 𝑑𝑥 + 𝑄 𝑑𝑦)

𝐵𝐷𝐴

= 0  

𝑖. 𝑒. , ∫ (𝑃 𝑑𝑥 + 𝑄 𝑑𝑦)

𝐴𝐸𝐵𝐷𝐴

= 0 

i.e., the line integral around any closed path in 𝑅 is zero. 

Hence by theorem 1,
𝜕𝑄

𝜕𝑥
=

𝜕𝑃

𝜕𝑦
. 

 

EX.12. Show that  

∫ [(𝑥2 + 𝑦2)𝑑𝑥 + 2𝑥𝑦 𝑑𝑦]

(1,   2)

(0,   1)

 

is independent of the path and determine its value. 

Solution: Here 𝑃 = 𝑥2 + 𝑦2, 𝑄 = 2𝑥𝑦 

Then 
𝜕𝑃

𝜕𝑦
= 2𝑦 and 

𝜕𝑄

𝜕𝑥
= 2𝑦 

Clearly 
𝜕𝑄

𝜕𝑥
=

𝜕𝑃

𝜕𝑦
 and they are also continuous. 

Hence the line integral is independent of the path. 

We can choose any path joining (0, 1) and (1, 2). For instance, let us take the line 

joining (0, 1) and (1, 1) and then the line joining (1, 1) and (1, 2). 

 Along the line joining (0, 1) and (1, 1), we have 𝑦 = 1 and 𝑑𝑦 = 0. 𝑥 varies from 0 to 1. 

 Along the line joining (1, 1) and (1, 2), we have 𝑥 = 1 and 𝑑𝑥 = 0. 𝑦 varies from 1 to 2. 

Hence the required integral is 

= ∫(𝑥2 + 1)𝑑𝑥

1

0

+ ∫ 2𝑦

2

1

𝑑𝑦 
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= [
𝑥3

3
+ 𝑥]

0

1

+ 2 [
𝑦2

2
]

1

2

=
13

3
. 

 

EX.13. Show that the line integral  

∫ [
−𝑦

𝑥2 + 𝑦2
𝑑𝑥 +

𝑥

𝑥2 + 𝑦2
𝑑𝑦]

𝐶

 

evaluated along a square 2 units on the side with center at the origin has value 2𝜋. Give the 

reason for failure of this integral to vanish along this closed path. 

Solution: The square 𝐴𝐵𝐶𝐷 is formed by the lines 𝑥 = ±1, 𝑦 = ±1. 

The direction in which the square  𝐶 is traversed is shown in the figure 15. 

Along 𝐴𝐵, 𝑦 = −1, 𝑑𝑦 = 0 and 𝑥 varies from −1 to 1. 

So the line integral along 𝐴𝐵 is 

 ∫
1

𝑥2 + 1
𝑑𝑥

1

−1

= [𝑡𝑎𝑛−1𝑥]−1
1  

                                                 = 𝑡𝑎𝑛−11 − 𝑡𝑎𝑛−1(−1) 

                                                 =
𝜋

4
− (−

𝜋

4
) =

𝜋

2
 

 

 

Along 𝐵𝐶, 𝑥 = 1, 𝑑𝑥 = 0 and 𝑦 varies from −1 to 1. 

So the line integral along 𝐵𝐶 is 

                                    = ∫
1

1 + 𝑦2
𝑑𝑦

1

−1

= [𝑡𝑎𝑛−1𝑦]−1
1  

                                    = 𝑡𝑎𝑛−11 − 𝑡𝑎𝑛−1(−1) 

                                     =
𝜋

4
− (−

𝜋

4
) =

𝜋

2
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Along 𝐶𝐷, 𝑦 = 1, 𝑑𝑦 = 0 and 𝑥 varies from 1 to − 1. 

So the line integral along 𝐶𝐷 is 

                                     = ∫
−1

𝑥2 + 1
𝑑𝑥

−1

1

= ∫
1

𝑥2 + 1
𝑑𝑥

1

−1

=
𝜋

2
 

Along 𝐷𝐴,𝑥 = −1, 𝑑 𝑥 = 0 and 𝑦 varies from 1 to − 1. 

So the line integral along 𝐷𝐴 is 

                                     = ∫
−1

1 + 𝑦2
𝑑𝑦

−1

1

== ∫
1

1 + 𝑦2
𝑑𝑦

1

−1

 

Adding the above four results, the value of the given line integral along  𝐶 = 4 ×
𝜋

2
= 2𝜋. 

Now  𝑃 =
−𝑦

𝑥2 + 𝑦2
, 𝑄 =

𝑥

𝑥2 + 𝑦2
, then we have 

                       
𝜕𝑃

𝜕𝑦
= − [

(𝑥2 + 𝑦2). 1 − 𝑦. 2𝑦

(𝑥2 + 𝑦2)2
] =

𝑦2 − 𝑥2

(𝑥2 + 𝑦2)2
 

                        
𝜕𝑄

𝜕𝑥
=

(𝑥2 + 𝑦2). 1 − 𝑥. 2𝑥

(𝑥2 + 𝑦2)2
=

𝑦2 − 𝑥2

(𝑥2 + 𝑦2)2
 

We find that  
𝜕𝑃

𝜕𝑦
=

𝜕𝑄

𝜕𝑥
. Also 𝑃, 𝑄,

𝜕𝑃

𝜕𝑦
and

𝜕𝑄

𝜕𝑥
 are continuous and single valued for all points of 

the 𝑥𝑦-plane concept (0, 0). 

Hence ∫ (𝑃𝑑𝑥 + 𝑄𝑑𝑦)

𝐶

= 0 around any closed curve 𝐶 which does not enclose (0, 0). 

But here the square 𝐴𝐵𝐶𝐷 encloses the origin and hence the line integral along 𝐴𝐵𝐶𝐷 is not 

zero. 

2.4  Complex Integration: 
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 Let 𝑤 = 𝑓(𝑧) be a continuous function of the complex variable 𝑧 = 𝑥 + 𝑖𝑦. Let 𝐶 be 

any curve connecting two points 𝐴 and 𝐵. We divide 𝐶 into 𝑛 parts at the points 

𝐴 = 𝑧0, 𝑧1, 𝑧2, … . . , 𝑧𝑛 = 𝐵. 

Let ∆𝑧𝑘 = 𝑧𝑘 − 𝑧𝑘−1 

and 𝞯𝒌  be an arbitrary point in the arc 𝑧𝑘−1𝑧𝑘 . Then the limit of the sum 

∑ 𝑓(𝞯𝒌)

𝑛

𝑘=1

 ∆𝑧𝑘as 𝑛 → ∞ 

In such a way that the length of every chord ∆𝑧𝑘 approaches zero, is called the line integral of 

𝑓(𝑧) along 𝐶. This is written as 

∫ 𝑓(𝑧)

𝐶

 𝑑𝑧 = lim
𝑛→∞

∑ 𝑓(𝞯𝒌)

𝑛

𝑘=1

 ∆𝑧𝑘 

It can be noted that this definition differs from the definition of a real line integral in 

that it is based on the directed chord ∆𝑧𝑘 tending to zero and not on the arc ∆𝑠𝑘 tending to 

zero. Also the real definite integral can be interpreted as an area. It has also physical 

interpretation. But a line integral in the complex plane has no corresponding interpretation. 

However, the theory of integration in the complex plane has remarkable applications in 

engineering, physics etc. 

We can express a complex line integral in terms of real line integral. Taking  

𝑤 = 𝑓(𝑧) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦), 

and noting that 𝑑𝑧 = 𝑑𝑥 + 𝑖𝑑𝑦, we have 

                   ∫ 𝑓(𝑧)

𝐶

 𝑑𝑧 = ∫ (𝑢 + 𝑖𝑣)

𝐶

 (𝑑𝑥 + 𝑖𝑑𝑦) 

                                        = ∫ (𝑢𝑑𝑥 − 𝑣𝑑𝑦)

𝐶

+ 𝑖 ∫ (𝑣𝑑𝑥 + 𝑢𝑑𝑦)

𝐶

 

The two integrals on the right side are clearly line integrals of real functions. 

Since a complex line integral can be expressed in terms of real line integrals, the 

following familiar properties are true for complex line integral also, provided the same path 

of integration is used in each integral. Thus  

∫ 𝑓(𝑧)

𝐵

𝐴

𝑑𝑧 = − ∫ 𝑓(𝑧)

𝐴

𝐵

𝑑𝑧 
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∫ 𝑘 𝑓(𝑧)

𝐵

𝐴

𝑑𝑧 = 𝑘 ∫ 𝑓(𝑧)

𝐵

𝐴

𝑑𝑧 

∫[𝑓(𝑧) ± 𝑔(𝑧)]𝑑𝑧

𝐵

𝐴

= ∫ 𝑓(𝑧)

𝐵

𝐴

𝑑𝑧 ± ∫ 𝑔(𝑧)

𝐵

𝐴

𝑑𝑧 

∫ 𝑓(𝑧)

𝐵

𝐴

𝑑𝑧 = ∫ 𝑓(𝑧)

𝐶

𝐴

𝑑𝑧 + ∫ 𝑓(𝑧)

𝐵

𝐶

𝑑𝑧 

where 𝐴, 𝐵, 𝐶 are any three points on the path of integration. 

 

EX.14. If 𝐶 is a circle of radius 𝑟 and centre 𝑎, prove that 

(𝑎) ∫
𝑑𝑧

𝑧 − 𝑎
𝐶

= 2𝜋𝑖 

(𝑏) ∫
𝑑𝑧

(𝑧 − 𝑎)𝑛+1

𝐶

= 0, where 𝑛 is an integer. 

Solution: Let 𝐴 represent the fixed complex number 𝑎 and 𝑃 a variable point 𝑧 on the circle. 

Then 𝐴𝑃 = 𝑧 − 𝑎. Let 𝐴𝑃 make an angle 𝜃 with the real axis. Then 𝐴𝑃 = 𝑟𝑒𝑖𝜃, as 𝑟 is its 

length. Therefore  

𝑧 − 𝑎 = 𝑟𝑒𝑖𝜃 

 This is the parametric equation to the circle 𝐶 and 𝜃 varies from 0 to 2𝜋, 𝑟 being 

constant. 

 Therefore 𝑑𝑧 =  𝑟𝑖 𝑒𝑖𝜃𝑑𝜃 

 

 

(a) ∫
𝑑𝑧

𝑧 − 𝑎
𝐶

= ∫
𝑟𝑖 𝑒𝑖𝜃

𝑟𝑒𝑖𝜃

2𝜋

0

𝑑𝜃 = ∫ 𝑖

2𝜋

0

𝑑𝜃 = 2𝜋𝑖 
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(b) ∫
𝑑𝑧

(𝑧 − 𝑎)𝑛+1

C

= ∫
𝑟𝑖 𝑒𝑖𝜃

(𝑟 𝑒𝑖𝜃)n+1

2π

0

𝑑𝜃 = ∫
𝑟𝑖 𝑒𝑖𝜃

𝑟𝑛+2𝑒(𝑛+1)𝜃

2π

0

𝑑𝜃 

=
1

𝑟𝑛
∫  𝑒−𝑖𝑛𝜃

2π

0

𝑑𝜃 =
𝑖

𝑟𝑛
∫ (𝑐𝑜𝑠 𝑛𝜃 − 𝑖 𝑠𝑖𝑛 𝑛𝜃)

2π

0

𝑑𝜃 

=
𝑖

𝑟𝑛
[
𝑠𝑖𝑛 𝑛𝜃 

𝑛
+

𝑖 𝑐𝑜𝑠 𝑛𝜃

𝑛
]

0

2𝜋

= 0 

These two results are important and will be of use later on. 

𝐄𝐗. 𝟏𝟓. Evaluate ∫ 𝑧2𝑑𝑧

2+𝑖

0

 along    (i)the line 𝑥 = 2𝑦      (ii) the real axis to 2 and then   

vertically to 2 + 𝑖    (iii) the imaginary axis to 𝑖 and then horizontally to  2 + 𝑖 . 

Solution: 

                  Let    𝐼 = ∫ 𝑧2𝑑𝑧

2+𝑖

0

 

 

(i) Along 𝑂𝐴, 𝑥 = 2𝑦 

𝑧 = 𝑥 + 𝑖𝑦 = 2𝑦 + 𝑖𝑦 = (2 + 𝑖)𝑦 

Therefore  

𝑧2 = (2 + 𝑖)2𝑦2 = (3 + 4𝑖)𝑦2 

and 𝑑𝑧 = (2 + 𝑖)𝑑𝑦 

when 𝑧 = 0, 𝑦 = 0 and when 𝑧 = 2 + 𝑖, 𝑦 = 1. Therefore  

𝐼 = ∫(3 + 4𝑖)𝑦2

1

𝑦=0

. (2 + 𝑖)𝑑𝑦 

= (3 + 4𝑖)(2 + 𝑖) [
𝑦3

3
]

0

1
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=
2 + 11𝑖

3
 

(ii) We now evaluate 𝐼 along the contour 𝑂𝐵𝐴 as shown in figure. 

𝐼 = ∫ 𝑧2

𝑂𝐵

𝑑𝑧 + ∫ 𝑧2

𝐵𝐴

𝑑𝑧 

Along 𝑂𝐵, 𝑦 = 0 then 𝑧 = 𝑥 and 𝑑𝑧 = 𝑑𝑥. 

∫ 𝑧2

𝑂𝐵

𝑑𝑧 = ∫ 𝑥2

2

𝑥=0

𝑑𝑥 = [
𝑥3

3
]

0

2

=
8

3
 

Along 𝐵𝐴, 𝑥 = 2; 𝑧 = 𝑥 + 𝑖𝑦 = 2 + 𝑖𝑦; 𝑑𝑧 = 𝑖𝑑𝑦 

 𝑧2 = (2 + 𝑖𝑦)2 = 4 + 4𝑖𝑦 − 𝑦2; 𝑦 varies from 0 to 1. 

∫ 𝑧2

𝐵𝐴

𝑑𝑧 = ∫(4 − 𝑦2 + 4𝑖𝑦)

1

𝑦=0

𝑖𝑑𝑦 

         = [4𝑦 −
𝑦3

3
+ 2𝑖𝑦2]

0

1

 

= 𝑖 (4 −
1

3
+ 2𝑖) 

       = −2 +
11𝑖

3
 

Hence   𝐼 =
8

3
− 2 +

11𝑖

3
=

2 + 11𝑖

3
 

(iii) We now evaluate 𝐼 along the contour 𝑂𝐶𝐴. 

𝐼 = ∫ 𝑧2

𝑂𝐶

𝑑𝑧 + ∫ 𝑧2

𝐶𝐴

𝑑𝑧 

Along 𝑂𝐶, 𝑥 = 4 then 𝑧 = 𝑖𝑦 and 𝑑𝑧 = 𝑖𝑑𝑦. 

𝑧2 = 𝑖2𝑦2 = −𝑦2, 𝑦 varies from 0 to 1 

∫ 𝑧2

𝑂𝐶

𝑑𝑧 = ∫ −𝑦2

1

0

𝑖𝑑𝑦 = −𝑖 [
𝑦3

3
]

0

1

= −
𝑖

3
 

Along 𝐶𝐴, 𝑦 = 1then 𝑧 = 𝑥 + 𝑖𝑦 = 𝑥 + 𝑖 and 𝑑𝑧 = 𝑑𝑥 and 𝑥 varies from 0 to 2. 

𝑧2 = (𝑥 + 𝑖)2 = 𝑥2 − 1 + 2𝑖𝑥. 

∫ 𝑧2

𝐶𝐴

𝑑𝑧 = ∫(𝑥2 − 1 + 2𝑖𝑥)

1

0

𝑑𝑥 = [
𝑥3

3
− 𝑥 + 𝑖𝑥2]

0

2
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         =
8

3
− 2 + 4𝑖 =

2

3
+ 4𝑖 

Hence    𝐼 = −
𝑖

3
+

2

3
+ 4𝑖 =

2 + 11𝑖

3
 

Note: In this problem, we find that the complex line integral is independent of the path of 

integration. The reason for this will be learnt later on.  

 

EX.16. Evaluate  

∫ (𝑥 − 𝑦 + 𝑖𝑥2)

1+𝑖

0

𝑑𝑧 

along the line from 𝑧 = 0 to 𝑧 = 1 + 𝑖. 

Solution:  

 

Let 𝑧 = 𝑥 + 𝑖𝑦, then 𝑑𝑧 = 𝑑𝑥 + 𝑖𝑑𝑦 

Now ∫ (𝑥 − 𝑦 + 𝑖𝑥2)

1+𝑖

0

𝑑𝑧 = ∫ (𝑥 − 𝑦 + 𝑖𝑥2)

1+𝑖

0

(𝑑𝑥 + 𝑖𝑑𝑦) 

                                                  = ∫ (𝑥 − 𝑦 + 𝑖𝑥2)

𝑂𝑃

(𝑑𝑥 + 𝑖𝑑𝑦) 

The equation of 𝑂𝑃 is 𝑦 = 𝑥, then 𝑑𝑦 = 𝑑𝑥 and 𝑥 varies from 0 to 1. Therefore  

                        ∫ (𝑥 − 𝑦 + 𝑖𝑥2)

1+𝑖

0

𝑑𝑧 = ∫(𝑖𝑥2)

1

0

(𝑑𝑥 + 𝑖𝑑𝑥) 

                                                  = ∫(𝑖𝑥2)

1

0

(1 + 𝑖)𝑑𝑥 

                                                  = (−1 + 𝑖) ∫ 𝑥2

1

0

𝑑𝑥 



Complex Analysis 
 

255 
 

                                                  = (−1 + 𝑖) [
𝑥3

3
]

0

1

 

                                                   =
−1 + 𝑖

3
= −

1

3
+

1

3
𝑖 

EX.17. Evaluate  

∫ (𝑥2 − 𝑖𝑦)

1+𝑖

0

𝑑𝑧 

along the paths (a) 𝑦 = 𝑥   (b) 𝑦 = 𝑥2. 

 

Solution: (a) Along  𝑦 = 𝑥, 𝑑𝑦 = 𝑑𝑥, 𝑥 varies from 0 to 1.  

∫ (𝑥2 − 𝑖𝑦)

1+𝑖

0

𝑑𝑧 = ∫ (𝑥2 − 𝑖𝑦)

1+𝑖

0

(𝑑𝑥 + 𝑖𝑑𝑦)[𝑠𝑖𝑛𝑐𝑒 𝑧 = 𝑥 + 𝑖𝑦; 𝑑𝑧 = 𝑑𝑥 + 𝑖𝑑𝑦] 

= ∫(𝑥2 − 𝑖𝑥)

1

0

(𝑑𝑥 + 𝑖𝑑𝑥) 

= ∫(𝑥2 − 𝑖𝑥)

1

0

(1 + 𝑖)𝑑𝑥 

= (1 + 𝑖) [
𝑥3

3
− 𝑖

𝑥2

2
]

0

1

 

=
5

6
− 𝑖

1

6
 

(b) Along 𝑦 = 𝑥2, 𝑑𝑦 = 2𝑥 𝑑𝑥 and 𝑥 varies from 0 to 1. 

            ∫ (𝑥2 − 𝑖𝑦)

1+𝑖

0

𝑑𝑧 = ∫ (𝑥2 − 𝑖𝑦)

1+𝑖

0

(𝑑𝑥 + 𝑖𝑑𝑦) 

                                          = ∫(𝑥2 − 𝑖𝑥2)

1

0

(𝑑𝑥 + 𝑖2𝑥 𝑑𝑥) 
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                                          = (1 − 𝑖) ∫ 𝑥2

1

0

(1 + 2𝑖𝑥 )𝑑𝑥 

                                           = (1 − 𝑖) [
𝑥3

3
+ 𝑖

𝑥4

2
]

0

1

=
5

6
+ 𝑖

1

6
 

𝐄𝐗. 𝟏𝟖.  Evaluate ∫ 𝑧2

𝐶

𝑑𝑧 where the ends of 𝐶 are 𝐴(1, 1) and 𝐵(2, 4) given that 

 (i) 𝐶 is the curve 𝑦 = 𝑥2, (ii) 𝐶 is the line 𝑦 = 3𝑥 − 2. 

Solution: (i) Along 𝑦 = 𝑥2, 𝑑𝑦 = 2𝑥 𝑑𝑥 and 𝑥 varies from 1 to 2. 

                  ∴ ∫ 𝑧2

𝐶

𝑑𝑧 = ∫ (𝑥 + 𝑖𝑦)2

𝐴𝐵

(𝑑𝑥 + 𝑖𝑑𝑦) 

            = ∫ (𝑥2 − 𝑦2 + 2𝑖𝑥𝑦)2

𝐴𝐵

(𝑑𝑥 + 𝑖𝑑𝑦) 

    = ∫{(𝑥2 − 𝑥4)𝑑𝑥 − 2𝑥3𝑑𝑥}

2

1

+ 𝑖 ∫{2𝑥(𝑥2)𝑑𝑥 − (𝑥2 − 𝑥4)2𝑥 𝑑𝑥}

2

1

 

                                         = −
86

3
− 6𝑖 

(ii) Along 𝑦 = 3𝑥 − 2, 𝑑𝑦 = 3𝑑𝑥 

                  ∴ ∫ 𝑧2

𝐶

𝑑𝑧 = ∫ (𝑥 + 𝑖𝑦)2

𝐴𝐵

(𝑑𝑥 + 𝑖𝑑𝑦) 

                                       = ∫ (𝑥2 − 𝑦2 + 2𝑖𝑥𝑦)2

𝐴𝐵

(𝑑𝑥 + 𝑖𝑑𝑦) 

                                     = ∫ {𝑥2 − (3𝑥 − 2)2 + 2𝑖𝑥(3𝑥 − 2)}

𝐴𝐵

(𝑑𝑥 + 𝑖3𝑑𝑥) 

                                                   = −
86

3
− 6𝑖 

Note: The values of the integral along the two curves 𝑦 = 𝑥2 and 𝑦 = 3𝑥 − 2 are the same 

which implies that ∫ 𝑓(𝑧)
𝐶

𝑑𝑧  is independent of the path joining any two points. For proof 

refer to Cauchy’s theorem. 
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EX.19. Show that  

∫ (𝑍 + 1)

𝐶

𝑑𝑧 = 0 

where 𝐶 is the boundary of the square whose vertices are at the points 𝑧 = 0, 𝑧 = 1, 𝑧 = 1 + 𝑖  

and 𝑧 = 𝑖. 

Solution: Let 𝑧 = 𝑥 + 𝑖𝑦                                (1) 

Then 𝑑𝑧 = 𝑑𝑥 + 𝑖𝑑𝑦                        (2) 

Let ∫ (𝑍 + 1)

𝐶

𝑑𝑧 = 𝐼1 + 𝐼2 + 𝐼3 + 𝐼4                 (3) 

𝐼1 = ∫ (𝑍 + 1)

𝐶1

𝑑𝑧 = ∫ (𝑥 + 𝑖𝑦 + 1)

𝐶1

(𝑑𝑥 + 𝑖𝑑𝑦) 

Along 𝐶1, 𝑦 = 0, 𝑑𝑦 = 0, 𝑑𝑧 = 𝑑𝑥. Also 𝑥 varies from 0 to 1. 

∴ 𝐼1 = ∫(𝑥 + 1)

1

0

𝑑𝑥 = [
(𝑥 + 1)2

2
]

0

1

=
4

2
−

1

2
=

3

2
                 (4) 

Along 𝐶2, 𝑥 = 1, 𝑑𝑥 = 0, 𝑑𝑧 = 𝑖 𝑑𝑦 and 𝑦 varies from 0 to 1. 

                      ∴ 𝐼2 = ∫ (𝑍 + 1)

𝐶2

𝑑𝑧 = ∫ (𝑥 + 𝑖𝑦 + 1)

𝐶2

(𝑑𝑥 + 𝑖𝑑𝑦) 

                               = ∫(1 + 𝑖𝑦 + 1)

1

0

𝑖 𝑑𝑦 = 𝑖 ∫(2 + 𝑖𝑦)

1

0

 𝑑𝑦 

                                = 𝑖 [
(2 + 𝑖𝑦)2

2𝑖
]

0

1

=
−1 + 4𝑖

2
                         (5) 

Along 𝐶3, 𝑦 = 1, 𝑑𝑦 = 0, 𝑑𝑧 = 𝑑𝑥. Also 𝑥 varies from 1 to 0. 

    ∴ 𝐼3 = ∫ (𝑍 + 1)

𝐶3

𝑑𝑧 = ∫ (𝑥 + 𝑖𝑦 + 1)

𝐶3

(𝑑𝑥 + 𝑖𝑑𝑦) 

             = ∫(𝑥 + 𝑖 + 1)

0

1

𝑑𝑥 = [
𝑥2

2
+ (𝑖 + 1)𝑥]

1

0

 

              = −
3

2
− 𝑖                                                (6) 

Along 𝐶4, 𝑥 = 0, 𝑑𝑥 = 0, 𝑑𝑧 = 𝑖 𝑑𝑦 and 𝑦 varies from 1 to 0. 
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         ∴ 𝐼4 = ∫ (𝑍 + 1)

𝐶4

𝑑𝑧 = ∫ (𝑥 + 𝑖𝑦 + 1)

𝐶4

(𝑑𝑥 + 𝑖𝑑𝑦) 

                  = ∫(𝑖𝑦 + 1)

0

1

𝑖 𝑑𝑦 =  ∫(𝑖 − 𝑦)

1

0

 𝑑𝑦 

                  = [
−𝑦2

2
+ 𝑖𝑦]

0

1

=
1

2
− 𝑖                         (7) 

Adding (4), (5), (6), (7), we get 

                  𝐼 = 𝐼1 + 𝐼2 + 𝐼3 + 𝐼4 

       =
3

2
+

−1 + 4𝑖

2
−

3

2
− 𝑖 +

1

2
− 𝑖 = 0 

𝐄𝐗. 𝟐𝟎. Evaluate ∫ 𝑠𝑖𝑛 𝑧 𝑑𝑧

𝐶

 along the line 𝑧 = 0 to 𝑧 = 𝑖. 

Solution: Let 𝑧 = 𝑥 + 𝑖𝑦, 𝑡ℎ𝑒𝑛 𝑑𝑧 = 𝑑𝑥 + 𝑖𝑑𝑦 

Given 𝑧 = 0 to 𝑧 = 𝑖. 

𝑖. 𝑒. , 𝑥 + 𝑖𝑦 = 0 + 0𝑖 𝑡𝑜 𝑥 + 𝑖𝑦 = 0 + 𝑖 

𝑖. 𝑒. , 𝑥 = 0, 𝑦 = 0 𝑡𝑜 𝑥 = 0, 𝑦 = 1. 𝑖. 𝑒. , (0, 0)𝑡𝑜 (0, 1). 

𝑁𝑜𝑤 ∫ 𝑠𝑖𝑛 𝑧 𝑑𝑧

𝐶

= ∫ 𝑠𝑖𝑛 (𝑥 + 𝑖𝑦)

𝐶

(𝑑𝑥 + 𝑖𝑑𝑦) 

Along 𝐶, 𝑥 = 0, 𝑑𝑥 = 0 𝑎𝑛𝑑 𝑦 varies from 0 to 1. 

                  ∴ ∫ 𝑠𝑖𝑛 𝑧 𝑑𝑧

𝐶

= ∫ 𝑠𝑖𝑛 (𝑖𝑦)

1

0

. 𝑖 𝑑𝑦 

                              = 𝑖 [
−𝑐𝑜𝑠 (𝑖𝑦) 

𝑖
]

0

1

= −𝑐𝑜𝑠 𝑖 + 1 = 1 − 𝑐𝑜𝑠 𝑖 

 

𝐄𝐗. 𝟐𝟏. Evaluate ∫ 𝑒𝑧
𝐶

𝑑𝑧, 𝐶 𝑖𝑠 |𝑧| = 1. 

Solution: Put 𝑧 = 𝑒𝑖𝜃 

Then 𝑑𝑧 = 𝑖 𝑒𝑖𝜃𝑑𝜃 

∴ ∫ 𝑒𝑧

𝐶

𝑑𝑧 = ∫ 𝑒𝑒𝑖𝜃

2𝜋

0

𝑖 𝑒𝑖𝜃𝑑𝜃 

Put 𝑒𝑖𝜃 = 𝑥, 𝑡ℎ𝑒𝑛 𝑖 𝑒𝑖𝜃𝑑𝜃 = 𝑑𝑥  
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When 𝜃 = 0, 𝑥 = 1 

When 𝜃 = 2𝜋, 𝑥 = 1 

Hence ∫ 𝑒𝑧

𝐶

𝑑𝑧 = ∫ 𝑒𝑥

1

1

𝑑𝑥 = 0. 

 

EX.22. Prove that 

∫
𝑑𝑧

𝑧 − 𝑎
𝐶

= 2𝜋𝑖 

where 𝐶 is the circle |𝑧 − 𝑎| = 𝑟. 

Solution: The equation of the circle |𝑧 − 𝑎| = 𝑟 can be written as 

𝑧 − 𝑎 = 𝑟 𝑒𝑖𝜃, 𝑡ℎ𝑒𝑛 𝑑𝑧 = 𝑟𝑖 𝑒𝑖𝜃𝑑𝜃 

Also 𝜃 varies from 0 to 2𝜋. 

∴ ∫
𝑑𝑧

𝑧 − 𝑎
𝐶

= ∫
𝑟𝑖 𝑒𝑖𝜃𝑑𝜃

𝑟 𝑒𝑖𝜃

2𝜋

0

= 2𝜋𝑖 

 

EX.23. Evaluate  

∫ 𝑙𝑜𝑔 𝑧

𝐶

 𝑑𝑧, where 𝐶 is the unit circle|𝑧| = 1. 

Solution: The equation of the circle |𝑧| = 1 can be written as 

𝑧 = 𝑒𝑖𝜃 , 𝑡ℎ𝑒𝑛 𝑑𝑧 = 𝑖 𝑒𝑖𝜃𝑑𝜃 

Also 𝜃 varies from 0 to 2𝜋. 

                      ∴ ∫ 𝑙𝑜𝑔 𝑧

𝐶

 𝑑𝑧 = ∫ 𝑙𝑜𝑔 (𝑒𝑖𝜃)

2𝜋

0

. 𝑖 𝑒𝑖𝜃𝑑𝜃 

                                  = ∫ 𝑖𝜃

2𝜋

0

. 𝑖 𝑒𝑖𝜃𝑑𝜃 (∵ 𝑙𝑜𝑔 𝑒𝑥 = 𝑥) 

                                  = − ∫ 𝜃

2𝜋

0

𝑒𝑖𝜃𝑑𝜃 

                                  = − [𝜃 (
𝑒𝑖𝜃

𝑖
) − 1 (

𝑒𝑖𝜃

𝑖2 )]
0

2𝜋

                [Using Bernoulli’s formula] 

                                  = − [
2𝜋𝑒𝑖2𝜋

𝑖
+ 𝑒𝑖2𝜋 − 1] 
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                                  = − [
2𝜋

𝑖
+ 1 − 1]   (∵ 𝑒𝑖2𝜋 = 1) 

                                  = −
2𝜋

𝑖
= 2𝜋𝑖 

 

EX.24.  Evaluate 

∫ (𝑧̅)2

2+𝑖

0

 𝑑𝑧 along the line 𝑥 = 2𝑦. 

Solution: Let  𝑧 = 𝑥 + 𝑖𝑦 

Then 𝑑𝑧 = 𝑑𝑥 + 𝑖𝑑𝑦 and 𝑧̅ = 𝑥 − 𝑖𝑦 

(𝑧̅)2 = (𝑥 − 𝑖𝑦)2 

         = 𝑥2 − 𝑦2 − 2𝑖𝑥𝑦 

∴ ∫ (𝑧̅)2

2+𝑖

0

 𝑑𝑧 = ∫(𝑥2 − 𝑦2 − 2𝑖𝑥𝑦)

𝐴

𝑂

(𝑑𝑥 + 𝑖𝑑𝑦) 

Along 𝑂𝐴, 𝑥 = 2𝑦 then 𝑑𝑥 = 2𝑑𝑦 

∴ ∫ (𝑧̅)2

2+𝑖

0

 𝑑𝑧 = ∫(4𝑦2 − 𝑦2 − 4𝑖𝑦2)

1

0

(2𝑑𝑦 + 𝑖𝑑𝑦) 

                         = (2 + 𝑖) ∫(3𝑦2 − 4𝑖𝑦2)

1

0

𝑑𝑦 

                         = (2 + 𝑖) [𝑦3 − 4𝑖
𝑦3

3
]

0

1

 

                         = (2 + 𝑖) (1 −
4𝑖

3
)        =

5

3
(2 − 𝑖) 

 

𝐄𝐗. 𝟐𝟓. Evaluate ∫ [(𝑥2 + 𝑦2)𝑑𝑥 − 2𝑥𝑦𝑑𝑦]

(1,   1)

(0,   0)

along(𝑖)𝑦 = 𝑥 (𝑖𝑖)𝑥 = 𝑦2(𝑖𝑖𝑖)𝑦 = 𝑥2. 

Solution: (i) Along the curve𝑦 = 𝑥, 𝑑𝑦 = 𝑑𝑥 and𝑥varies from 0 to 1. 

∴ ∫ [(𝑥2 + 𝑦2)𝑑𝑥 − 2𝑥𝑦𝑑𝑦]

(1,   1)

(0,   0)

= ∫[(𝑥2 + 𝑥2)𝑑𝑥 − 2𝑥2𝑑𝑥]

1

𝑥=0

= 0 

(ii) Along the curve 𝑥 = 𝑦2, 𝑑𝑥 = 2𝑦 𝑑𝑦 and 𝑦 varies from 0 to 1. 
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∴ ∫ [(𝑥2 + 𝑦2)𝑑𝑥 − 2𝑥𝑦𝑑𝑦]

(1,   1)

(0,   0)

= ∫[(𝑦4 + 𝑦2)2𝑦𝑑𝑦 − 2𝑦3𝑑𝑦]

1

𝑦=0

 

= ∫ 2𝑦5

1

𝑦=0

𝑑𝑦 =
1

3
 

(iii) Along the curve 𝑦 = 𝑥2, 𝑑𝑦 = 2𝑥 𝑑𝑥 and 𝑥 varies from 0 to 1. 

∴ ∫ [(𝑥2 + 𝑦2)𝑑𝑥 − 2𝑥𝑦𝑑𝑦]

(1,   1)

(0,   0)

= ∫[(𝑥2 + 𝑥4)𝑑𝑥 − 4𝑥4𝑑𝑥]

1

𝑥=0

 

= ∫(𝑥2 − 3𝑥4)𝑑𝑥

1

𝑥=0

= −
4

15
 

  

2.5 Cauchy’s Integral Theorem: 

If 𝑓(𝑧) is analytic at every point of the region 𝑅 bounded by a closed curve 𝐶 and if 

𝑓′(𝑧) is continuous throughout this closed region 𝑅, then 

∫ 𝑓(𝑧)

𝐶

𝑑𝑧 = 0. 

Proof: Let 𝑓(𝑧) = 𝑢(𝑥, 𝑦) + 𝑖 𝑣(𝑥, 𝑦) = 𝑢 + 𝑖𝑣. 

Since 𝑧 = 𝑥 + 𝑖𝑦, 𝑑𝑧 = 𝑑𝑥 + 𝑖𝑑𝑦. 

           Hence   ∫ 𝑓(𝑧)

𝐶

𝑑𝑧 = ∫ (𝑢 + 𝑖𝑣)

𝐶

(𝑑𝑥 + 𝑖𝑑𝑦) 

                                               = ∫ (𝑢𝑑𝑥 − 𝑣𝑑𝑦)

𝐶

+ 𝑖 ∫ (𝑣𝑑𝑥 + 𝑢𝑑𝑦)

𝐶

                 (1) 

Since 𝑓′(𝑧) is continuous, the four partial derivatives 

𝜕𝑢

𝜕𝑥
,
𝜕𝑢

𝜕𝑦
,
𝜕𝑣

𝜕𝑥
and

𝜕𝑣

𝜕𝑦
 

exist and are also continuous in the region 𝑅 enclosed by a curve 𝐶. Hence we can apply 

Green’s theorem, namely 

∫ (𝑃𝑑𝑥 + 𝑄𝑑𝑦)

𝐶

= ∬ (
𝜕𝑄

𝜕𝑥
−

𝜕𝑃

𝜕𝑦
)

𝑅

𝑑𝑥 𝑑𝑦 

to each of the two line integrals in the right side of (1). 



Complex Analysis 
 

262 
 

Hence ∫ (𝑢𝑑𝑥 − 𝑣𝑑𝑦)

𝐶

= ∬ (−
𝜕𝑣

𝜕𝑥
−

𝜕𝑢

𝜕𝑦
)

𝑅

𝑑𝑥 𝑑𝑦 

and ∫ (𝑣𝑑𝑥 + 𝑢𝑑𝑦)

𝐶

= ∬ (
𝜕𝑢

𝜕𝑥
−

𝜕𝑣

𝜕𝑦
)

𝑅

𝑑𝑥 𝑑𝑦 

Hence (1) becomes 

∫ 𝑓(𝑧)

𝐶

𝑑𝑧 = ∬ (−
𝜕𝑣

𝜕𝑥
−

𝜕𝑢

𝜕𝑦
)

𝑅

𝑑𝑥 𝑑𝑦 + 𝑖 ∬ (
𝜕𝑢

𝜕𝑥
−

𝜕𝑣

𝜕𝑦
)

𝑅

𝑑𝑥 𝑑𝑦             (2) 

But the function 𝑓(𝑧) is analytic and so 𝑢 and 𝑣 satisfy the Cauchy-Riemann equations, 

namely 

𝜕𝑢

𝜕𝑥
=

𝜕𝑣

𝜕𝑦
and

𝜕𝑢

𝜕𝑦
= − 

𝜕𝑣

𝜕𝑥
 

Hence the integrals of each of the double integrals in the right side of (2) are zero 

throughout the region 𝑅. 

Hence ∫ 𝑓(𝑧)

𝐶

𝑑𝑧 = 0 

Note: 1. The French Mathematician E. Goursat was the first to point out that the above 

Cauchy’s theorem can be proved without making use of the hypothesis that 𝑓′(𝑧) is 

continuous. Consequently, the revised form of the theorem, usually known as the Cauchy-

Goursat theorem, is stated as follows: 

If a function 𝑓(𝑧) is analytic at all points interior to and on a closed contour 𝐶, then  

∫ 𝑓(𝑧)

𝐶

𝑑𝑧 = 0. 

1. We have seen that the line integral  

∫ (𝑃𝑑𝑥 + 𝑄𝑑𝑦)

𝐶

 

will be independent of the path of integration if 
𝜕𝑃

𝜕𝑦
=  

𝜕𝑄

𝜕𝑥
. 

Now if 𝑓(𝑧) = 𝑢 + 𝑖𝑣 is an analytic function, 

∫ 𝑓(𝑧)

𝐶

𝑑𝑧 = ∫ (𝑢𝑑𝑥 − 𝑣𝑑𝑦)

𝐶

+ 𝑖 ∫ (𝑣𝑑𝑥 + 𝑢𝑑𝑦)

𝐶

 

The two integrals on the right side will be independent of the path of integration if 
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𝜕𝑢

𝜕𝑥
=

𝜕𝑣

𝜕𝑦
and

𝜕𝑢

𝜕𝑦
= − 

𝜕𝑣

𝜕𝑥
respectively. 

But these are the well known Cauchy-Riemann equations, which are necessarily 

satisfied if 𝑓(𝑧) = 𝑢 + 𝑖𝑣 is analytic. Hence if 𝑓(𝑧) is analytic in a simply connected region 

𝑅, then the line integral of 𝑓(𝑧) is independent of the path joining any two points of 𝑅. 

 

EX.26. If 𝐶 is the boundary of the square with vertices at the points 𝑧 = 0, 𝑧 = 1, 𝑧 = 1 + 𝑖 

and 𝑧 = 𝑖, show that  

∫ (3𝑧 + 1)

𝐶

𝑑𝑧 = 0. 

Solution: Given 𝑓(𝑧) = 3𝑧 + 1 

Since 𝑓(𝑧) is analytic everywhere (and in particular on and within the simple closed 

contour 𝐶). 

Hence by Cauchy’s theorem, it follows that 

∫ 𝑓(𝑧)

𝐶

𝑑𝑧 = 0 

𝑖. 𝑒. , ∫ (3𝑧 + 1)

𝐶

𝑑𝑧 = 0 

𝐄𝐗. 𝟐𝟕. If 𝐶 is any simple closed curve, evaluate ∫ 𝑓(𝑧)

𝐶

𝑑𝑧 if    𝑓(𝑧) = 

(𝑎)𝑠𝑖𝑛 𝑧          (𝑏)𝑐𝑜𝑠 3𝑧            (𝑐)𝑒2𝑧(𝑑)𝑧2 + 2                   (𝑒)𝑠𝑖𝑛 3𝑧 + 8𝑧3 

Solution: All these functions are analytic everywhere and hence in particular on and within 

any simple closed curve 𝐶. Hence, by Cauchy’s theorem 

∫ 𝑓(𝑧)

𝐶

𝑑𝑧 = 0 

for each one of the given functions. 

 

2.6. Extension of Cauchy’s Theorem (Cauchy’s theorem for multiply connected region):  

 Cauchy’s theorem can be applied even when the function 𝑓(𝑧) is analytic over a 

multiply connected region 𝑅. 



Complex Analysis 
 

264 
 

 
 

 

                 Let 𝑓(𝑧) be analytic in the annular region 𝑅 between two closed curves 𝐶1and𝐶2. 

By introducing the crosscut 𝐴𝐵, the annular region is converted into a region bounded by a 

single curve. 

We apply Cauchy’s theorem to the connected contour 𝐶1𝐴𝐵𝐶2𝐵𝐴 and so   

∫ 𝑓(𝑧)

𝐶

𝑑𝑧 = 0 

where the path 𝐶 is a combined contour indicated by arrows: (i) along 𝐶1 in the anticlockwise 

sense (ii) along 𝐴𝐵 (iii) along 𝐶2 in the clockwise sense and (iv) along 𝐵𝐴. 

𝑖. 𝑒. , ∫ 𝑓(𝑧)

𝐶1

𝑑𝑧 + ∫ 𝑓(𝑧)

𝐴𝐵

𝑑𝑧 + ∫ 𝑓(𝑧)

𝐶2

𝑑𝑧 + ∫ 𝑓(𝑧)

𝐵𝐴

𝑑𝑧 = 0             (1) 

But the integrals along  𝐴𝐵 and 𝐵𝐴  are cancel. 

 Therefore  

∫ 𝑓(𝑧)

𝐶1

𝑑𝑧 + ∫ 𝑓(𝑧)

𝐶2

𝑑𝑧 = 0                (2) 

provided each integral is traversed in the positive direction shown in fig. 24(a). In (2), we can 

reverse the direction of integration round 𝐶2 and transpose that integral. Then, we get 

∫ 𝑓(𝑧)

𝐶1

𝑑𝑧 = ∫ 𝑓(𝑧)

𝐶2

𝑑𝑧                         (3) 

where each integration is now done in the anticlockwise direction as shown in fig. 24 (b). The 

result (3) is known as the important principle of the deformation of contours: 

 The line integral of a single valued analytic function 𝑓(𝑧) around any closed curve 𝐶1 

is equal to the line integral of the same function around any other closed curve 𝐶2 into which 

the first can be continuously deformed without passing through a point in which 𝑓(𝑧) fails to 

be analytic. 
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 If 𝑓(𝑧) is analytic in a multiply connected region bounded by the exterior contour 𝐶 

and the interior contours 𝐶1, 𝐶2, … . . , 𝐶𝑛. The integral over the exterior contour 𝐶 is equal to 

the sum of the integrals over the interior contours 𝐶1, 𝐶2, … . . , 𝐶𝑛. It is assumed that the 

integration over all the contours is performed in the same direction and that  𝑓(𝑧) is analytic 

on all the contours. 

 

EX.28. Consider the region 1 ≤ 𝑧 ≤ 2. If 𝐶 is the positively oriented boundary of this region 

show that 

∫
𝑑𝑧

𝑧2(𝑧2 + 16)
𝐶

= 0 

Solution: 

 

|𝑧| = 1 and|𝑧| = 2 are two circles with centre at (0, 0) and radii equal to 1 and 2 

respectively. 

The region 1 ≤ 𝑧 ≤ 2 is the dotted portion in the figure. 

Let 𝐶 be |𝑧| = 2, the outer circle and 𝐶1 be |𝑧| = 1, the inner circle. 

The positively oriented boundary of the region is obtained by tracing |𝑧| = 2 in anticlockwise 

sense and |𝑧| = 1 in clockwise sense. 

The singular points of 𝑓(𝑧) =  
𝑑𝑧

𝑧2(𝑧2 + 16)
 are 𝑧 = 0 and 𝑧 = ±4𝑖. 

These three points are outside the region under consideration. 

Hence, 𝑓(𝑧) is analytic on and within |𝑧| = 2 but on and outside |𝑧| = 1.  

Hence, by the extension to Cauchy’s theorem, we have 

∫ 𝑓(𝑧)

𝐶

𝑑𝑧 = 0 
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𝐄𝐗. 𝟐𝟗. Evaluate ∫
𝑒2𝑧

𝑧 − 2
𝐶

𝑑𝑧 where 𝐶 𝑖𝑠 |𝑧| = 1.  

Solution: The point 𝑧 = 2 lies outside 𝐶. 

Therefore the function
𝑒2𝑧

𝑧 − 2
is analytic within and on 𝐶.  

Hence by Cauchy′s theorem, ∫
𝑒2𝑧

𝑧 − 2
𝐶

𝑑𝑧 = 0 

𝐄𝐗. 𝟑𝟎. Evaluate ∮ (𝑧 − 𝑎)𝑛

𝐶

𝑑𝑧, where 𝐶 is a simple closed curve and the point 𝑧 = 𝑎 is 

(i) inside 𝐶    (ii) outside 𝐶 (𝑛 is an integer). 

Solution: (i) Let 𝐶: circle 𝑧 − 𝑎 = 𝑟 𝑒𝑖𝜃, 𝑖. 𝑒. , 𝑎 is inside 𝐶. 

                     ∴ ∮ (𝑧 − 𝑎)𝑛

𝐶

𝑑𝑧 = ∫ (𝑟 𝑒𝑖𝜃)
𝑛

2𝜋

0

. 𝑖𝑟 𝑒𝑖𝜃𝑑𝜃 

                                                        = 𝑖𝑟𝑛+1 ∫ 𝑒𝑖(𝑛+1)𝜃

2𝜋

0

 𝑑𝜃                         (1) 

                                                         = 𝑖𝑟𝑛+1 [
𝑒𝑖(𝑛+1)𝜃

𝑖(𝑛 + 1)
]

0

2𝜋

, if 𝑛 ≠ −1 

                                           =
𝑟𝑛+1

𝑛 + 1
[𝑒𝑖2(𝑛+1)𝜋 − 1], if 𝑛 ≠ −1 

 

                                                        =
𝑟𝑛+1

𝑛 + 1
[𝑐𝑜𝑠 2(𝑛 + 1)𝜋 − 1], if 𝑛 ≠ −1 

                                                        = 0, if 𝑛 ≠ −1 

If 𝑛 = −1, then 

∮ (𝑧 − 𝑎)𝑛

𝐶

𝑑𝑧 = 𝑖 ∫ 𝑑𝜃

2𝜋

0

(𝑓𝑟𝑜𝑚 (1)) 

(ii) If 𝑛 = −1 and If 𝑎 is outside the circle 𝐶, then 

∮
𝑑𝑧

𝑧 − 𝑎𝐶

= 0 (using Cauchy′s theorem) 

Since
1

𝑧 − 𝑎
is analytic inside 𝐶. 
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EX.31. Verify Cauchy’s theorem for the integral of 𝑧3 taken over the boundary of the 

rectangle with vertices −1, 1, 1 + 𝑖, −1 + 𝑖. 

Solution: The boundary of rectangle 𝐶 consists of four curves 𝑐1, 𝑐2, 𝑐3 and 𝑐4. So  

∫ 𝑧3

𝐶

 𝑑𝑧 = ∫ 𝑧3

𝑐1

 𝑑𝑧 + ∫ 𝑧3

𝑐2

 𝑑𝑧 + ∫ 𝑧3

𝑐3

 𝑑𝑧 + ∫ 𝑧3

𝑐4

 𝑑𝑧                      (1) 

Along 𝑐1: 𝑦 = 0, 𝑑𝑦 = 0 and 𝑥 varies from -1 to 1. 

∴ ∫ 𝑧3

𝑐1

 𝑑𝑧 = ∫(𝑥 + 𝑖𝑦)3

1

−1

 (𝑑𝑥 + 𝑖𝑑𝑦) = ∫ 𝑥3

1

−1

 𝑑𝑥 = 0 

 

Along 𝑐2: 𝑥 = 1, 𝑑𝑥 = 0 and 𝑦 varies from 0 to 1. 

∴ ∫ 𝑧3

𝑐2

 𝑑𝑧 = ∫(𝑥 + 𝑖𝑦)3

1

0

 (𝑑𝑥 + 𝑖𝑑𝑦) = ∫(1 + 𝑖𝑦)3

1

0

 𝑖𝑑𝑦 

= 𝑖 ∫(1 + 3𝑖𝑦 − 3𝑦2 − 𝑖𝑦3)

1

0

𝑑𝑦 = −
5

4
 

Along 𝑐3: 𝑦 = 1, 𝑑𝑦 = 0 and 𝑥 varies from 1 to -1. 

∴ ∫ 𝑧3

𝑐3

 𝑑𝑧 = ∫ (𝑥 + 𝑖𝑦)3

−1

1

(𝑑𝑥 + 𝑖𝑑𝑦) = ∫ (𝑥 + 𝑖)3

−1

1

 𝑑𝑥 

= ∫

−1

1

(𝑥3 − 𝑖 + 3𝑖𝑥2 − 3𝑥) 𝑑𝑥 = 0 

Along 𝑐4: 𝑥 = −1, 𝑑𝑥 = 0 and 𝑦 varies from 1 to 0. 

∴ ∫ 𝑧3

𝑐4

 𝑑𝑧 = ∫(𝑥 + 𝑖𝑦)3

0

1

 (𝑑𝑥 + 𝑖𝑑𝑦) = ∫(−1 + 𝑖𝑦)3

0

1

 𝑖𝑑𝑦 
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= 𝑖 ∫(−1 + 3𝑖𝑦 + 3𝑦2 − 𝑖𝑦3)

1

0

𝑑𝑦 =
5

4
 

Substituting the above four values in (1), we get 

∫ 𝑧3

𝐶

 𝑑𝑧 = 0 −
5

4
+ 0 +

5

4
= 0 

Hence the theorem is verified. 

 

EX.32. Verify Cauchy’s theorem for the function 𝑓(𝑧) = 3𝑧2 + 𝑖𝑧 − 4 if 𝐶 is the square with 

vertices at 1 ± 𝑖 and − 1 ± 𝑖. 

Solution: 

 

 The boundary of square 𝐶 consists of four curves 𝑐1, 𝑐2, 𝑐3 and 𝑐4. So  

∫ 𝑓(𝑧)

𝐶

 𝑑𝑧 = ∫ 𝑓(𝑧)

𝑐1

 𝑑𝑧 + ∫ 𝑓(𝑧)

𝑐2

 𝑑𝑧 + ∫ 𝑓(𝑧)

𝑐3

 𝑑𝑧 + ∫ 𝑓(𝑧)

𝑐4

 𝑑𝑧                      (1) 

Along 𝑐1: 𝑦 = 1, 𝑑𝑦 = 0 and 𝑥 varies from 1 to -1. 

∴ ∫ 𝑓(𝑧)

𝑐1

 𝑑𝑧 = ∫ [3(𝑥 + 𝑖𝑦)2 + 𝑖(𝑥 + 𝑖𝑦) − 4]

−1

1

(𝑑𝑥 + 𝑖𝑑𝑦) 

                 = ∫ [3(𝑥 + 𝑖)2 + 𝑖(𝑥 + 𝑖) − 4]

−1

1

𝑑𝑥 = 14 

Along 𝑐2: 𝑥 = −1, 𝑑𝑥 = 0 and 𝑦 varies from 1 to -1. 

∴ ∫ 𝑓(𝑧)

𝑐2

 𝑑𝑧 = ∫ [3(𝑥 + 𝑖𝑦)2 + 𝑖(𝑥 + 𝑖𝑦) − 4]

−1

1

(𝑑𝑥 + 𝑖𝑑𝑦) 
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= ∫ [3(−1 + 𝑖𝑦)2 + 𝑖(−1 + 𝑖𝑦) − 4]

−1

1

 𝑖𝑑𝑦 = −2 + 4𝑖 

Along 𝑐3: 𝑦 = −1, 𝑑𝑦 = 0 and 𝑥 varies from -1 to 1. 

∴ ∫ 𝑓(𝑧)

𝑐3

 𝑑𝑧 = ∫[3(𝑥 + 𝑖𝑦)2 + 𝑖(𝑥 + 𝑖𝑦) − 4]

1

−1

(𝑑𝑥 + 𝑖𝑑𝑦) 

= ∫ [3(𝑥 − 𝑖)2 + 𝑖(𝑥 − 𝑖) − 4]

−1

1

𝑑𝑥 = −10 

Along 𝑐4: 𝑥 = 1, 𝑑𝑥 = 0 and 𝑦 varies from -1 to 1. 

∴ ∫ 𝑓(𝑧)

𝑐4

 𝑑𝑧 = ∫[3(𝑥 + 𝑖𝑦)2 + 𝑖(𝑥 + 𝑖𝑦) − 4]

1

−1

(𝑑𝑥 + 𝑖𝑑𝑦) 

= ∫[3(1 + 𝑖𝑦)2 + 𝑖(1 + 𝑖𝑦) − 4]

1

−1

 𝑖𝑑𝑦 = −2 − 4𝑖 

Substituting the above four values in (1), we get 

∫ 𝑧3

𝐶

 𝑑𝑧 = 14 − 2 + 4𝑖 − 10 − 2 − 4𝑖 = 0 

Hence the theorem is verified. 

 

𝐄𝐗. 𝟑𝟑. Show that ∫ (𝑧 + 1)𝑑𝑧 = 0

𝐶

 where C is the boundary of the square whose   

vertices at the points 𝑧 = 0, 𝑧 = 1, 𝑧 = 1 + 𝑖, 𝑧 = 𝑖. 

Solution:  

 

The boundary of square 𝐶 consists of four curves 𝑂𝐴, 𝐴𝐵, 𝐵𝐶 and 𝐶𝑂. So  
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∫ (𝑧 + 1)

𝐶

 𝑑𝑧 = ∫ (𝑧 + 1)

𝑂𝐴

 𝑑𝑧 + ∫ (𝑧 + 1)

𝐴𝐵

 𝑑𝑧 + ∫ (𝑧 + 1)

𝐵𝐶

 𝑑𝑧 + ∫ (𝑧 + 1)

𝐶𝑂

 𝑑𝑧        (1) 

Along 𝑂𝐴, 𝑦 = 0 then 𝑑𝑦 = 0, 𝑧 = 𝑥, 𝑑𝑧 = 𝑑𝑥 and 𝑥 varies from 0 to 1. 

∴ ∫ (𝑧 + 1)

𝑂𝐴

 𝑑𝑧 = ∫(𝑥 + 1)

1

0

𝑑𝑥 =
3

2
 

Along 𝐴𝐵, 𝑥 = 1 then 𝑑𝑥 = 0, 𝑧 = 1 + 𝑖𝑦, 𝑑𝑧 = 𝑖𝑑𝑦 and 𝑦 varies from 0 to 1. 

∴ ∫ (𝑧 + 1)

𝐴𝐵

 𝑑𝑧 = ∫(1 + 𝑖𝑦 + 1)

1

0

𝑖𝑑𝑦 == 𝑖 ∫(2 + 𝑖𝑦)

1

0

𝑑𝑦 = 2𝑖 −
1

2
 

 Along 𝐵𝐶, 𝑦 = 1 then 𝑑𝑦 = 0, 𝑧 = 𝑥 + 𝑖, 𝑑𝑧 = 𝑑𝑥 and 𝑥 varies from 1 to 0. 

∴ ∫ (𝑧 + 1)

𝐵𝐶

 𝑑𝑧 = ∫(𝑥 + 𝑖 + 1)

0

1

𝑑𝑥 = − (
3

2
+ 𝑖) 

Along 𝐶𝑂, 𝑥 = 0 then 𝑑𝑥 = 0, 𝑧 = 𝑖𝑦, 𝑑𝑧 = 𝑖𝑑𝑦 and 𝑦 varies from 1 to 0. 

∴ ∫ (𝑧 + 1)

𝐶𝑂

 𝑑𝑧 = ∫(𝑖𝑦 + 1)

0

1

𝑖𝑑𝑦 =
1

2
− 𝑖 

Substituting the above four values in (1), we get 

∫ (𝑧 + 1)

𝐶

 𝑑𝑧 =
3

2
+ 2𝑖 −

1

2
− (

3

2
+ 𝑖) +

1

2
− 𝑖 = 0 

 

EX.34. Verify Cauchy’s theorem for the function 𝑓(𝑧) = 𝑧2 + 3𝑧 − 2𝑖 if 𝐶 is the circle |𝑧| =

1. 

Solution: Let 𝐶: 𝑧 = 𝑒𝑖𝜃where 0 ≤ 𝜃 ≤ 2𝜋. 

∴ ∫ 𝑓(𝑧)

𝐶

 𝑑𝑧 = ∫ (𝑒2𝑖𝜃 + 3𝑒𝑖𝜃 − 2𝑖)

2𝜋

0

(𝑖. 𝑒𝑖𝜃)𝑑𝜃 

                       = 𝑖 ∫ (𝑒3𝑖𝜃 + 3𝑒2𝑖𝜃 − 2𝑖𝑒𝑖𝜃)

2𝜋

0

𝑑𝜃 

                      = 0 (∫ 𝑒𝑖𝑛𝜃

2𝜋

0

𝑑𝜃 = 0 if 𝑛 ≠ 0) 

Hence the theorem is verified. 
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2.7. Cauchy’s Integral Formula: 

 If 𝑓(𝑧) is analytic within and on the closed curve 𝐶 of a simply connected region 𝑅, 

and if 𝑎 is any point in the interior of 𝑅, then 

𝑓(𝑎) =
1

2𝜋𝑖
∫

𝑓(𝑧)

𝑧 − 𝑎
𝐶

𝑑𝑧, 

Where the integration around 𝐶 is in the positive sense. 

Proof:  

Given that  𝑓(𝑧) is analytic over a region 𝑅 whose complete boundary is 𝐶. 

Let 𝑎 be any point inside 𝑅. Draw a circle 𝐶0 with centre at 𝑎 and radius 𝑟 sufficiently 

small such that 𝐶0 lies entirely in𝑅. Since the function 𝑓(𝑧) is analytic everywhere within 𝑅, 

the function 
𝑓(𝑧)

𝑧−𝑎
 is also analytic everywhere within 𝑅 except at the one point 𝑧 = 𝑎. In 

particular, 
𝑓(𝑧)

𝑧−𝑎
 is analytic in the region 𝑅′ between 𝐶 and 𝐶0. Hence the contour 𝐶 may be 

deformed to the contour 𝐶0. So applying Cauchy’s extended theorem for the function  
𝑓(𝑧)

𝑧−𝑎
 , 

we have 

∫
𝑓(𝑧)

𝑧 − 𝑎
𝐶

𝑑𝑧 = ∫
𝑓(𝑧)

𝑧 − 𝑎
𝐶0

𝑑𝑧                     (1) 

 

For a point 𝑧 on 𝐶0, we can put 𝑧 − 𝑎 = 𝑟 𝑒𝑖𝜃 . 

Then 𝑑𝑧 = 𝑟 𝑒𝑖𝜃 . 𝑖𝑑𝜃. 

             Therefore         ∫
𝑓(𝑧)

𝑧 − 𝑎
𝐶0

𝑑𝑧 = ∫
𝑓(𝑎 + 𝑟 𝑒𝑖𝜃)

𝑟 𝑒𝑖𝜃

𝐶0

𝑟 𝑒𝑖𝜃. 𝑖𝑑𝜃 

                                 = 𝑖 ∫ 𝑓(𝑎 + 𝑟 𝑒𝑖𝜃)

𝐶0

𝑑𝜃                       (2) 

In the limits, as the circle 𝐶0 reduces to the point 𝑎, as 𝑟 → 0. 
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Hence the integral in the right side of (2) approaches 

𝑖 ∫ 𝑓(𝑎)

𝐶0

𝑑𝜃 = 𝑖𝑓(𝑎) ∫ 𝑑𝜃

2𝜋

0

= 𝑖𝑓(𝑎). 2𝜋 

Substituting this value in (1), we get 

∫
𝑓(𝑧)

𝑧 − 𝑎
𝐶

𝑑𝑧 = 2𝜋𝑖 𝑓(𝑎) 

                     or       𝑓(𝑎) =
1

2𝜋𝑖
∫

𝑓(𝑧)

𝑧 − 𝑎
𝐶

𝑑𝑧                       (3) 

The relation (3) is called Cauchy’s Integral Formula. It expresses the value of an 

analytic function at an interior point of a region 𝑅 in terms of its values on the boundary of 

the region. 

 

2.8. Derivatives of an analytic function at interior points of a domain: 

From Cauchy’s integral formula, we can readily obtain an expression for the 

derivative of an analytic function at an interior point of 𝑅 in terms of the boundary values of 

the function. By definition, taking 𝑎to be interior point and 𝑓(𝑧) as the analytic function, we 

have 

                       𝑓′(𝑎) = lim
∆𝑎→0

𝑓(𝑎 + ∆𝑎) − 𝑓(𝑎)

∆𝑎
 

= lim
∆𝑎→0

1

∆𝑎
[

1

2𝜋𝑖
∫

𝑓(𝑧)

𝑧 − (𝑎 + ∆𝑎)
𝐶

𝑑𝑧 −
1

2𝜋𝑖
∫

𝑓(𝑧)

𝑧 − 𝑎
𝐶

𝑑𝑧] 

applying Cauchy’s integral formula for both 𝑓(𝑎 + ∆𝑎) and 𝑓(𝑎) 

= lim
∆𝑎→0

1

∆𝑎
[

1

2𝜋𝑖
∫ 𝑓(𝑧)

𝐶

{
1

𝑧 − (𝑎 + ∆𝑎)
−

1

𝑧 − 𝑎
} 𝑑𝑧] 

= lim
∆𝑎→0

1

∆𝑎
[

1

2𝜋𝑖
∫ 𝑓(𝑧)

𝐶

{
∆𝑎

(𝑧 − 𝑎 − ∆𝑎)(𝑧 − 𝑎)
} 𝑑𝑧] 

                                       =
1

2𝜋𝑖
× lim

∆𝑎→0
∫

𝑓(𝑧)

(𝑧 − 𝑎 − ∆𝑎)(𝑧 − 𝑎)
𝐶

𝑑𝑧 

                                        =
1

2𝜋𝑖
∫

𝑓(𝑧)

(𝑧 − 𝑎)2

𝐶

𝑑𝑧                                (1) 
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Proceeding similarly, we have 

𝑓′′(𝑎) ==
2!

2𝜋𝑖
∫

𝑓(𝑧)

(𝑧 − 𝑎)3

𝐶

𝑑𝑧                    (2) 

𝑓′′′(𝑎) ==
3!

2𝜋𝑖
∫

𝑓(𝑧)

(𝑧 − 𝑎)4

𝐶

𝑑𝑧                    (3) 

and in general,  

𝑓𝑛(𝑎) ==
𝑛!

2𝜋𝑖
∫

𝑓(𝑧)

(𝑧 − 𝑎)𝑛+1

𝐶

𝑑𝑧                    (4) 

This is called Generalization of Cauchy’s Integral Formula.  

 We have thus established the important fact that analytic functions posses derivatives 

of all orders. Also we find that every derivative of an analytic function has a derivative and 

hence, in turn, is also analytic. 

 It can also be noted that the results for the derivatives 𝑓′(𝑎), 𝑓′′(𝑎), 𝑓′′′(𝑎) 𝑒𝑡𝑐., 

obtained in . (1), (2), (3), … .. above can be obtained ordinarily by repeatedly differentiating 

within the integral sign Cauchy’s integral formula with respect to the parameter 𝑎. 

 

EXAMPLES 

EX.35. Using Cauchy’s integral formula, find the value of  

∫
𝑧 + 4

𝑧2 + 2𝑧 + 5
𝐶

𝑑𝑧 

where 𝐶 is the circle |𝑧 + 1 − 𝑖| = 2. 

Solution: Given |𝑧 + 1 − 𝑖| = 2, 𝑖. 𝑒. , |𝑧 − (−1 + 𝑖)| = 2. 

This is clearly a circle 𝐶 with centre −1 + 𝑖 and radius 2 units. 

𝑧 + 4

𝑧2 + 2𝑧 + 5
=

𝑧 + 4

(𝑧 + 1)2 + 4
=

𝑧 + 4

(𝑧 + 1 + 2𝑖)(𝑧 + 1 − 2𝑖)
 

Consider the function 

𝑓(𝑧) =
𝑧 + 4

𝑧 + 1 + 2𝑖
                        (1) 

This function is analytic at all points inside 𝐶. In fact, it is analytic everywhere except at 𝑧 =

−1 − 2𝑖. but this point (−1 − 2𝑖) is outside 𝐶. The point 𝑧 = −1 + 2𝑖 is inside the circle  𝐶. 

Hence by Cauchy’s integral formula, we have  
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𝑓(𝑎) =
1

2𝜋𝑖
∫

𝑓(𝑧)

𝑧 − 𝑎
𝐶

𝑑𝑧 

Taking 𝑎 = −1 + 2𝑖, we have 

                                                     ∫
𝑓(𝑧)

𝑧 − 𝑎
𝐶

𝑑𝑧 = 2𝜋𝑖. 𝑓(𝑎) 

        𝑖. 𝑒. , ∫
𝑧 + 4

(𝑧 + 1 + 2𝑖)(𝑧 + 1 − 2𝑖)
𝐶

𝑑𝑧 = 2𝜋𝑖. 𝑓(𝑎) 

        𝑖. 𝑒. ,                          ∫
𝑧 + 4

𝑧2 + 2𝑧 + 5
𝐶

𝑑𝑧 = 2𝜋𝑖.
𝑎 + 4

𝑎 + 1 + 2𝑖
       [from (1)] 

                                  = 2𝜋𝑖 (
−1 + 2𝑖 + 4

−1 + 2𝑖 + 1 + 2𝑖
) 

                                        = 2𝜋𝑖 (
3 + 2𝑖

4𝑖
) =

𝜋

2
(3 + 2𝑖) 

𝐄𝐗. 𝟑𝟔. Prove that  
1

2𝜋𝑖
∫

𝑧3 − 𝑧

(𝑧 − 𝑧0)3

𝐶

𝑑𝑧 = 3𝑧0if 𝐶 is a closed curve described 

  in the positive senseand𝑧0is inside 𝐶. What will be its value when 𝑧0 is outside 𝐶 ? 

Solution: By Cauchy’s integration formula, we have 

𝑓𝑛(𝑎) ==
𝑛!

2𝜋𝑖
∫

𝑓(𝑧)

(𝑧 − 𝑎)𝑛+1

𝐶

𝑑𝑧 

where 𝑎 is a point inside 𝐶. 

In this, take 𝑓(𝑧) = 𝑧3 − 𝑧, 𝑎 = 𝑧0 and 𝑛 = 2. Then  

𝑓′′(𝑧0) ==
2!

2𝜋𝑖
∫

𝑧3 − 𝑧

(𝑧 − 𝑧0)3

𝐶

𝑑𝑧 

∴
1

2𝜋𝑖
∫

𝑧3 − 𝑧

(𝑧 − 𝑧0)3

𝐶

𝑑𝑧 =
𝑓′′(𝑧0)

2
                      (1) 

Now differentiation gives, 𝑓′(𝑧) = 3𝑧2 − 1 and 𝑓′′(𝑧) = 6𝑧.  

Therefore 𝑓′′(𝑧0) = 6𝑧0 and (1) gives 

1

2𝜋𝑖
∫

𝑧3 − 𝑧

(𝑧 − 𝑧0)3

𝐶

𝑑𝑧 = 3𝑧0 
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If 𝑧0 is outside 𝐶, take 𝑓(𝑧) =
𝑧3−𝑧

(𝑧−𝑧0)3. This function is analytic at all points inside 𝐶. 

Therefore by Cauchy’s theorem, 

∫
𝑧3 − 𝑧

(𝑧 − 𝑧0)3

𝐶

𝑑𝑧 = 0 

 

𝐄𝐗. 𝟑𝟕. Evaluate ∮
𝑧2 + 4

𝑧 − 3𝐶

 𝑑𝑧 where 𝐶 is(𝑎)|𝑧| = 5      (𝑏)|𝑧|

= 2 taken in anticlockwise  

(or positive  sence). 

Solution:(𝑎)|𝑧| = 5 is the circle with centre at (0, 0) and radius 5 units. 

Given function is analytic everywhere except at 𝑧 = 3 and lie inside 𝐶. 

∮
𝑧2 + 4

𝑧 − 3𝐶

 𝑑𝑧 = ∫
𝑓(𝑧)

𝑧 − 𝑎
𝐶

𝑑𝑧 

where 𝑓(𝑧) = 𝑧2 + 4, 𝑎 = 3and 𝐶 is |𝑧| = 5 taken in anticlockwise sese. 

Using Cauchy’s integral formula 

∫
𝑓(𝑧)

𝑧 − 𝑎
𝐶

𝑑𝑧 = 2𝜋𝑖 𝑓(𝑎) = 2𝜋𝑖[𝑧2 + 4]𝑧=𝑎=3 

= 2𝜋𝑖(9 + 4) = 26𝜋𝑖 

(𝑏)|𝑧| = 2 is the circle with centre at (0, 0) and radius equal to 2.  

The point 𝑧 = 3 is outside this curve. 

Therefore the function 
𝑧2+4

𝑧−3
 is analytic on and within 𝐶:|𝑧| = 2. 

Hence, by Cauchy’s theorem 

∮
𝑧2 + 4

𝑧 − 3𝐶

 𝑑𝑧 = 0. 

 

EX.38. Let 𝐶 be the circle |𝑧| = 3 described in positive sense.   

Let 𝑔(𝑎) = ∫
2𝑧2−𝑧−2

𝑧−𝑎𝐶
𝑑𝑧 (|𝑎| ≠ 3) Show that 𝑔(2) = 8𝜋𝑖. What is the value of 𝑔(𝑎) if 

|𝑎| > 3. 

Solution: |𝑧| = 3 is the circle with centre at (0, 0) and radius equal to 3units. 
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Consider 𝑔(𝑎) = ∫
2𝑧2 − 𝑧 − 2

𝑧 − 𝑎
𝐶

𝑑𝑧 

2𝑧2 − 𝑧 − 2

𝑧 − 𝑎
is analytic  everywhere except at 𝑧 = 𝑎. 

This point 𝑧 = 𝑎 may be (i) within the circle or (ii) on the circle or (iii) outside the circle. 

Since |𝑎| ≠ 3, 𝑧 = 𝑎 is not on the circle. 

𝐂𝐚𝐬𝐞 𝐈: If 𝑧 = 𝑎is within the circle,
2𝑧2 − 𝑧 − 2

𝑧 − 𝑎
is analytic within 𝐶 except at 𝑧 = 𝑎. 

Therefore take 𝑓(𝑧) = 2𝑧2 − 𝑧 − 2; 

𝑔(𝑎) = ∫
2𝑧2 − 𝑧 − 2

𝑧 − 𝑎
𝐶

𝑑𝑧 

= ∫
𝑓(𝑧)

𝑧 − 𝑎
𝐶

𝑑𝑧 = 2𝜋𝑖 𝑓(𝑎) (by Cauchy′s integral formula) 

                               = 2𝜋𝑖 (2𝑧2 − 𝑧 − 2)at 𝑧 = 𝑎 

               = 2𝜋𝑖 (2𝑎2 − 𝑎 − 2) 

∴ 𝑔(2) = 2𝜋𝑖 (8 − 2 − 2) = 8𝜋𝑖  

Case II: If |𝑎| > 3, 𝑧 = 𝑎 is outside the circle  |𝑧| = 3. 

Therefore
2𝑧2 − 𝑧 − 2

𝑧 − 𝑎
is analytic everywhere on and within 𝐶. 

Hence ∫
2𝑧2 − 𝑧 − 2

𝑧 − 𝑎
𝐶

𝑑𝑧 = 0 by Cauchy′s theorem. 

 

𝐄𝐗. 𝟑𝟗. Let 𝐶 be a closed contour described in the positive sense.  

Let 𝑔(𝑎) = ∫
𝑧3 + 2𝑧

(𝑧 − 𝑎)3

𝐶

𝑑𝑧 . Show that 𝑔(𝑎) = 6𝜋𝑖𝑎 if 𝑎 is within 𝐶  and 𝑔(𝑎) = 0  

when 𝑎 is outside 𝐶. 

Solution: Case I: Let 𝑧 = 𝑎 be within 𝐶. 

Let 𝑔(𝑎) = ∫
𝑧3 + 2𝑧

(𝑧 − 𝑎)3

𝐶

𝑑𝑧 

                 = ∫
𝑓(𝑧)

(𝑧 − 𝑎)3

𝐶

𝑑𝑧 
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Using generalization to Cauchy’s integral formula, we get 

𝑓𝑛(𝑎) ==
𝑛!

2𝜋𝑖
∫

𝑓(𝑧)

(𝑧 − 𝑎)𝑛+1

𝐶

𝑑𝑧 

∴ 𝑓′′(𝑎) ==
2!

2𝜋𝑖
∫

𝑓(𝑧)

(𝑧 − 𝑎)2+1

𝐶

𝑑𝑧    where 𝑓(𝑧) = 𝑧3 + 2𝑧 

             𝑓′(𝑧) = 3𝑧2 + 2 and𝑓′′(𝑧) = 6𝑧 

           ∴     6𝑎 =
1

𝜋𝑖
∫

𝑓(𝑧)

(𝑧 − 𝑎)3

𝐶

𝑑𝑧 

         𝑖. 𝑒., ∫
𝑓(𝑧)

(𝑧 − 𝑎)3

𝐶

𝑑𝑧 = 6𝜋𝑖𝑎 

         𝑖. 𝑒., 𝑔(𝑎) = 6𝜋𝑖𝑎 

Case II: Let 𝑧 = 𝑎 be a point outside 𝐶. 

Then the integrand in ∫
𝑧3 + 2𝑧

(𝑧 − 𝑎)3

𝐶

𝑑𝑧 is analytic on and within C everywhere. 

Therefore by Cauchy′s theorem, ∫
𝑧3 + 2𝑧

(𝑧 − 𝑎)3

𝐶

𝑑𝑧 = 0 

 

𝑬𝑿. 𝟒𝟎. Evaluate ∫
𝑑𝑧

2𝑧 − 3
𝐶

, where 𝐶 is the circle|𝑧| = 1. 

Solution: Cauchy’s  integral formula is 

∫
𝑓(𝑧)

𝑧 − 𝑎
𝐶

𝑑𝑧 = 2𝜋𝑖 𝑓(𝑎)                        (1) 

Now ∫
𝑑𝑧

2𝑧 − 3
𝐶

=
1

2
∫

𝑑𝑧

𝑧 −
3
2𝐶

 

Here 𝑓(𝑧) = 1, 𝑎 =
3

2
    which lies outside of the circle  |𝑧| = 1. 

∴ ∫
𝑑𝑧

2𝑧 − 3
𝐶

= 0 
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𝐄𝐗. 𝟒𝟏. Evaluate ∫
𝑑𝑧

2𝑧 + 3
𝐶

, where 𝐶 is the circle|𝑧| = 2. 

Solution: Cauchy’s  integral formula is 

∫
𝑓(𝑧)

𝑧 − 𝑎
𝐶

𝑑𝑧 = 2𝜋𝑖 𝑓(𝑎)                        (1) 

Now ∫
𝑑𝑧

2𝑧 + 3
𝐶

=
1

2
∫

𝑑𝑧

𝑧 +
3
2𝐶

 

Here 𝑓(𝑧) = 1, 𝑎 = −
3

2
     which lies inside of the circle |𝑧| = 2. 

∴ ∫
𝑑𝑧

2𝑧 − 3
𝐶

=
1

2
∫

𝑑𝑧

𝑧 +
3
2𝐶

=
1

2
 2𝜋𝑖 𝑓 (−

1

2
)     [from (1)] 

                  = 𝜋𝑖 (1) (∵ 𝑓(𝑧) = 1 ⇒ 𝑓 (−
1

2
) = 1 ) 

 = 𝜋𝑖                                               

 

𝑬𝑿. 𝟒𝟐. Evaluate ∫
3𝑧2 + 7𝑧 + 1

𝑧 + 1
𝐶

𝑑𝑧, where 𝐶 is the circle|𝑧| =
1

2
. 

Solution: Given integrand is 

∫
3𝑧2 + 7𝑧 + 1

𝑧 + 1
𝐶

= ∫
3𝑧2 + 7𝑧 + 1

𝑧 − (−1)
𝐶

 

Here 𝑓(𝑧) = 3𝑧2 + 7𝑧 + 1, 𝑎 = −1  which lies outside of the circle |𝑧| =
1

2
. 

Therefore by Cauchy’s theorem, we have 

∴ ∫
3𝑧2 + 7𝑧 + 1

𝑧 + 1
𝐶

= 0 

 

𝑬𝑿. 𝟒𝟑. Evaluate ∫
1

𝑧𝑒𝑧

𝐶

𝑑𝑧, where 𝐶 is the circle|𝑧| = 1. 

Solution: Given integrand is 

∫
1

𝑧𝑒𝑧

𝐶

𝑑𝑧 = ∫
𝑒−𝑧

𝑧 − 0
𝐶

𝑑𝑧 

Here 𝑓(𝑧) = 𝑒−𝑧 , 𝑎 = 0  which lies inside of the circle |𝑧| = 1. 
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Hence by Cauchy’s integral theorem, we have 

∫
𝑒−𝑧

𝑧 − 0
𝐶

𝑑𝑧 = 2𝜋𝑖 𝑓(0) = 2𝜋𝑖 

 

𝐄𝐗. 𝟒𝟒.  Evaluate ∫
𝑒2𝑧

(𝑧 − 1)(𝑧 − 2)
𝐶

𝑑𝑧, where 𝐶 is the circle|𝑧| = 3. 

Solution: 𝑓(𝑧) = 𝑒2𝑧 is analytic within the circle 𝐶: |𝑧| = 3 and the two singular points 𝑎 =

1 and 𝑎 = 2 lie inside 𝐶. 

               ∴ ∫
𝑒2𝑧

(𝑧 − 1)(𝑧 − 2)
𝐶

𝑑𝑧 = ∫ 𝑒2𝑧

𝐶

(
1

𝑧 − 2
−

1

𝑧 − 1
) 𝑑𝑧 

= ∫
𝑒2𝑧

𝑧 − 2
𝐶

𝑑𝑧 − ∫
𝑒2𝑧

𝑧 − 1
𝐶

𝑑𝑧 

                                                    = 2𝜋𝑖 𝑓(2) − 2𝜋𝑖 𝑓(1) (by Cauchy′s integral formula) 

                 = 2𝜋𝑖 𝑒4 − 2𝜋𝑖 𝑒2 = 2𝜋𝑖 (𝑒4 − 𝑒2) 

 

𝐄𝐗. 𝟒𝟓. Evaluate ∫
𝑐𝑜𝑠 𝜋𝑧

(𝑧2 − 1)
𝐶

𝑑𝑧, around a rectangle with vertices 2 ± 𝑖, −2 ± 𝑖. 

Solution: 𝑓(𝑧) = 𝑐𝑜𝑠 𝜋𝑧 is analytic in the region bounded by the given rectangle and the two 

singular points 𝑎 = 1and 𝑎 = −1 lie inside this rectangle. 

∴ ∫
𝑐𝑜𝑠 𝜋𝑧

(𝑧2−1)𝐶
𝑑𝑧 =

1

2
∫ (

1

𝑧−1
−

1

𝑧+1
)

𝐶
𝑐𝑜𝑠 𝜋𝑧 𝑑𝑧 

                                 =
1

2
∫

𝑐𝑜𝑠 𝜋𝑧 

𝑧 − 1
𝐶

 𝑑𝑧 −
1

2
∫

𝑐𝑜𝑠 𝜋𝑧 

𝑧 + 1
𝐶

 𝑑𝑧 

 

 =
1

2
{2𝜋𝑖 𝑐𝑜𝑠 𝜋(1)} −

1

2
{2𝜋𝑖 𝑐𝑜𝑠 𝜋(−1)} = 0 [By Cauchy’s integral formula] 

 

𝐄𝐗. 𝟒𝟔. Evaluate ∫
𝑠𝑖𝑛2𝑧

(𝑧 −
𝜋
6)

3

𝐶

𝑑𝑧, where 𝐶 is the circle|𝑧| = 1. 

Solution: Let 𝑓(𝑧) = 𝑠𝑖𝑛2𝑧  is analytic inside the circle 𝐶: |𝑧| = 1 and the point 

 𝑎 =
𝜋

6
 (0.5 approx. ) lies within 𝐶. 

Therefore by Cauchy’s integral formula, we have  
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𝑓′′(𝑎) =
2!

2𝜋𝑖
∫

𝑓(𝑧)

(𝑧 − 𝑎)3

𝐶

𝑑𝑧 

∴ ∫
𝑠𝑖𝑛2𝑧

(𝑧 −
𝜋
6)

3

𝐶

𝑑𝑧 = 𝜋𝑖 [
𝑑2

𝑑𝑧2
(𝑠𝑖𝑛2𝑧)]

𝑧=
𝜋
6

 

                                       = 𝜋𝑖 (2 𝑐𝑜𝑠 2𝑧)
𝑧=

𝜋
6

= 𝜋𝑖 

 

𝐄𝐗. 𝟒𝟕. Evaluate ∫
𝑒2𝑧

(𝑧 + 1)4

𝐶

𝑑𝑧, where 𝐶 is the circle|𝑧| = 2. 

Solution: Let 𝑓(𝑧) = 𝑒2𝑧  is analytic within the circle 𝐶: |𝑧| = 2. Also 𝑧 = −1 lies inside 𝐶. 

Therefore by Cauchy’s integral formula, we have  

           𝑓′′′(𝑎) =
3!

2𝜋𝑖
∫

𝑓(𝑧)

(𝑧 − 𝑎)4

𝐶

𝑑𝑧 

∴ ∫
𝑒2𝑧

(𝑧 + 1)4

𝐶

𝑑𝑧 =
2𝜋𝑖

6
[

𝑑3

𝑑𝑧3
(𝑒2𝑧)]

𝑧=−1

 

                                        =
𝜋𝑖

3
[8 𝑒2𝑧]𝑧=−1 =

8𝜋𝑖

3
𝑒−2 

 

𝐄𝐗. 𝟒𝟖. Evaluate ∫
𝑒𝑧

(𝑧2 + 𝜋2)2

𝐶

𝑑𝑧, where 𝐶 is the circle|𝑧| = 4. 

𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧: 
𝑒𝑧

(𝑧2 + 𝜋2)2
=

𝑒𝑧

(𝑧 + 𝜋𝑖)2(𝑧 − 𝜋𝑖)2
 is not analytic at 𝑧 = ±𝜋𝑖. 

However both 𝑧 = ±𝜋𝑖 lie within the circle |𝑧| = 4. 

Now
𝑒𝑧

(𝑧 + 𝜋𝑖)2(𝑧 − 𝜋𝑖)2
=

𝐴

𝑧 + 𝜋𝑖
+

𝐵

(𝑧 + 𝜋𝑖)2
+

𝐶

𝑧 − 𝜋𝑖
+

𝐷

(𝑧 − 𝜋𝑖)2
 

where 𝐴 =
7

2𝜋3𝑖
 , 𝐶 = −

7

2𝜋3𝑖
 , 𝐵 = 𝐷 = −

1

4𝜋2
 

∴ ∫
𝑒𝑧

(𝑧2 + 𝜋2)2

𝐶

𝑑𝑧 =
7

2𝜋3𝑖
{∫

𝑒𝑧

𝑧 + 𝜋𝑖
𝐶

𝑑𝑧 − ∫
𝑒𝑧

𝑧 − 𝜋𝑖
𝐶

𝑑𝑧} 

                                                                    −
1

4𝜋2
{∫

𝑒𝑧

(𝑧+𝜋𝑖)2𝐶
𝑑𝑧 + ∫

𝑒𝑧

(𝑧−𝜋𝑖)2𝐶
𝑑𝑧}  =

7

2𝜋3𝑖
{2𝜋𝑖 𝑓(−𝜋𝑖) − 2𝜋𝑖 𝑓(𝜋𝑖)} −

1

4𝜋2
{2𝜋𝑖 𝑓′(−𝜋𝑖) + 2𝜋𝑖 𝑓′(𝜋𝑖)}    here 𝑓(𝑧) = 𝑒𝑧 

                                       = 𝑖 𝜋⁄  
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𝐄𝐗. 𝟒𝟗. If   𝐹(𝜁) = ∫
4𝑧2 + 𝑧 + 5

𝑧 − 𝜁
𝐶

𝑑𝑧, where 𝐶 is the ellipse (
𝑥

2
)

2

+ (
𝑦

2
)

2

= 1, 

find the value of  (a) 𝐹(3.5)       (b) 𝐹(𝑖), 𝐹′(−1) and 𝐹′′(−𝑖) 

𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧:  (𝑎) 𝐹(3.5) = ∫
4𝑧2 + 𝑧 + 5

𝑧 − 3.5
𝐶

𝑑𝑧 

Since 𝜁 = 3.5 is the only singular point of  4𝑧2 + 𝑧 + 5/(𝑧 − 3.5) and it lies outside the 

ellipse 𝐶, therefore, 4𝑧2 + 𝑧 + 5/(𝑧 − 3.5) is analytic everywhere within 𝐶. 

Hence by Cauchy’s theorem, ∫
4𝑧2 + 𝑧 + 5

𝑧 − 3.5
𝐶

𝑑𝑧 = 0, 𝑖. 𝑒. , 𝐹(3.5) = 0  

(b) Since 𝑓(𝑧) = 4𝑧2 + 𝑧 + 5 is analytic within 𝐶 and 𝜁 = 𝑖, −1 and − 𝑖 all lie within 𝐶, 

therefore,  

by Cauchy’s integral formula 

𝑓(𝜁) =
1

2𝜋𝑖
∫

𝑓(𝑧)

𝑧 − 𝜁
𝐶

𝑑𝑧 

𝑖. 𝑒. , ∫
4𝑧2 + 𝑧 + 5

𝑧 − 𝜁
𝐶

𝑑𝑧 = 2𝜋𝑖 𝑓(𝜁) 

𝑖. 𝑒. , 𝐹(𝜁) = 2𝜋𝑖 (4𝜁2 + 𝜁 + 5) 

Then𝐹′(𝜁) = 2𝜋𝑖 (8𝜁 + 5)and𝐹′′(𝜁) = 16𝜋𝑖 

Thus 𝐹(𝑖) = 2𝜋(𝑖 − 1) 

𝐹′(−1) = −14 𝜋𝑖 and𝐹′′(−𝑖) = 16𝜋𝑖 

 

EX.50. Evaluate ∫
𝑧3−𝑠𝑖𝑛 3𝑧

(𝑧−
𝜋

2
)

3𝐶
𝑑𝑧, where 𝐶 is the circle|𝑧| = 2  

using Cauchy′s integral formula 

Solution: 𝑓(𝑧) = 𝑧3 − 𝑠𝑖𝑛 3𝑧 is analytic inside the circle 𝐶: |𝑧| = 2 and the singular point 

𝑎 =
𝜋

2
 lie inside 𝐶. 

By Cauchy’s integral formula, we have 

𝑓′′(𝑎) =
2!

2𝜋𝑖
∫

𝑓(𝑧)

(𝑧 − 𝑎)3

𝐶

𝑑𝑧 
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∴ ∫
𝑧3 − 𝑠𝑖𝑛 3𝑧

(𝑧 −
𝜋
2)

3

𝐶

𝑑𝑧 = 𝜋𝑖 𝑓′′ (
𝜋

2
) = 𝜋𝑖 

𝑑2

𝑑𝑧2
[𝑧3 − 𝑠𝑖𝑛 3𝑧]

𝑧=
𝜋
2
 

                = 𝜋𝑖 
𝑑

𝑑𝑧
[3𝑧2 − 3 𝑐𝑜𝑠 3𝑧]

𝑧=
𝜋
2
 

        = 𝜋𝑖 [6𝑧 + 9 𝑠𝑖𝑛 3𝑧]
𝑧=

𝜋
2
 

= 3𝜋𝑖(𝜋 − 3) 

 

𝐄𝐗. 𝟓𝟏. Evaluate ∫
𝑧𝑒𝑧

(𝑧 + 𝑎)3

𝐶

𝑑𝑧, where 𝐶 is any simple closed curve enclosing the point  

𝑧 = −𝑎. 

Solution: Let  𝑓(𝑧) = 𝑧𝑒𝑧. Then 𝑓(𝑧) is analytic and the point – 𝑎 lies inside 𝐶. 

By Cauchy’s integral formula, we have 

𝑓′′(𝑎) =
2!

2𝜋𝑖
∫

𝑓(𝑧)

(𝑧 − 𝑎)3

𝐶

𝑑𝑧 

∴ ∫
𝑓(𝑧)

(𝑧 + 𝑎)3

𝐶

𝑑𝑧 = 𝜋𝑖 𝑓′′(−𝑎)                             (1) 

Now 𝑓(𝑧) = 𝑧𝑒𝑧 

Then 𝑓′(𝑧) = 𝑧𝑒𝑧 + 𝑒𝑧 

𝑓′′(𝑧) = 𝑧𝑒𝑧 + 2𝑒𝑧 = (𝑧 + 2)𝑒𝑧 

    ∴ 𝑓′′(−𝑎) = (−𝑎 + 2)𝑒−𝑎 

Substituting the values of 𝑓(𝑧) and 𝑓′′(−𝑎) in (1), we get 

∫
𝑧𝑒𝑧

(𝑧 + 𝑎)3

𝐶

𝑑𝑧 = (2 − 𝑎) 𝜋𝑖 𝑒−𝑎 

 

𝐄𝐗. 𝟓𝟐. Evaluate ∫
𝑠𝑖𝑛 𝜋𝑧2 + 𝑐𝑜𝑠 𝜋𝑧2

(𝑧 − 1)(𝑧 − 2)
𝐶

𝑑𝑧, where 𝐶 is the circle |z| = 3 using 

 Cauchy′s integral formula. 

Solution: Let 𝑓(𝑧) = 𝑠𝑖𝑛 𝜋𝑧2 + 𝑐𝑜𝑠 𝜋𝑧2 is analytic within the circle |z| = 3 and the singular 

points 𝑎 = 1, 2 lies inside 𝐶. 
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∴ ∫
𝑓(𝑧)

(𝑧 − 1)(𝑧 − 2)
𝐶

𝑑𝑧 = ∫ [
1

𝑧 − 2
−

1

𝑧 − 1
]

𝐶

𝑓(𝑧)𝑑𝑧 

                                           = ∫
𝑓(𝑧)

𝑧 − 2
𝐶

𝑑𝑧 − ∫
𝑓(𝑧)

𝑧 − 1
𝐶

𝑑𝑧 

                                           = 2𝜋𝑖 𝑓(2) − 2𝜋𝑖 𝑓(1)(using Cauchy's integral formula) 

                                           = 2𝜋𝑖[(𝑠𝑖𝑛 4𝜋 + 𝑐𝑜𝑠 4𝜋) − (𝑠𝑖𝑛 𝜋 + 𝑐𝑜𝑠 𝜋)]    = 4𝜋𝑖 

𝑖. 𝑒. , ∫
𝑠𝑖𝑛 𝜋𝑧2 + 𝑐𝑜𝑠 𝜋𝑧2

(𝑧 − 1)(𝑧 − 2)
𝐶

𝑑𝑧 = 4𝜋𝑖 

 

𝐄𝐗. 𝟓𝟑. Using Cauchy′s integral formula, evaluate ∫
𝑧

(𝑧−1)(𝑧−2)2𝐶
𝑑𝑧,   

where 𝐶: |z − 2| =
1

2
.  

Solution: The integrand has two singular points at 𝑧 = 1 and 𝑧 = 2 of which only 𝑧 = 2 lies 

inside 𝐶. 

𝑓(𝑧) =
𝑧

𝑧−1
is analytic on and within 𝐶. 

Here 𝑎 = 2 and 𝑛 = 1. 

Therefore by Cauchy’ s integral formula 

𝑓′(𝑎) =
1

2𝜋𝑖
∫

𝑓(𝑧)

(𝑧 − 𝑎)2

𝐶

𝑑𝑧, we get 

∫
𝑧

(𝑧 − 1)(𝑧 − 2)2

𝐶

𝑑𝑧 = 2𝜋𝑖 [
𝑑

𝑑𝑧
(

𝑧

𝑧 − 1
)]

𝑧=2
 

                                          = −2𝜋𝑖 

 

𝑬𝑿. 𝟓𝟒. Use Cauchy′s integral formula to evaluate ∫
𝑧2 − 1

𝑧2 + 1
𝐶

𝑑𝑧, where 𝐶: |z − 𝑖| = 1.  

𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧: We have ∫
𝑧2−1

𝑧2+1𝐶
𝑑𝑧 = ∫

𝑧2−1

(𝑧−𝑖)(𝑧+𝑖)𝐶
𝑑𝑧 

The integrand has two singular points at 𝑧 = 𝑖 and 𝑧 = −𝑖.  

Among these only 𝑧 = 𝑖 lies inside 𝐶. 

Let 𝑓(𝑧) =
𝑧2 − 1

𝑧 + 𝑖
is analytic on and within 𝐶. Here  𝑎 = 𝑖. 

Therefore by Cauchy’ s integral formula 
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𝑓(𝑎) =
1

2𝜋𝑖
∫

𝑓(𝑧)

𝑧 − 𝑎
𝐶

𝑑𝑧, we get 

∫
𝑧2 − 1

𝑧2 + 1
𝐶

𝑑𝑧 = 2𝜋𝑖 𝑓(𝑎) = 2𝜋𝑖 [
𝑧2 − 1

𝑧 + 𝑖
]

𝑧=𝑖

= −2𝜋. 

 

𝐄𝐗. 𝟓𝟓. Using Cauchy′s integral formula, evaluate ∫
𝑧2 + 1

𝑧(2𝑧 + 1)
𝐶

𝑑𝑧, where 𝐶 is|z| = 1.  

Solution: The integrand has two singular points at 𝑧 = 0 and 𝑧 = −
1

2
.  

Both lies inside the circle |z| = 1. 

Now  
1

𝑧(2𝑧 + 1)
=

1

𝑧
−

2

2𝑧 + 1
 

∴ ∫
𝑧2 + 1

𝑧(2𝑧 + 1)
𝐶

𝑑𝑧 = ∫
𝑧2 + 1

𝑧
𝐶

𝑑𝑧 − 2 ∫
𝑧2 + 1

2𝑧 + 1
𝐶

𝑑𝑧 

                  = 2𝜋𝑖 [𝑓(0) − 2𝑓 (−
1

2
)] where 𝑓(𝑧) = 𝑧2 + 1,  using Cauchy’s integral formula 

                                   = −3𝜋𝑖 

𝐄𝐗. 𝟓𝟔. Using Cauchy′s integral formula, evaluate ∫
𝑐𝑜𝑠ℎ 𝜋𝑧

𝑧(𝑧2 + 1)
𝐶

𝑑𝑧, where 𝐶 is|z| = 2.  

𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧: we have ∫
𝑐𝑜𝑠ℎ 𝜋𝑧

𝑧(𝑧2+1)𝐶
𝑑𝑧 = ∫

𝑐𝑜𝑠ℎ 𝜋𝑧

𝑧(𝑧+𝑖)(𝑧−𝑖)𝐶
𝑑𝑧 

The integrand has three singular points at 𝑧 = 0, ±𝑖. 

By parital fractions,
𝑐𝑜𝑠ℎ 𝜋𝑧

𝑧(𝑧 + 𝑖)(𝑧 − 𝑖)
=

1

𝑧
−

1

2

1

𝑧 − 𝑖
−

1

2

1

𝑧 + 𝑖
                   (1) 

Take 𝑓(𝑧) = 𝑐𝑜𝑠ℎ 𝜋𝑧. 

∴ ∫
𝑐𝑜𝑠ℎ 𝜋𝑧

𝑧(𝑧2 + 1)
𝐶

𝑑𝑧 = ∫
𝑓(𝑧)

𝑧
𝐶

𝑑𝑧 −
1

2
∫

𝑓(𝑧)

𝑧 − 𝑖
𝐶

𝑑𝑧 −
1

2
∫

𝑓(𝑧)

𝑧 + 𝑖
𝐶

𝑑𝑧 [from(1)and (2)] 

Here 𝑎 = 0, 𝑖, −𝑖. 

Therefore by Cauchy’ s integral formula   𝑓(𝑎) =
1

2𝜋𝑖
∫

𝑓(𝑧)

𝑧−𝑎𝐶
𝑑𝑧, we get 

∫
𝑐𝑜𝑠ℎ 𝜋𝑧

𝑧(𝑧2 + 1)
𝐶

𝑑𝑧 = 2𝜋𝑖 [𝑓(0) −
1

2
𝑓(𝑖) −

1

2
𝑓(−𝑖)] = 4𝜋𝑖 
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𝐄𝐗. 𝟓𝟕. If 𝐹(𝛼) = ∫
5𝑧2 − 4𝑧 + 3

𝑧 − 𝛼
𝐶

𝑑𝑧, where 𝐶 is the ellipse (
𝑥

3
)

2

+ (
𝑦

4
)

2

= 1,    

find the value of  (𝑎)𝐹(4.5)  (𝑏) 𝐹(2), 𝐹′(𝑖), 𝐹′′(−2𝑖). 

𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧: We have 𝐹(𝛼) = ∫
5𝑧2 − 4𝑧 + 3

𝑧 − 𝛼
𝐶

𝑑𝑧 

(𝑎) Taking 𝛼 = 4.5, we get 𝐹(4.5) = ∫
5𝑧2 − 4𝑧 + 3

𝑧 − 4.5
𝐶

𝑑𝑧 

Now, the point 𝛼 = 4.5 lies outside the ellipse 𝐶. 

Hence the function 
5𝑧2 − 4𝑧 + 3

𝑧 − 4.5
 is analytic within and on 𝐶.  

Therefore, by Cauchy′s theorem, ∫
5𝑧2 − 4𝑧 + 3

𝑧 − 4.5
𝐶

𝑑𝑧 = 0 

𝑖. 𝑒. ,    𝐹(4.5) = 0 

(𝑏) Let 𝑓(𝑧) = 5𝑧2 − 4𝑧 + 3 

Since 𝑓(𝑧) is analytic within 𝐶 and 𝛼 = 2, 𝑖, −2𝑖 all lie within 𝐶, therefore, by Cauchy’s 

integral formula  

                      𝑓(𝛼) =
1

2𝜋𝑖
∫

𝑓(𝑧)

𝑧 − 𝛼
𝐶

𝑑𝑧 

               ∴             2𝜋𝑖 𝑓(𝛼) = ∫
𝑓(𝑧)

𝑧 − 𝛼
𝐶

𝑑𝑧 = 𝐹(𝛼) 

              or          𝐹(𝛼) = 2𝜋𝑖 𝑓(𝛼) = 2𝜋𝑖 (5𝛼2 − 4𝛼 + 3)   

              ∴           𝐹′(𝛼) = 2𝜋𝑖(10𝛼 − 4) and  𝐹′′(𝛼) = 2𝜋𝑖(10) = 20𝜋𝑖 

Thus 𝐹(2) = 2𝜋𝑖(20 − 8 + 3) = 30𝜋𝑖 

               𝐹′(𝑖) = 2𝜋𝑖(10𝑖 − 4) = −4𝜋(5 + 𝑖2) and 𝐹′′(−2𝑖) = 20𝜋𝑖 

 

 𝐄𝐗. 𝟓𝟖. Find 𝑓(2) and 𝑓(3) if 𝑓(𝑎) = ∫
2𝑧2 − 𝑧 − 2

𝑧 − 𝑎
𝐶

𝑑𝑧 where 𝐶 is the circle |𝑧| = 2.5  

using Cauchy′s  integral formula. 

𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧: Given 𝑓(𝑎) = ∫
2𝑧2 − 𝑧 − 2

𝑧 − 𝑎
𝐶

𝑑𝑧 
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(i)  𝑎 = 2 lies inside the circle  𝐶: |𝑧| = 2.5 

Let 𝜙(𝑧) = 2𝑧2 − 𝑧 − 2  

              By Cauchy′s integral formula, 𝜙(𝑎) =
1

2𝜋𝑖
∫

𝜙(𝑧)

𝑧 − 𝑎
𝐶

𝑑𝑧  

              ⇒  2𝜋𝑖 𝜙(𝑎) = ∫
𝜙(𝑧)

𝑧 − 𝑎
𝐶

𝑑𝑧 = 𝑓(𝑎) 

                     ⇒   𝑓(𝑎) = 2𝜋𝑖 𝜙(𝑎) = 2𝜋𝑖 (2𝑎2 − 𝑎 − 2) 

                     ∴     𝑓(2) = 2𝜋𝑖 (8 − 2 − 2) = 8𝜋𝑖  

(ii)        Taking 𝑎 = 3, we get, 𝑓(3) = ∫
2𝑧2 − 𝑧 − 2

𝑧 − 3
𝐶

𝑑𝑧    

Now, the point 𝑧 = 3 lies outside 𝐶. Hence the integrand is analytic within and on 𝐶. 

            ∴ By Cauchy′s theorem, 𝑓(3) = ∫
2𝑧2 − 𝑧 − 2

𝑧 − 3
𝐶

𝑑𝑧 = 0. 

 

𝐄𝐗. 𝟓𝟗. Using Cauchy′s integral formula, evaluate ∫
𝑧4

(𝑧 + 1)(𝑧 − 𝑖)2

𝐶

𝑑𝑧 where 𝐶 is the ellipse  

9𝑥2 + 4𝑦2 = 36. 

𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧: Given ellipse is 9𝑥2 + 4𝑦2 = 36 𝑖. 𝑒. ,
𝑥2

22
+

𝑦2

32
= 1. Its centre is (0, 0). 

 𝑓(𝑧) = 𝑧4 is analytic within the ellipse 𝐶: 9𝑥2 + 4𝑦2 = 36  and the two singular 

points 𝑎 = −1, 𝑎 = 𝑖 lie inside 𝐶. 

                 Consider 
1

(𝑧 + 1)(𝑧 − 𝑖)2
 

Let       
1

(𝑧 + 1)(𝑧 − 𝑖)2
=

𝐴

𝑧 + 1
+

𝐵

𝑧 − 𝑖
+

𝐶

(𝑧 − 𝑖)2
                           (1) 

Then 1 = 𝐴(𝑧 − 𝑖)2 + 𝐵(𝑧 + 1)(𝑧 − 𝑖) + 𝐶(𝑧 + 1)                            (2) 

               = (𝐴 + 𝐵)𝑧2 + (−2𝑖𝐴 − 𝑖𝐵 + 𝐵 + 𝐶)𝑧 + (−𝐴 − 𝑖𝐵 + 𝐶) 

Put 𝑧 = 𝑖 in (2), we get 

                      1 = 𝐶(𝑖 + 1)          ⇒ 𝐶 =
1

1 + 𝑖
 

Put 𝑧 = −𝑖 in (2), we get 

                      1 = 𝐴(−𝑖 − 1)2     ⇒ 𝐴 =
1

(1 + 𝑖)2
 

Comparing constant term, 
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                −𝐴 − 𝑖𝐵 + 𝐶 = 1       ⇒ 𝑖𝐵 = −𝐴 + 𝐶 − 1 = −
1

(1 + 𝑖)2
+

1

1 + 𝑖
− 1 

                                                         ⇒ 𝑖𝐵 =
−𝑖

(1 + 𝑖)2
 or 𝐵 =

−1

(1 + 𝑖)2
 

Substituting the values of 𝐴, 𝐵 and 𝐶 in (1), we get 

             
1

(𝑧 + 1)(𝑧 − 𝑖)2
=

1

(1 + 𝑖)2
 

1

𝑧 + 1
+

−1

(1 + 𝑖)2
 

1

𝑧 − 𝑖
+

1

1 + 𝑖
 

1

(𝑧 − 𝑖)2
 

Hence ∫
𝑧4

(𝑧 + 1)(𝑧 − 𝑖)2

𝐶

𝑑𝑧 

=
1

(1 + 𝑖)2
∫

𝑧4

𝑧 + 1
𝐶

𝑑𝑧 −
1

(1 + 𝑖)2
∫

𝑧4

𝑧 − 𝑖
𝐶

 𝑑𝑧 +
1

1 + 𝑖
∫

𝑧4

(𝑧 − 𝑖)2

𝐶

𝑑𝑧 

           =
1

(1 + 𝑖)2
. 2𝜋𝑖. 𝑓(−1) −

1

(1 + 𝑖)2
. 2𝜋𝑖. 𝑓(𝑖) +

1

1 + 𝑖
. 2𝜋𝑖. 𝑓′(𝑖) 

(Using Cauchy’s integral formula) 

                           = 2𝜋𝑖 [
𝑓(−1)

(1 + 𝑖)2
−

𝑓(𝑖)

(1 + 𝑖)2
+

𝑓′(𝑖)

1 + 𝑖
] 

  

                            = 2𝜋𝑖 [
1

(1 + 𝑖)2
−

1

(1 + 𝑖)2
+

4𝑖3

1 + 𝑖
] 

                            = 2𝜋𝑖 (
−4𝑖

1 + 𝑖
) =

8𝜋

1 + 𝑖
= 4𝜋(1 − 𝑖) 

 

INFINITE SERIES IN THE COMPLEX PLANE 

 

2.9. Series of Complex Terms:  

Most of the definitions and theorems relating to infinite series of real terms can be 

applied also to series whose terms are complex. Consider the infinite series 

𝑓1(𝑧) + 𝑓2(𝑧) + 𝑓3(𝑧) + ⋯ + 𝑓𝑛(𝑧) + ⋯                       (1) 

whose terms are functions of the complex variable 𝑧. 

Let  𝑆𝑛(𝑧) denote the sum of the first 𝑛 terms of the above series. Then, if  𝑆𝑛(𝑧) 

tends to a finite limit 𝑆(𝑧) as 𝑛 tends to infinity for all values of 𝑧 in a region 𝑅, then the 

series is said to converge or to be convergent and to have the sum 𝑆(𝑧). 𝑅 is called the 

region of convergence of the series. The difference 𝑆(𝑧) − 𝑆𝑛(𝑧) is clearly the remainder 

after 𝑛 terms of the series to be convergent, it is necessary that 
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lim
𝑛→∞

𝑆𝑛(𝑧) − 𝑆(𝑧) = 0 

A series which is not convergent is said to diverge or to be divergent.  

Now, the absolute values of the terms of (1) form another series 

|𝑓1(𝑧)| + |𝑓2(𝑧)| + |𝑓3(𝑧)| + ⋯ + |𝑓𝑛(𝑧)| + ⋯                       (2) 

If the series (2) is convergent, then the series (1) is said to be absolutely convergent. 

If (1) converges but (2) is not convergent, then it means that the series (1) is not absolutely 

convergent. It is only conditionally convergent. 

 

2.10. Taylor’s Series: Let 𝑓(𝑧) be analytic at all points within a circle 𝐶 with centre at 𝑎 and 

radius 𝑟. Then at each point 𝑧 inside 𝐶, 

𝑓(𝑧) = 𝑓(𝑎) + 𝑓′(𝑎). (𝑧 − 𝑎) + 𝑓′′(𝑎).
(𝑧 − 𝑎)2

2!
+ 𝑓′′′(𝑎).

(𝑧 − 𝑎)3

3!
+ ⋯ + 𝑓𝑛(𝑎).

(𝑧 − 𝑎)𝑛

𝑛!

+ ⋯ 

This is known as Taylor’s series for the function 𝑓(𝑧). 

Proof: For any point 𝑧 in the interior of 𝐶, we can write Cauchy’s integral formula as 

𝑓(𝑧) =
1

2𝜋𝑖
∫

𝑓(𝑧′)

𝑧′ − 𝑧
𝑪

𝑑𝑧′(1) 

                  Now 
1

𝑧′ − 𝑧
=

1

(𝑧′ − 𝑎) − (𝑧 − 𝑎)
=

1

(𝑧′ − 𝑎)

1

(1 −
𝑧 − 𝑎
𝑧′ − 𝑎)

                       (2) 

Also we have the identity 

1 + 𝛼 + 𝛼2 + 𝛼3 + ⋯ + 𝛼𝑛−1 =
1 − 𝛼𝑛

1 − 𝛼
, 

where 𝛼 is a complex number, not equal to 1. 

𝑖. 𝑒. , 1 + 𝛼 + 𝛼2 + 𝛼3 + ⋯ + 𝛼𝑛−1 +
𝛼𝑛

1 − 𝛼
=

1

1 − 𝛼
                (3) 

In equation (2), we substitute for  

1

1 −
𝑧 − 𝑎
𝑧′ − 𝑎

, taking 𝛼 =
𝑧 − 𝑎

𝑧′ − 𝑎
 in equation (3). 

Then (2) gives 

1

𝑧′ − 𝑧
=

1

𝑧′ − 𝑎
[1 +

𝑧 − 𝑎

𝑧′ − 𝑎
+ (

𝑧 − 𝑎

𝑧′ − 𝑎
)

2

+ ⋯ + (
𝑧 − 𝑎

𝑧′ − 𝑎
)

n−1

+
1

1 −
𝑧 − 𝑎
𝑧′ − 𝑎

(
𝑧 − 𝑎

𝑧′ − 𝑎
)

n

] 

Therefore  
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𝑓(𝑧′)

𝑧′ − 𝑧
=

𝑓(𝑧′)

𝑧′ − 𝑎
+

(𝑧 − 𝑎)𝑓(𝑧′)

(𝑧′ − 𝑎)2
+

(𝑧 − 𝑎)2𝑓(𝑧′)

(𝑧′ − 𝑎)3
+ ⋯ +

(𝑧 − 𝑎)𝑛−1𝑓(𝑧′)

(𝑧′ − 𝑎)𝑛

+
(𝑧 − 𝑎)𝑛𝑓(𝑧′)

(𝑧′ − 𝑧)(𝑧′ − 𝑎)𝑛
 

We divide throughout by 2𝜋𝑖 and integrate each term anticlockwise around 𝐶. 

Therefore (1) becomes 

𝑓(𝑧) =
1

2𝜋𝑖
∫

𝑓(𝑧′)

𝑧′ − 𝑧
𝑪

𝑑𝑧′ =
1

2𝜋𝑖
∫

𝑓(𝑧′)

𝑧′ − 𝑎
𝑪

𝑑𝑧′ +
(𝑧 − 𝑎)

2𝜋𝑖
∫

𝑓(𝑧′)

(𝑧′ − 𝑎)2

𝑪

𝑑𝑧′ + ⋯ 

+
(𝑧 − 𝑎)𝑛−1

2𝜋𝑖
∫

𝑓(𝑧′)

(𝑧′ − 𝑎)𝑛

𝑪

𝑑𝑧′ +
(𝑧 − 𝑎)𝑛

2𝜋𝑖
∫

𝑓(𝑧′)

(𝑧′ − 𝑧)(𝑧′ − 𝑎)𝑛

𝑪

𝑑𝑧′             (4) 

But we know from Cauchy’s integral formula that 

1

2𝜋𝑖
∫

𝑓(𝑧′)

𝑧′ − 𝑎
𝑪

𝑑𝑧′ = 𝑓(𝑎) 

1

2𝜋𝑖
∫

𝑓(𝑧′)

(𝑧′ − 𝑎)2

𝑪

𝑑𝑧′ = 𝑓′(𝑎) 

1

2𝜋𝑖
∫

𝑓(𝑧′)

(𝑧′ − 𝑎)3

𝑪

𝑑𝑧′ =
𝑓′′(𝑎)

2!
 

and
1

2𝜋𝑖
∫

𝑓(𝑧′)

(𝑧′ − 𝑎)𝑛

𝑪

𝑑𝑧′ =
𝑓𝑛−1(𝑎)

(𝑛 − 1)!
 

Hence we can substitute these in the first 𝑛 integrals on the right side of (4). 

Therefore (4) becomes 

𝑓(𝑧) = 𝑓(𝑎) + 𝑓′(𝑎). (𝑧 − 𝑎) + 𝑓′′(𝑎).
(𝑧 − 𝑎)2

2!
+ 𝑓′′′(𝑎).

(𝑧 − 𝑎)3

3!
+ ⋯

+ 𝑓𝑛−1(𝑎).
(𝑧 − 𝑎)𝑛−1

(𝑛 − 1)!
+

(𝑧 − 𝑎)𝑛

2𝜋𝑖
∫

𝑓(𝑧′)

(𝑧′ − 𝑧)(𝑧′ − 𝑎)𝑛

𝑪

𝑑𝑧′                   (5) 

The difference between 𝑓(𝑧) and the sum of the first 𝑛 terms is  

=
(𝑧 − 𝑎)𝑛

2𝜋𝑖
∫

𝑓(𝑧′)

(𝑧′ − 𝑧)(𝑧′ − 𝑎)𝑛

𝑪

𝑑𝑧′ 

and this can be shown to approach zero as 𝑛 tends to infinity.  Hence as 𝑛 → ∞, the limit of 

the sum of the first 𝑛 terms in the right side of (5) if 𝑓(𝑧). 
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Therefore 𝑓(𝑧) is represented by the infinite series 

𝑓(𝑧) = 𝑓(𝑎) + 𝑓′(𝑎). (𝑧 − 𝑎) + 𝑓′′(𝑎).
(𝑧 − 𝑎)2

2!
+ 𝑓′′′(𝑎).

(𝑧 − 𝑎)3

3!
+ ⋯ 

= 𝑓(𝑎) + ∑
(𝑧 − 𝑎)𝑛

𝑛!

∞

𝑛=1

𝑓𝑛(𝑎)                       (6) 

This is Taylor’s series. It represents the function 𝑓(𝑧) at all points interior to any circle 

having its centre at 𝑎, and within which the function is analytic. The largest circle which can 

be drawn around 𝑧 = 𝑎, such that 𝑓(𝑧) is analytic throughout its interior, is called the circle 

of convergence of the Taylor’s series of 𝑓(𝑧). The radius of this circle is called the radius of 

convergence of the series. 

Putting 𝑎 = 0, (6) gives 

𝑓(𝑧) == 𝑓(0) + ∑
𝑧𝑛

𝑛!

∞

𝑛=1

𝑓𝑛(0) 

𝑖. 𝑒. , 𝑓(𝑧) == 𝑓(0) + 𝑧 𝑓′(0) +
𝑧2

2!
𝑓′′(0) + ⋯           (7) 

This is known as Maclaurin’s series. 

 

2.11. Standard Expansions: We have seen that when 𝑓(𝑧) is analytic at all points within the 

circle 𝐶, the Taylor’s series of 𝑓(𝑧) is convergent within that circle. The maximum radius of 

𝐶 is the distance from the point 𝑎 (the centre of 𝐶) to the singular point of 𝑓(𝑧) which is 

nearest to 𝑎, since the function is to be analytic at all points inside 𝐶. 

The following are standard expansions which can be derived by using Maclaurin’s 

theorem: 

(1)𝑒𝑧 = 1 +
𝑧

1!
+

𝑧2

2!
+ ⋯ when|𝑧| < ∞ 

(2) 𝑠𝑖𝑛 𝑧 = 𝑧 −
𝑧3

3!
+

𝑧5

5!
− ⋯ when|𝑧| < ∞ 

(3) 𝑐𝑜𝑠 𝑧 = 1 −
𝑧2

2!
+

𝑧4

4!
− ⋯ when|𝑧| < ∞ 

(4) 𝑠𝑖𝑛ℎ 𝑧 = 𝑧 +
𝑧3

3!
+

𝑧5

5!
+ ⋯ when|𝑧| < ∞ 

(5) 𝑐𝑜ℎ𝑠 𝑧 = 1 +
𝑧2

2!
+

𝑧4

4!
+ ⋯ when|𝑧| < ∞ 

(6)
1

1 − 𝑧
= 1 + 𝑧 + 𝑧2 + ⋯ when|𝑧| < 1 
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2.12. Laurent’s series: In most applications, we may require the expansion of a function 

around points, where, or in the neighbourhood of which, the functions are not analytic. 

Taylor’s series is not obviously applicable in such cases and we use a new type of series 

known as Laurent’s series. This series enables us to expand a function within an annular 

ring bounded by concentric circles, provided that the function which is being expanded is 

analytic everywhere between the circles. The function may have singular points outside the 

larger circle and also inside the smaller circle. In Laurent’s expansion of such a function, 

there will be positive and negative powers of 𝑧 − 𝑎. The expansion is given by the following 

theorem. 

Theorem: If 𝑓(𝑧) is analytic throughout the ring shaped region 𝑅, bounded by two 

concentric circles 𝐶1 and 𝐶2 with centre 𝑎, then at any point 𝑧 in the region 𝑅, 𝑓(𝑧) can be 

represented by a convergent series of positive and negative power of 𝑧 − 𝑎. 

                                              𝑖. 𝑒. , 𝑓(𝑧) = 𝑎0 + 𝑎1(𝑧 − 𝑎) + 𝑎2(𝑧 − 𝑎)2 + ⋯ + 𝑎𝑛(𝑧 − 𝑎)𝑛 + ⋯ 

+
𝑏1

𝑧 − 𝑎
+

𝑏2

(𝑧 − 𝑎)2
+ ⋯ +

𝑏𝑛

(𝑧 − 𝑎)𝑛
+ ⋯ 

= ∑ 𝑎𝑛(𝑧 − 𝑎)𝑛

∞

𝑛=0

+ ∑
𝑏𝑛

(𝑧 − 𝑎)𝑛

∞

𝑛=1

 

where𝑎𝑛 =
1

2𝜋𝑖
∫

𝑓(𝑧′)

(𝑧′ − 𝑎)𝑛+1

𝑪

𝑑𝑧′, 𝑛 = 0, 1, 2, … .. 

and𝑏𝑛 =
1

2𝜋𝑖
∫

𝑓(𝑧′)

(𝑧′ − 𝑎)−𝑛+1

𝑪

𝑑𝑧′, 𝑛 =  1, 2, 3, … .. 

each integral being taken counterclockwise around any curve 𝐶, lying within the annulus and 

encircling its inner boundary. 

 Proof: Let 𝑓(𝑧) be analytic in the annular region 𝑅 between two concentric circles 𝐶1 

and 𝐶2. By making a crosscut joining any point of 𝐶1 to any point of 𝐶2 the annular region is 

converted into a region bounded by a single curve. Taking 𝑧 to be an arbitrary point of the 

annulus, we have by Cauchy’s integral formula, 

                             𝑓(𝑧) =
1

2𝜋𝑖
∫

𝑓(𝑧′)

𝑧′ − 𝑧
𝐶1𝐴𝐵𝐶2𝐵𝐴

𝑑𝑧′ 
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                                       =
1

2𝜋𝑖
[ ∫ +

𝐶1

∫ + ∫ + ∫

𝐵𝐴𝐶2𝐴𝐵

]
𝑓(𝑧′)

𝑧′ − 𝑧
𝑑𝑧′ 

 

                                       =
1

2𝜋𝑖
[ ∫ +

𝐶1

∫

𝐶2

]
𝑓(𝑧′)

𝑧′ − 𝑧
𝑑𝑧′ 

(since the integrals along 𝐴𝐵 and 𝐵𝐴 are cancel) 

                                        =
1

2𝜋𝑖
∫

𝑓(𝑧′)

𝑧′ − 𝑧
𝐶1

𝑑𝑧′ −
1

2𝜋𝑖
∫

𝑓(𝑧′)

𝑧′ − 𝑧
𝐶2

𝑑𝑧′ 

where the integrations along 𝐶1 and 𝐶2 are both in the anticlockwise direction 

 =
1

2𝜋𝑖
∫

𝑓(𝑧′)

(𝑧′ − 𝑎) − (𝑧 − 𝑎)
𝐶1

𝑑𝑧′ +
1

2𝜋𝑖
∫

𝑓(𝑧′)

(𝑧 − 𝑎) − (𝑧′ − 𝑎)
𝐶2

𝑑𝑧′ 

=
1

2𝜋𝑖
∫

𝑓(𝑧′)

(𝑧′ − 𝑎)
𝐶1

[
1

1 −
𝑧 − 𝑎
𝑧′ − 𝑎

] 𝑑𝑧′ +
1

2𝜋𝑖
∫

𝑓(𝑧′)

(𝑧 − 𝑎)
𝐶2

[
1

1 −
𝑧′ − 𝑎
𝑧 − 𝑎

] 𝑑𝑧′            (1) 

In each of the integrals in the right side of (1), let us apply the identity 

1

1 − 𝛼
= 1 + 𝛼 + 𝛼2 + 𝛼3 + ⋯ + 𝛼𝑛−1 +

𝛼𝑛

1 − 𝛼
 

which we used in deriving Taylor’s series. 

Then (1) becomes 

𝑓(𝑧) =
1

2𝜋𝑖
∫

𝑓(𝑧′)

(𝑧′ − 𝑎)
𝐶1

[1 +
𝑧 − 𝑎

𝑧′ − 𝑎
+ (

𝑧 − 𝑎

𝑧′ − 𝑎
)

2

+ ⋯ + (
𝑧 − 𝑎

𝑧′ − 𝑎
)

𝑛−1

+ (
𝑧 − 𝑎

𝑧′ − 𝑎
)

𝑛 1

1 −
𝑧 − 𝑎
𝑧′ − 𝑎

] 𝑑𝑧′ 

+
1

2𝜋𝑖
∫

𝑓(𝑧′)

(𝑧 − 𝑎)
𝐶2

[1 +
𝑧′ − 𝑎

𝑧 − 𝑎
+ (

𝑧′ − 𝑎

𝑧 − 𝑎
)

2

+ ⋯ + (
𝑧′ − 𝑎

𝑧 − 𝑎
)

𝑛−1

+ (
𝑧′ − 𝑎

𝑧 − 𝑎
)

𝑛
1

1 −
𝑧′ − 𝑎
𝑧 − 𝑎

] 𝑑𝑧′ 

=
1

2𝜋𝑖
∫

𝑓(𝑧′)

(𝑧′ − 𝑎)
𝐶1

𝑑𝑧′ +
𝑧 − 𝑎

2𝜋𝑖
∫

𝑓(𝑧′)

(𝑧′ − 𝑎)2

𝐶1

𝑑𝑧′ +
(𝑧 − 𝑎)2

2𝜋𝑖
∫

𝑓(𝑧′)

(𝑧′ − 𝑎)3

𝐶1

𝑑𝑧′ + ⋯ 

+
(𝑧 − 𝑎)𝑛−1

2𝜋𝑖
∫

𝑓(𝑧′)

(𝑧′ − 𝑎)𝑛

𝐶1

𝑑𝑧′ +
(𝑧 − 𝑎)𝑛

2𝜋𝑖
∫

𝑓(𝑧′)

(𝑧′ − 𝑎)𝑛(𝑧′ − 𝑧)
𝐶1

𝑑𝑧′ 
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+
1

2𝜋𝑖(𝑧 − 𝑎)
∫ 𝑓(𝑧′)

𝐶2

𝑑𝑧′ +
1

2𝜋𝑖(𝑧 − 𝑎)2
∫ 𝑓(𝑧′)

𝐶2

(𝑧′ − 𝑎)𝑑𝑧′

+
1

2𝜋𝑖(𝑧 − 𝑎)3
∫ 𝑓(𝑧′)(𝑧′ − 𝑎)2

𝐶2

𝑑𝑧′ 

   + ⋯ +
1

2𝜋𝑖(𝑧 − 𝑎)𝑛
∫ 𝑓(𝑧′)(𝑧′ − 𝑎)𝑛−1

𝐶2

𝑑𝑧′ + ⋯

+
1

2𝜋𝑖(𝑧 − 𝑎)𝑛
∫

𝑓(𝑧′)(𝑧′ − 𝑎)𝑛

(𝑧 − 𝑧′)
𝐶2

𝑑𝑧′                (2) 

= 𝑎0 + 𝑎1(𝑧 − 𝑎) + 𝑎2(𝑧 − 𝑎)2 + ⋯ + 𝑎𝑛(𝑧 − 𝑎)𝑛 + 𝑅1 

+
𝑏1

𝑧 − 𝑎
+

𝑏2

(𝑧 − 𝑎)2
+ ⋯ +

𝑏𝑛

(𝑧 − 𝑎)𝑛
+ 𝑅2                                  (3)  

where𝑎𝑛 =
1

2𝜋𝑖
∫

𝑓(𝑧′)

(𝑧′ − 𝑎)𝑛+1

𝑪

𝑑𝑧′, 𝑛 = 0, 1, 2,                         (4)  

𝑏𝑛 =
1

2𝜋𝑖
∫ 𝑓(𝑧′)(𝑧′ − 𝑎)𝑛−1

𝑪

𝑑𝑧′, 𝑛 =  1, 2, 3, … .. 

       𝑖. 𝑒. , 𝑏𝑛 =
1

2𝜋𝑖
∫

𝑓(𝑧′)

(𝑧′ − 𝑎)−𝑛+1

𝑪

𝑑𝑧′, 𝑛 =  1, 2, 3, … . .                    (5) 

𝑅1 =
(𝑧 − 𝑎)𝑛

2𝜋𝑖
∫

𝑓(𝑧′)

(𝑧′ − 𝑎)𝑛(𝑧′ − 𝑧)
𝐶1

𝑑𝑧′ 

and𝑅2 =
1

2𝜋𝑖(𝑧 − 𝑎)𝑛
∫

𝑓(𝑧′)(𝑧′ − 𝑎)𝑛

(𝑧 − 𝑧′)
𝐶1

𝑑𝑧′ 

It can be proved that  

lim
𝑛→∞

𝑅1 = 0 and lim
𝑛→∞

𝑅2 = 0  

Hence 𝑓(𝑧) is represented by the infinite series 

𝑓(𝑧) = 𝑎0 + 𝑎1(𝑧 − 𝑎) + 𝑎2(𝑧 − 𝑎)2 + ⋯ + 𝑎𝑛(𝑧 − 𝑎)𝑛 + ⋯ 

+
𝑏1

𝑧 − 𝑎
+

𝑏2

(𝑧 − 𝑎)2
+ ⋯ +

𝑏𝑛

(𝑧 − 𝑎)𝑛
+ ⋯                   (6) 

where 𝑎𝑛 and 𝑏𝑛 are given by formulas (4) and (5). 
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Since  𝑓(𝑧) is analytic throughout the region between 𝐶1 and 𝐶2, the paths of 

integration 𝐶1 and 𝐶2 can be replaced by any other curve 𝐶 within this region and encircling 

𝐶2. 

 

Note 1: The coefficient 

𝑎𝑛 =
1

2𝜋𝑖
∫

𝑓(𝑧′)

(𝑧′ − 𝑎)𝑛+1

𝑪

𝑑𝑧′ 

cannot  be replaced by  
𝑓𝑛(𝑎)

𝑛!
 as we did in Taylor’s series, since 𝑓(𝑧) is not analytic 

throughout the interior of 𝐶1 and hence we cannot apply Cauchy’s general integral formula. 

 

Note 2:  In most cases, the coefficients of Laurent expansion of a given function are not 

found by using the above theorem. They are got by using various algebraic manipulations 

depending on the nature of the function. In other words, the Laurent expansion of a function 

over a given annular is unique. 

 

EX.1. Obtain the Taylor series expansion of 𝑓(𝑧) =
1

𝑧
 about the point 𝑧 = 1. 

Solution: At 𝑧 = 1, 𝑓(𝑧) is analytic. 

The point 𝑧 = 0 is the only singular point and is at a distance of 1 unit from 𝑧 = 1. 

Hence, the Taylor’s series expansion of 𝑓(𝑧) =
1

𝑧
 about 𝑧 = 1. 

Put 𝑧 − 1 = 𝑤 then 𝑧 = 𝑤 + 1. 

                   ∴  𝑓(𝑧) =
1

𝑧
=

1

1 + 𝑤
= (1 + 𝑤)−1 

                                 = 1 − 𝑤 + 𝑤2 − 𝑤3 + ⋯ for|𝑤| < 1 

                                 = 1 − (𝑧 − 1) + (𝑧 − 1)2 − (𝑧 − 1)3 + ⋯ for|𝑧 − 1| < 1 

This is the required expansion. 

 

EX.2. (i) Expand 𝑒𝑧as Taylor’s series about 𝑧 = 1. 

   (ii) Find the Taylor’s series expansion of 𝑒𝑧 about 𝑧 = 3. 

Solution: (i) We want the Taylor’s series expansion of 𝑒𝑧 around 𝑧 = 1. 

Put 𝑧 − 1 = 𝑤 then 𝑧 = 1 + 𝑤. 

                   ∴  𝑒𝑧 = 𝑒1+𝑤 = 𝑒. 𝑒𝑤 

                             = 𝑒 [1 + 𝑤 +
𝑤2

2!
+

𝑤3

3!
+ ⋯ ] for all 𝑤 
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                             = 𝑒 [1 + (𝑧 − 1) +
(𝑧 − 1)2

2!
+

(𝑧 − 1)3

3!
+ ⋯ ] 

This can also be written as𝑒𝑧 = 𝑒 + 𝑒 ∑
(𝑧 − 1)𝑛

𝑛!

∞

𝑛=1

if|𝑧 − 1| < ∞ 𝑖. 𝑒. , for all 𝑧. 

(ii) Proceeding as in (i), we obtain 

𝑒𝑧 = 𝑒3+𝑤 = 𝑒3. 𝑒𝑤 = 𝑒3 [1 + 𝑤 +
𝑤2

2!
+

𝑤3

3!
+ ⋯ ] 

= 𝑒 [1 + (𝑧 − 3) +
(𝑧 − 3)2

2!
+

(𝑧 − 3)3

3!
+ ⋯ ] if|𝑧 − 1| < ∞ 𝑖. 𝑒. , for all 𝑧. 

 

EX.3. Within what circle does the Maclaurin’s series for the function 𝑡𝑎𝑛ℎ 𝑧 converge to the 

function. 

𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧: 𝑓(𝑧) = 𝑡𝑎𝑛ℎ 𝑧 =
𝑠𝑖𝑛ℎ 𝑧

𝑐𝑜𝑠ℎ 𝑧
 

The function is not analytic whenever 𝑐𝑜𝑠ℎ 𝑧 = 0 

𝑖. 𝑒. , 𝑧 = ±
𝜋𝑖

2
, ±

3𝜋𝑖

2
 𝑒𝑡𝑐. 

We note that 𝑓(𝑧) = 𝑡𝑎𝑛ℎ 𝑧 is analytic at 𝑧 = 0 and the singular points ±
𝜋𝑖

2
 are the nearest to 

𝑧 = 0 and are at a distance of 
𝜋

2
 from 𝑧 = 0. 

Hence, the Maclaurin’s series expansion of  𝑡𝑎𝑛ℎ 𝑧 will be valid for the region |𝑧| <
𝜋

2
. 

 

EX.4. Give two Laurent series expansion in powers of 𝑧, for the function 𝑓(𝑧) =
1

𝑧2(1−𝑧)
 and 

specify the regions in which those expansions are valid. 

𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧: Case 1.
1

𝑧2(1 − 𝑧)
=

1

𝑧2
(1 − 𝑧)−1 

                                              =
1

𝑧2
(1 + 𝑧 + 𝑧2 + 𝑧3 + ⋯ ) 

using the binomial theorem and taking |𝑧| < 1 

                                              =
1

𝑧2
+

1

𝑧
+ 1 + 𝑧 + 𝑧2 + 𝑧3 + ⋯ 

                                              = 𝑧−2 + 𝑧−1 + 𝑧0 + 𝑧1 + 𝑧2 + 𝑧3 + ⋯ 

                                              = ∑ 𝑧𝑛−2

∞

𝑛=0

 

Clearly the series is valid in the region 0 < |𝑧| < 1. 
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Case 2.  If |𝑧| > 1, then |
1

𝑧
| < 1. So we write 

1

𝑧2(1 − 𝑧)
= −

1

𝑧2(𝑧 − 1)
= −

1

𝑧3 (1 −
1
𝑧)

 

= −
1

𝑧3
(1 −

1

𝑧
)

−1

 

= −
1

𝑧3
(1 +

1

𝑧
+

1

𝑧2
+

1

𝑧3
+ ⋯ ) 

 

= −
1

𝑧3
−

1

𝑧4
−

1

𝑧5
− ⋯ 

= − ∑
1

𝑧𝑛+3

∞

𝑛=0

 

This series is valid in the region |
1

𝑧
| < 1, 𝑖. 𝑒. , |𝑧| > 1. 

EX.5. Obtain the expansion of the function 
𝑧−1

𝑧2  in (a) Taylor’s series in powers of 𝑧 − 1 and 

give the region of validity (b) Laurent’s series for the domain |𝑧 − 1| > 1. 

Solution: (a) Let 𝑓(𝑧) =
𝑧−1

𝑧2  

Then Taylor’s series for 𝑓(𝑧) in powers of 𝑧 − 1 will be 

𝑓(𝑧) = 𝑓(1) + ∑
𝑓𝑛(1)

𝑛!

∞

𝑛=1

(𝑧 − 1)𝑛 

Now 𝑓(𝑧) =
𝑧 − 1

𝑧2
=

1

𝑧
−

1

𝑧2
 and 𝑓(1) = 0. 

Differentiating 𝑛 times, 

𝑓𝑛(𝑧) =
(−1)𝑛 𝑛!

𝑧𝑛+1
+

(−1)𝑛+1(𝑛 + 1)!

𝑧𝑛+2
 

Therefore 𝑓𝑛(1) = (−1)𝑛 𝑛! + (−1)𝑛+1(𝑛 + 1)! 

                                 = (−1)𝑛 𝑛! [1 + (−1)(𝑛 + 1)] 

                                 = (−1)𝑛 𝑛! (−𝑛) 

                                 = (−1)𝑛+1 𝑛! 𝑛 

Hence 𝑓(𝑧) = 0 + ∑
(−1)𝑛+1 𝑛! 𝑛

𝑛!

∞

𝑛=1

(𝑧 − 1)𝑛 

                      = ∑(−1)𝑛+1

∞

𝑛=1

 𝑛 (𝑧 − 1)𝑛 
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𝑓(𝑧) is not analytic at 𝑧 = 0. Hence the above Taylor’s series is convergent inside a circle 

with centre at 𝑧 = 1 and radius <1. i.e., in the region |𝑧 − 1| < 1. 

(b) To get a Laurent’s expansion in the region |𝑧 − 1| > 1, we note that 
1

|𝑧−1|
< 1. 

Hence expand 𝑓(𝑧) in powers of 
1

𝑧−1
. 

𝑓(𝑧) =
𝑧 − 1

𝑧2
=

𝑧 − 1

(𝑧 − 1 + 1)2
=

𝑧 − 1

[(𝑧 − 1) (1 +
1

𝑧 − 1)]
2 

          =
1

𝑧 − 1
[1 +

1

𝑧 − 1
]

−2

 

          =
1

𝑧 − 1
[1 −

2

𝑧 − 1
+

3

(𝑧 − 1)2
− ⋯ +

(−1)𝑛−1

(𝑧 − 1)𝑛−1
+ ⋯ ] 

          =
1

𝑧 − 1
−

2

(𝑧 − 1)2
+

3

(𝑧 − 1)3
− ⋯ +

(−1)𝑛−1𝑛

(𝑧 − 1)𝑛
+ ⋯ 

           = ∑ (−1)𝑛−1∞
𝑛=1  𝑛 (𝑧 − 1)−𝑛  and this is valid in |𝑧 − 1| > 1. 

 

 

EX.6. Find the Laurent expansion of the function 

𝑓(𝑧) =
7𝑧 − 2

(𝑧 + 1) 𝑧 (𝑧 − 2)
 

In the annular 1 < |𝑧 + 1| < 3. 

Solution: Put 𝑧 + 1 = 𝑢, then 𝑧 = 𝑢 − 1. 

Therefore  

                      𝑓(𝑧) =
7(𝑢 − 1) − 2

𝑢 (𝑢 − 1)(𝑢 − 3)
=

7𝑢 − 9

𝑢 (𝑢 − 1)(𝑢 − 3)
 

                                = −
3

𝑢
+

1

𝑢 − 1
+

2

𝑢 − 3
 

                               = −
3

𝑢
+

1

𝑢 (1 −
1
𝑢)

−
2

3 (1 −
𝑢
3)

 

                               = −
3

𝑢
+

1

𝑢
(1 −

1

𝑢
)

−1

−
2

3
(1 −

𝑢

3
)

−1

 

                               = −
3

𝑢
+

1

𝑢
(1 +

1

𝑢
+

1

𝑢2
+

1

𝑢3
+ ⋯ ) −

2

3
(1 +

𝑢

3
+

𝑢2

32
+

𝑢3

33
+ ⋯ ) 

                                = (−
2

𝑢
+

1

𝑢2
+

1

𝑢3
+ ⋯ ) −

2

3
(1 +

𝑢

3
+

𝑢2

32
+

𝑢3

33
+ ⋯ ) 

                                 = (−
2

𝑧 + 1
+

1

(𝑧 + 1)2
+

1

(𝑧 + 1)3
+ ⋯ ) 
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−
2

3
(1 +

𝑧 + 1

3
+

(𝑧 + 1)2

32
+

(𝑧 + 1)3

33
+ ⋯ ) 

Clearly this series is valid in the region |
1

𝑢
| < 1 and |

𝑢

3
| < 1 

i.e., |𝑢| > 1 and |𝑢| < 3, i.e., 1 < |𝑢| < 3 

i.e., in the annulus 1 < |𝑧 + 1| < 3. 

 

𝑬𝑿. 𝟕. Expand 𝑓(𝑧) =
𝑧 − 1

𝑧 + 1
 in Taylor′s series about the point (𝑖) 𝑧 = 0  (𝑖𝑖) 𝑧 = 1. 

𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧: (𝑖) 𝑓(𝑧) =
𝑧 − 1

𝑧 + 1
=

𝑧 + 1 − 2

𝑧 + 1
= 1 −

2

𝑧 + 1
= 1 − 2.

1

1 + 𝑧
= 1 − 2(1 + 𝑧)−1 

                                    = 1 − 2(1 − 𝑧 + 𝑧2 − 𝑧3 + ⋯ ) if |𝑧| < 1 

                                    = −1 + 2(𝑧 − 𝑧2 + 𝑧3 − ⋯ ) if |𝑧| < 1 

                                    = −1 + 2 ∑(−1)𝑛

∞

𝑛=1

𝑧𝑛 if |𝑧| < 1 

(𝑖𝑖) To expand 𝑓(𝑧) about 𝑧 = 1. 

        Put 𝑧 − 1 = 𝑤, then 𝑧 = 1 + 𝑤 

        Hence 𝑓(𝑧) =
𝑧 − 1

𝑧 + 1
=

𝑤

1 + 𝑤 + 1
=

𝑤

2 + 𝑤
=

𝑤

2 (1 +
𝑤
2)

=
𝑤

2
(1 +

𝑤

2
)

−1

 

                               =
𝑤

2
[1 −

𝑤

2
+ (

𝑤

2
)

2

− (
𝑤

2
)

3

+ ⋯ ]  if |
𝑤

2
| < 1 

                               =
𝑤

2
− (

𝑤

2
)

2

+ (
𝑤

2
)

3

− (
𝑤

2
)

4

+ ⋯  if |
𝑤

2
| < 1 

                               = ∑(−1)𝑛−1

∞

𝑛=1

(
𝑧 − 1

2
)

𝑛

 if |𝑧 − 1| < 2 

 

EX.𝟖. Find Taylor′s expansion for the function 𝑓(𝑧) =
1

(1+𝑧)2  with centre at − 𝑖. 

Solution: By Taylor’s theorem 

             𝑓(𝑧) = 𝑓(𝑎) + (𝑧 − 𝑎)𝑓′(𝑎) +
(𝑧 − 𝑎)2

2!
𝑓′′(𝑎) + ⋯ +

(𝑧 − 𝑎)𝑛

𝑛!
𝑓𝑛(𝑎) + ⋯ 

Put 𝑎 = −𝑖, then 

∴  𝑓(𝑧) = 𝑓(−𝑖) + (𝑧 + 𝑖)𝑓′(−𝑖) +
(𝑧 + 𝑖)2

2!
𝑓′′(−𝑖) + ⋯ +

(𝑧 + 𝑖)𝑛

𝑛!
𝑓𝑛(−𝑖) + ⋯           (1) 

     Here  𝑓(𝑧) =
1

(1 + 𝑧)2
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     ∴        𝑓𝑛(𝑧) = (−1)𝑛
(𝑛 + 1)!

(1 − 𝑖)𝑛+2
  

     ∴       𝑓(−𝑖) =
1

(1 + 𝑧)2
=

𝑖

2
 and  𝑓𝑛(−𝑖) = (−1)𝑛

(𝑛 + 1)!

(1 − 𝑖)𝑛+2
 

Substituting in (1), we get 

             
1

(1 + 𝑧)2
=

𝑖

2
+ ∑

(𝑧 + 𝑖)𝑛

𝑛!

∞

𝑛=1

(−1)𝑛 (𝑛 + 1)!

(1 − 𝑖)𝑛+2
=

𝑖

2
+ ∑(−1)𝑛

∞

𝑛=1

(𝑛 + 1)
 (𝑧 + 𝑖)𝑛

(1 − 𝑖)𝑛+2
 

                              =
𝑖

2
+ ∑(−1)𝑛

∞

𝑛=1

(𝑛 + 1)
 (𝑧 + 𝑖)𝑛

(1 − 𝑖)𝑛

1

(1 − 𝑖)2
 

                              =
𝑖

2
+ ∑(−1)𝑛

∞

𝑛=1

(𝑛 + 1)
 (𝑧 + 𝑖)𝑛

(1 − 𝑖)𝑛

1

(−2𝑖)
 

                              =
𝑖

2
+

𝑖

2
∑(−1)𝑛

∞

𝑛=1

(𝑛 + 1)
 (𝑧 + 𝑖)𝑛

(1 − 𝑖)𝑛
 

 

EX.9. Obtain the Taylor expansion of 𝑒(1+𝑧) in the powers of (𝑧 − 1). 

𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧: By Taylor′s theorem 𝑓(𝑧) =  ∑
(𝑧 − 𝑎)𝑛

𝑛!
𝑓𝑛(𝑎)

∞

𝑛=0

 

Taking 𝑎 = 1 and 𝑓(𝑧) = 𝑒(1+𝑧), we get 

𝑒(1+𝑧) = ∑
(𝑧 − 1)𝑛

𝑛!
𝑒1+1

∞

𝑛=0

[∵  𝑓𝑛(𝑧) = 𝑒(1+𝑧)] = 𝑒2 ∑
(𝑧 − 1)𝑛

𝑛!

∞

𝑛=0

 

which is the required Taylor’s series. 

 

EX.𝟏𝟎. Obtain the Taylor′s series to represent the function  

𝑧2 − 1

(𝑧 + 2)(𝑧 + 3)
, in the region |𝑧| < 2. 

𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧: Let 𝑓(𝑧) =
𝑧2 − 1

(𝑧 + 2)(𝑧 + 3)
 

                                    = 1 +
3

𝑧 + 2
−

8

𝑧 + 3
 (Resolving into partial fractions) 

                                     = 1 +
3

2 (1 +
𝑧
2)

−
8

3 (1 +
𝑧
3)

 

                                     = 1 +
3

2
(1 +

𝑧

2
)

−1

−
8

3
(1 +

𝑧

3
)

−1

 

Expanding by binomial series  
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                        𝑓(𝑧) = 1 +
3

2
(1 −

𝑧

2
+

𝑧2

4
−

𝑧3

8
+ ⋯ ) −

8

3
(1 −

𝑧

3
+

𝑧2

9
−

𝑧3

27
+ ⋯ ) 

                                  = 1 +
3

2
∑

(−1)𝑛

2𝑛

∞

𝑛=0

. 𝑧𝑛 −
8

3
∑

(−1)𝑛

3𝑛

∞

𝑛=0

. 𝑧𝑛 

                                  = 1 +
3

2
∑(−1)𝑛

∞

𝑛=0

[
3

2𝑛+1
−

8

3𝑛+1
] 𝑧𝑛 

which is the required Taylor’s series. 

 

EX.11. Find the Taylor’s series expansion of 𝑐𝑜𝑠ℎ 𝑧 about 𝑧 = 𝜋𝑖. 

Solution: Let 𝑓(𝑧) = 𝑐𝑜𝑠ℎ 𝑧 

Put   𝑤 = 𝑧 − 𝜋𝑖.  Then 𝑧 = 𝑤 + 𝜋𝑖 

∴              𝑓(𝑧) = 𝑐𝑜𝑠ℎ (𝑤 + 𝜋𝑖) = 𝑐𝑜𝑠ℎ 𝑤 𝑐𝑜𝑠ℎ 𝜋𝑖 − 𝑠𝑖𝑛ℎ 𝑤 𝑠𝑖𝑛ℎ 𝜋𝑖 

But 𝑐𝑜𝑠ℎ 𝜋𝑖 = 𝑐𝑜𝑠 𝜋 [or 
𝑒𝜋𝑖 + 𝑒−𝜋𝑖

2
=

2 𝑐𝑜𝑠 𝜋

2
] = −1 

and 𝑠𝑖𝑛ℎ 𝜋𝑖 = 𝑖 𝑠𝑖𝑛 𝜋 [or 
𝑒𝜋𝑖 − 𝑒−𝜋𝑖

2
=

2 𝑠𝑖𝑛 𝜋

2
] = 0 

∴              𝑓(𝑧) =  −𝑐𝑜𝑠ℎ 𝑤 = − [1 +
𝑤2

2!
+

𝑤4

4!
+ ⋯ ]  for all 𝑤 

                            = − ∑
𝑤2𝑛

2𝑛!

∞

𝑛=0

= − ∑
(𝑧 − 𝜋𝑖)2𝑛

2𝑛!

∞

𝑛=0

 

which is the required Taylor’s series. 

Another Method: 

                𝑓(𝑧) = 𝑐𝑜𝑠ℎ 𝑧 =
𝑒𝑧 + 𝑒−𝑧

2
=

𝑒𝑧−𝜋𝑖+𝜋𝑖 + 𝑒−𝑧+𝜋𝑖−𝜋𝑖

2
 

                          =
1

2
𝑒𝜋𝑖. 𝑒𝑧−𝜋𝑖 +

1

2
𝑒−𝜋𝑖 . 𝑒−(𝑧−𝜋𝑖) 

                          = −
1

2
∑

(𝑧 − 𝜋𝑖)𝑛

𝑛!

∞

𝑛=0

−
1

2
∑

(−1)𝑛(𝑧 − 𝜋𝑖)𝑛

𝑛!

∞

𝑛=0

 

                          = − ∑
(𝑧 − 𝜋𝑖)2𝑛

2𝑛!

∞

𝑛=0

 

 

EX.12. Expand 𝑙𝑜𝑔 (1 − 𝑧) when |𝑧| < 1 using Taylor series. 

Solution: Let 𝑓(𝑧) =  𝑙𝑜𝑔 (1 − 𝑧)                ∴      𝑓(0) = 𝑙𝑜𝑔 1 = 0 
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           Also      𝑓′(𝑧) =  
−1

1 − 𝑧
                         ∴      𝑓′(0) = −1 

                        𝑓′′(𝑧) =  
−1

(1 − 𝑧)2
                   ∴      𝑓′′(0) = −1 

                        𝑓′′′(𝑧) =  
−2

(1 − 𝑧)3
                   ∴      𝑓′′′(0) = −2 and so on. 

By Taylor’s theorem about 𝑧 = 0 is 

                           𝑓(𝑧) = 𝑓(0) + 𝑧𝑓′(0) +
𝑧2

2!
𝑓′′(0) +

𝑧3

3!
𝑓′′′(0) + ⋯ 

                                     = 0 − 𝑧 −
𝑧2

2!
− 2

𝑧3

3!
+ ⋯ 

                                     = − (𝑧 +
𝑧2

2
+

𝑧3

3
+ ⋯ ) 

which is the required Taylor’s series. 

 

𝑬𝑿. 𝟏𝟑. Find Taylor′s expansion of 𝑓(𝑧) =
2𝑧3 + 1

𝑧2 + 𝑧
 about the point (𝑖) 𝑧 = 𝑖  (𝑖𝑖) 𝑧 = 1. 

𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧:  Given 𝑓(𝑧) =
2𝑧3 + 1

𝑧2 + 𝑧
= 2𝑧 − 2 +

2𝑧 + 1

𝑧(𝑧 + 1)
 (Resolving into partial fractions)  

                                           = 2(𝑧 − 1) +
2

𝑧 + 1
+

1

𝑧(𝑧 + 1)
 

                                           = 2(𝑧 − 1) +
2

𝑧 + 1
+

1

𝑧
−

1

𝑧 + 1
 

                                           = 2(𝑧 − 1) +
1

𝑧
+

1

𝑧 + 1
                                                      (1) 

Differentiating (1) ‘𝑛’ times, 

           𝑓𝑛(𝑧) = (−1)𝑛 𝑛! [
1

𝑧𝑛+1
+

1

(𝑧 + 1)𝑛+1
]                                                          (2) 

           𝑓𝑛(𝑖) = (−1)𝑛 𝑛! [
1

𝑖𝑛+1
+

1

(𝑖 + 1)𝑛+1
]                                                            (3) 

By Taylor′s theorem,             𝑓(𝑧) = 𝑓(𝑎) + ∑
(𝑧 − 𝑎)𝑛

𝑛!

∞

𝑛=1

𝑓𝑛(𝑎)                          (4) 

(𝒊) To find the Taylor’s series about  𝒛 = 𝒊 

Putting  𝑎 = 𝑖, we get 

                  𝑓(𝑧) = 𝑓(𝑖) + ∑
(𝑧 − 𝑎)𝑛

𝑛!

∞

𝑛=1

𝑓𝑛(𝑖) 
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                            =
𝑖

2
−

3

2
+ ∑(−1)𝑛

∞

𝑛=1

(𝑧 − 𝑖)𝑛 [
1

𝑖𝑛+1
+

1

(𝑖 + 1)𝑛+1
] , using (3) 

                            =
𝑖

2
−

3

2
+ (𝑧 − 𝑖) (3 +

𝑖

2
) + ⋯ 

(𝒊𝒊) To find the Taylor’s series about  𝒛 = 𝟏 

Singularities of 𝑓(𝑧) are given by 𝑧 = 0 and 𝑧 = −1. Draw a circle with centre at 𝑧 =

1 and radius 1. Then within the circle |𝑧 − 1| = 1, the function  𝑓(𝑧) is analytic. Thus 𝑓(𝑧) 

can be expanded in a Taylor’s series within the circle |𝑧 − 1| = 1, which is the circle of 

convergence. 

 From (2), we have 

                𝑓𝑛(𝑧) = (−1)𝑛 𝑛! [
1

𝑧𝑛+1
+

1

(𝑧 + 1)𝑛+1
] 

        ∴   𝑓𝑛(1) = (−1)𝑛 𝑛! [
1

1𝑛+1
+

1

2𝑛+1
] = (−1)𝑛 𝑛! (1 +

1

2𝑛+1
)   

By Taylor’s theorem,  

                            𝑓(𝑧) = 𝑓(1) + ∑
(𝑧 − 1)𝑛

𝑛!

∞

𝑛=1

𝑓𝑛(1), using (4) 

                                      =
3

2
+ ∑

(𝑧 − 1)𝑛

𝑛!

∞

𝑛=1

(−1)𝑛 𝑛! (1 +
1

2𝑛+1
) 

                                      =
3

2
+ ∑(−1)𝑛

∞

𝑛=1

(1 +
1

2𝑛+1
) (𝑧 − 1)𝑛 

 

EX.14. Expand 𝑓(𝑧) = 𝑠𝑖𝑛 𝑧 in Taylor’s series about  𝑧 =
𝜋

4
. 

Solution: By Taylor′s theorem, 

  𝑓(𝑧) = 𝑓(𝑎) + (𝑧 − 𝑎)𝑓′(𝑎) +
(𝑧 − 𝑎)2

2!
𝑓′′(𝑎) + ⋯ +

(𝑧 − 𝑎)𝑛

𝑛!
𝑓𝑛(𝑎) + ⋯                  (1) 

Put 𝑎 =
𝜋

4
 in (1), then  

 𝑓(𝑧) = 𝑓 (
𝜋

4
) + (𝑧 −

𝜋

4
) 𝑓′ (

𝜋

4
) +

(𝑧 −
𝜋
4)

2

2!
𝑓′′ (

𝜋

4
) + ⋯ +

(𝑧 −
𝜋
4)

𝑛

𝑛!
𝑓𝑛 (

𝜋

4
) + ⋯      (2) 

Now          𝑓(𝑧) = 𝑠𝑖𝑛 𝑧                  𝑓 (
𝜋

4
) =

1

√2
 

                  𝑓′(𝑧) = 𝑐𝑜𝑠 𝑧                𝑓′ (
𝜋

4
) =

1

√2
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                 𝑓′′(𝑧) = −𝑠𝑖𝑛 𝑧            𝑓′′ (
𝜋

4
) = −

1

√2
 

                𝑓′′′(𝑧) = −𝑠𝑖𝑛 𝑧           𝑓′′′ (
𝜋

4
) = −

1

√2
 and so on. 

Substituting in (2), we get 

             𝑓(𝑧) =
1

√2
+ (𝑧 −

𝜋

4
)

1

√2
+

(𝑧 −
𝜋
4)

2

2!
(−

1

√2
) +

(𝑧 −
𝜋
4)

3

3!
(−

1

√2
) + ⋯ 

 𝑖. 𝑒., 𝑠𝑖𝑛 𝑧 =
1

√2
[1 + (𝑧 −

𝜋

4
) −

1

2!
(𝑧 −

𝜋

4
)

2

−
1

3!
(𝑧 −

𝜋

4
)

3

+ ⋯ ] 

 

EX.𝟏𝟓.  Obtain the Taylor′s series expansion of 𝑓(𝑧) =
𝑒𝑧

𝑧(𝑧+1)
 about 𝑧 = 2. 

𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧: Given 𝑓(𝑧) =
𝑒𝑧

𝑧(𝑧 + 1)
=

𝑒𝑧−2. 𝑒2

(𝑧 − 2 + 2)(𝑧 − 2 + 3)
  

                       = 𝑒2
𝑒𝑧−2

2 [1 +
𝑧 − 2

2
]

 .
1

3 [1 +
𝑧 − 2

3
]
 

          =
𝑒2

6
. 𝑒𝑧−2. (1 +

𝑧 − 2

2
)

−1

(1 +
𝑧 − 2

3
)

−1

valid when |
𝑧 − 2

2
| < 1 and |

𝑧 − 2

3
| < 1  

                       =
𝑒2

6
[∑

(𝑧 − 2)𝑛

𝑛!

∞

𝑛=0

] [∑(−1)𝑛 (
𝑧 − 2

2
)

𝑛∞

𝑛=0

] [∑(−1)𝑛 (
𝑧 − 2

3
)

𝑛∞

𝑛=0

] 

        =
𝑒2

6
[1 −

𝑧 − 2

1!
+

(𝑧 − 2)2

2!
+

(𝑧 − 2)3

3!
+ ⋯ ] × 

                                                 [1 −
𝑧 − 2

2
+

(𝑧 − 2)2

4
−

(𝑧 − 2)3

8
+ ⋯ ] × 

                                                                        [1 −
𝑧 − 2

3
+

(𝑧 − 2)2

9
−

(𝑧 − 2)3

27
+ ⋯ ] 

          =
𝑒2

6
[1 −

𝑧 − 2

2
+

(𝑧 − 2)2

4
+

𝑧 − 2

1
−

(𝑧 − 2)2

2
+

(𝑧 − 2)2

2
+ ⋯ ] × 

                                                                                         [1 −
𝑧 − 2

3
+

(𝑧 − 2)2

9
+ ⋯ ] 

          =
𝑒2

6
[1 +

𝑧 − 2

2
+

(𝑧 − 2)2

4
+ ⋯ ] × [1 −

𝑧 − 2

3
+

(𝑧 − 2)2

9
+ ⋯ ] 

          =
𝑒2

6
[1 −

𝑧 − 2

3
+

(𝑧 − 2)2

9
+

𝑧 − 2

2
−

(𝑧 − 2)2

6
+

(𝑧 − 2)2

4
−

(𝑧 − 2)3

12
+ ⋯ ] 
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          =
𝑒2

6
[1 +

𝑧 − 2

6
+

7

36
(𝑧 − 2)2 + ⋯ ] 

 

𝐄𝐗. 𝟏𝟔.  Let 𝑓(𝑧) =
1

(1 − 𝑧)(𝑧 − 2)
 ,  

find Laurent′s series expansion in the annulus region 1 < |𝑧| < 2. 

Also find the Laurent’s series expansion in |𝑧| > 2. 

𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧: Let 𝑓(𝑧) =
1

(1 − 𝑧)(𝑧 − 2)
=

−1

(𝑧 − 1)(𝑧 − 2)
 

                                     =
(𝑧 − 2) − (𝑧 − 1)

(𝑧 − 1)(𝑧 − 2)
=

1

𝑧 − 1
−

1

𝑧 − 2
 

𝐋𝐚𝐮𝐫𝐞𝐧𝐭′𝐬 𝐬𝐞𝐫𝐢𝐞𝐬 𝐞𝐱𝐩𝐚𝐧𝐬𝐢𝐨𝐧 𝐢𝐧 𝐭𝐡𝐞 𝐚𝐧𝐧𝐮𝐥𝐮𝐬 𝐫𝐞𝐠𝐢𝐨𝐧 𝟏 < |𝒛| < 2. 

 |𝑧| = 2, |𝑧| = 1 are two concentric circles with centre at 𝑂 and radii equal to 1 and 2 

respectively. In 1 < |𝑧| < 2, 𝑓(𝑧) is analytic  

               𝑓(𝑧) =
1

𝑧 − 1
−

1

𝑧 − 2
=

1

𝑧 (1 −
1
𝑧)

+
1

2 (1 −
𝑧
2)

 

                        =
1

𝑧
[1 +

1

𝑧
+

1

𝑧2
+

1

𝑧3
+ ⋯ ] +

1

2
[1 +

𝑧

2
+ (

𝑧

2
)

2

+ (
𝑧

2
)

3

+ ⋯ ] 

Here the first expansion is valid if |
1

𝑧
| < 1, 𝑖. 𝑒. , if |𝑧| > 1 and the second expansion is 

valid if  |
𝑧

2
| < 1, 𝑖. 𝑒. , if |𝑧| < 2. 

               Hence, 𝑓(𝑧) = (
1

𝑧
+

1

𝑧2
+

1

𝑧3
+

1

𝑧4
+ ⋯ ) + (

1

2
+

𝑧

22
+

𝑧

23
+

𝑧

24
+ ⋯ ) 

                                       = ∑ 𝑎𝑛

∞

𝑛=−∞

𝑧𝑛 , 𝑤ℎ𝑒𝑟𝑒 𝑎𝑛 = {

1

2𝑛+1
, 𝑖𝑓 𝑛 = 0, 1, 2, …

        1,       𝑖𝑓 𝑛 = −1, −2, −3, …
 

The expansion is valid if both |𝑧| > 1 and |𝑧| < 2 are true, i.e., if  1 < |𝑧| < 2. 

  𝐋𝐚𝐮𝐫𝐞𝐧𝐭′𝐬 𝐬𝐞𝐫𝐢𝐞𝐬 𝐞𝐱𝐩𝐚𝐧𝐬𝐢𝐨𝐧 𝐢𝐧 𝐭𝐡𝐞 𝐚𝐧𝐧𝐮𝐥𝐮𝐬 𝐫𝐞𝐠𝐢𝐨𝐧 |𝒛| > 2. 

               𝑓(𝑧) =
1

𝑧 − 1
−

1

𝑧 − 2
=

1

𝑧 (1 −
1
𝑧)

+
1

𝑧 (1 −
2
𝑧)

 

                        =
1

𝑧
[1 +

1

𝑧
+

1

𝑧2
+

1

𝑧3
+ ⋯ ] −

1

𝑧
[1 +

2

𝑧
+ (

2

𝑧
)

2

+ (
2

𝑧
)

3

+ ⋯ ]  𝑖𝑓 |
1

𝑧
|

< 1 𝑎𝑛𝑑  |
2

𝑧
| < 1   

                        = ∑
(1 − 2𝑛)

𝑧𝑛+1

∞

𝑛=1

 𝑖. 𝑒. , 𝑖𝑓 |𝑧| > 1 and |𝑧| > 2 
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               Hence,    𝑓(𝑧) = ∑
(1 − 2𝑛)

𝑧𝑛+1

∞

𝑛=1

 𝑖𝑓 |𝑧| > 2.  

 

EX.𝟏𝟕.  Expand 𝑓(𝑧) =
1

(𝑧−1)(𝑧−2)
 , in the  region (𝑖) 0 < |𝑧 − 1| < 1 (𝑖𝑖) 1 < |𝑧| < 2. 

𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧: Given 𝑓(𝑧) =
1

(𝑧 − 1)(𝑧 − 2)
=

1

𝑧 − 2
−

1

𝑧 − 1
 

𝑧 = 1, 𝑧 = 2 are the singular points of 𝑓(𝑧). 

(𝑖) The function 𝑓(𝑧) is analytic in the ring shaped region 0 < 𝑟2 < |𝑧 − 1| < 𝑟1 < 1. 

Put 𝑧 − 1 = 𝑤  ∴ 𝑧 = 𝑤 + 1  ⇒ 𝑧 − 2 = 𝑤 + 1 − 2 = 𝑤 − 1 

∴           𝑓(𝑧) =
1

𝑤 − 1
−

1

𝑤
= −

1

𝑤
−

1

𝑤 − 1
 

                       = −
1

𝑤
− [1 + 𝑤 + 𝑤2 + ⋯ ] 𝑖𝑓 𝑤 < 1 and 𝑤 ≠ 0 

                       = −
1

𝑧 − 1
− ∑(𝑧 − 1)𝑛

∞

𝑛=0

 if 0 < |𝑧 − 1| < 1 

                      = − ∑ (𝑧 − 1)𝑛

∞

𝑛=−1

 if 0 < |𝑧 − 1| < 1. 

(𝑖𝑖) Given 1 < |𝑧| < 2 𝑖. 𝑒. , 1 < |𝑧| and |𝑧| < 2 𝑜𝑟 |
1

𝑧
| < 1 and  |

𝑧

2
| < 1   

∴           𝑓(𝑧) =
1

𝑧 − 2
−

1

𝑧 − 1
=

1

−2 (1 −
𝑧
2

)
−

1

𝑧 (1 −
1
𝑧)

 

                        = −
1

2
(1 −

𝑧

2
)

−1

−
1

𝑧
(1 −

1

𝑧
)

−1

 

                        = −
1

2
[1 +

𝑧

2
+ (

𝑧

2
)

2

+ (
𝑧

2
)

3

+ ⋯ ] −
1

𝑧
[1 +

1

𝑧
+

1

𝑧2
+

1

𝑧3
+ ⋯ ] 

                        = −
1

2
[1 +

𝑧

2
+

𝑧

4

2

+
𝑧

8

3

+ ⋯ ] − [
1

𝑧
+

1

𝑧2
+

1

𝑧3
+ ⋯ ] 

 

EX.𝟏𝟖.  Expand 𝑓(𝑧) =
𝑒2𝑧

(𝑧−1)3  about 𝑧 = 1  

as a Laurent′s series.  Also find the region of convergence. 

𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧: 𝑓(𝑧) =
𝑒2𝑧

(𝑧 − 1)3
 

We want the Laurent’s series expansion of 𝑓(𝑧) around 𝑧 = 1. 

Put 𝑧 − 1 = 𝑤  ∴ 𝑧 = 𝑤 + 1   
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∴           𝑓(𝑧) =
𝑒2𝑧

(𝑧 − 1)3
=

𝑒2(1+𝑤)

𝑤3
= 𝑒2.

𝑒2𝑤

𝑤3
 

                       = 𝑒2.
1

𝑤3
[1 + (2𝑤) +

(2𝑤)2

2!
+

(2𝑤)3

3!
+ ⋯ ] 

                       = 𝑒2 ∑
2𝑛

𝑛!

∞

𝑛=0

(𝑤𝑛−3) if  𝑤 ≠ 0 

                       = 𝑒2 ∑
2𝑛

𝑛!

∞

𝑛=0

(𝑧 − 1)𝑛−3 if  𝑧 − 1 > 0 

EX.𝟏𝟗.  Find the Laurent′s series expansion of the function  𝑓(𝑧) =
𝑧2−6𝑧−1

(𝑧−1)(𝑧−3)(𝑧+2)
   

 in the region  3 < |𝑧 + 2| < 5. 

Solution: By partial fractions 

            
𝑧2 − 6𝑧 − 1

(𝑧 − 1)(𝑧 − 3)(𝑧 + 2)
=

1

𝑧 − 1
−

1

𝑧 − 3
+

1

𝑧 + 2
 

                                                       =
1

𝑧 + 2 − 3
−

1

𝑧 + 2 − 5
+

1

𝑧 + 2
 

                                                       =
1

(𝑧 + 2) (1 −
3

𝑧 + 2)
+

1

5 (1 −
𝑧 + 2

5 )
+

1

𝑧 + 2
 

                                                       =
1

(𝑧 + 2)
(1 −

3

𝑧 + 2
)

−1

+
1

5
(1 −

𝑧 + 2

5
)

−1

+
1

𝑧 + 2
 

                                                       =
1

(𝑧 + 2)
∑ (

3

𝑧 + 2
)

∞

𝑛=0

𝑛

+
1

5
∑ (

𝑧 + 2

5
)

∞

𝑛=0

𝑛

+
1

𝑧 + 2
 

valid for |
3

𝑧 + 2
| < 1 and |

𝑧 + 2

5
| < 1  ⇒  3 < |𝑧 + 2| < 5. 

 

EX.𝟐𝟎.  Find the Laurent′s series of  𝑓(𝑧) =
7𝑧−2

(𝑧+1)𝑧(𝑧−2)
 in the annulus 1 < |𝑧 + 1| < 3. 

(OR) 

 Expand 𝑓(𝑧) =
7𝑧 − 2

(𝑧 + 1)𝑧(𝑧 − 2)
 about the point z = −1 in the region 1 < |𝑧 + 1| < 3  

as Laurent’s series. 

𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧: Let 𝑓(𝑧) =
7𝑧 − 2

(𝑧 + 1)𝑧(𝑧 − 2)
 

Put 𝑧 + 1 = 𝑤  Then 𝑧 = 𝑤 − 1   

∴           𝑓(𝑧) =
7(𝑤 − 1) − 2

𝑤(𝑤 − 1)(𝑤 − 1 − 2)
=

7𝑤 − 9

𝑤(𝑤 − 1)(𝑤 − 3)
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                        = −
3

𝑤
+

1

𝑤 − 1
+

2

𝑤 − 3
, by partial fractions 

                        = −
3

𝑤
+

1

𝑤 (1 −
1
𝑤)

−
2

3 (1 −
𝑤
3)

 

                        = −
3

𝑤
+

1

𝑤
(1 −

1

𝑤
)

−1

−
2

3
(1 −

𝑤

3
)

−1

 

                        = −
3

𝑤
+

1

𝑤
(1 +

1

𝑤
+

1

𝑤2
+ ⋯ ) −

2

3
(1 +

𝑤

3
+

𝑤2

32
+ ⋯ ) 

                        = (−
2

𝑤
+

1

𝑤2
+

1

𝑤3
+ ⋯ ) −

2

3
(1 +

𝑤

3
+

𝑤2

32
+ ⋯ ) 

                        = −
2

𝑧 + 1
+

1

(𝑧 + 1)2
+

1

(𝑧 + 1)3
+ ⋯ −

2

3
[1 +

𝑧 + 1

3
+

(𝑧 + 1)2

32
+ ⋯ ] 

The above series valid for |
1

𝑧 + 1
| < 1 and |

𝑧 + 1

3
| < 1  ⇒  1 < |𝑧 + 1| < 3. 
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THE CALCULUS OF RESIDUES 

 

2.13. Singular Points of an Analytic Function:  

 All the points of the 𝑧-plane at which an analytic function does not have a unique 

derivative are said to be singular points. If 𝑧 = 𝑎 is a singular point of the function 𝑓(𝑧) 

such that there exists a circle with centre at 𝑎 in which there are no other singular points of 

𝑓(𝑧), then 𝑧 = 𝑎 is called an isolated singular point of 𝑓(𝑧). This means that there is some 

neighbourhood of the singular point 𝑎 of the function 𝑓(𝑧) throughout which it is analytic, 

except at the point itself. For instance, the function 
1

𝑧
 is analytic everywhere in the complex 

plane except at 𝑧 = 0; hence the origin is an isolated singular point of the function. The 

function 
𝑧+2

𝑧(𝑧2−1)
 has three isolated singular points, namely 𝑧 = 0 and 𝑧 = ±1. 

 

2.14. Types of singularities:  

Let 𝑓(𝑧) be analytic within a domain 𝐷, except at the point 𝑧 = 𝑎, which is an 

isolated singularity of 𝑓(𝑧). We can draw two concentric circles of centre 𝑎, both lying 

within 𝐷. The radius 𝑟2 of the smaller circle may be as small as we please and the radius 𝑟1 of 

the larger circle may be of any length, subject to the condition that the circle lies within 𝐷. In 

the annulus between these two circles, we can expand 𝑓(𝑧) in a Laurent’s series in powers of 

𝑧 − 𝑎; this expansion will contain both positive and negative powers of 𝑧 − 𝑎. Let this 

expansion be 

         𝑓(𝑧) = ∑ 𝑎𝑛

∞

𝑛=0

(𝑧 − 𝑎)𝑛 + ∑ 𝑏𝑛

∞

𝑛=1

(𝑧 − 𝑎)−𝑛 

                   = 𝑎0 + 𝑎1(𝑧 − 𝑎) + 𝑎2(𝑧 − 𝑎)2 + ⋯ + 𝑏1(𝑧 − 𝑎)−1 + 𝑏2(𝑧 − 𝑎)−2 + ⋯        (1) 

The part 

∑ 𝑎𝑛

∞

𝑛=0

(𝑧 − 𝑎)𝑛 

is called the analytic part while the part 

∑ 𝑏𝑛

∞

𝑛=1

(𝑧 − 𝑎)−𝑛 

containing negative powers of 𝑧 − 𝑎 is called the principal part of 𝑓(𝑧)at the singular point 

𝑧 = 𝑎. 

We consider the following cases: 
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Case I: Let all the coefficients 𝑏𝑛 in the expansion (1) be zero i.e., there is no principal part in 

(1). The remaining terms are the Taylor series expansion and the function 𝑓(𝑧)can be made 

analytic by suitably defining its value at 𝑎. We then call 𝑧 = 𝑎 a removable singularity of 

𝑓(𝑧). 

Case II: Let the expansion (1) contain an infinite number of negative powers of 𝑧 − 𝑎. In this 

case, the point 𝑧 = 𝑎 said to be an essential singularity of 𝑓(𝑧). 

Case III: If the principal part of the expansion (1) contains only the single term 
𝑏1

𝑧−𝑎
, then the 

singularity at 𝑎 is known as a simple pole or pole of order one. If the principal part contains a 

finite number of negative powers of 𝑧 − 𝑎, and if 𝑏𝑚 is the last non-zero coefficient in the 

principal part, then 𝑎 is said to be a pole of order 𝑚. In such case, 𝑚 is clearly the largest of 

the negative exponents. Poles of orders 1, 2, 3, …….. are usually called simple, double, 

triple, ……poles. 

 

Note: Let 𝑓(𝑧)have a pole of order 𝑚 at 𝑧 = 𝑎. Then Laurent series takes the form 

               𝑓(𝑧) = ∑ 𝑎𝑛

∞

𝑛=0

(𝑧 − 𝑎)𝑛 +
𝑏1

𝑧 − 𝑎
+

𝑏2

(𝑧 − 𝑎)2
+ ⋯ +

𝑏𝑚

(𝑧 − 𝑎)𝑚
 

=
1

(𝑧 − 𝑎)𝑚
[∑ 𝑎𝑛

∞

𝑛=0

(𝑧 − 𝑎)𝑚+𝑛 + 𝑏𝑚 + 𝑏𝑚−1(𝑧 − 𝑎) + ⋯ + 𝑏1(𝑧 − 𝑎)𝑚−1] 

                          =
1

(𝑧 − 𝑎)𝑚
∅(𝑧) 

where ∅(𝑧)represents the series inside the bracket. 

Now ∅(𝑎) = 𝑏𝑚 and this is not equal to zero as 𝑓(𝑧) has a pole of order 𝑚. 

Hence if a function 

𝑓(𝑧) =
∅(𝑧)

(𝑧 − 𝑎)𝑚
 

where ∅(𝑧) is analytic everywhere in a region including 𝑧 = 𝑎 such that ∅(𝑎) ≠ 0, 

and if 𝑚 is a positive integer, we can conclude that 𝑓(𝑧) has an isolated singularity at 𝑧 = 𝑎 

which is a pole of order 𝑚.  
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Example 1. Find the nature and location of singularities of the following functions: 

(𝑖) 
𝑧 − 𝑠𝑖𝑛 𝑧

𝑧2
       (𝑖𝑖) (𝑧 + 1) 𝑠𝑖𝑛 

1

𝑧 − 2
          (𝑖𝑖𝑖) 

1

𝑐𝑜𝑠 𝑧 − 𝑠𝑖𝑛 𝑧
 

Solution: (𝑖) Here 𝑧 = 0 is a singularity. 

Also        
𝑧 − 𝑠𝑖𝑛 𝑧

𝑧2
=

1

𝑧2
{𝑧 − (𝑧 −

𝑧3

3!
+

𝑧5

5!
−

𝑧7

7!
+ ⋯ )} =

𝑧

3!
−

𝑧3

5!
+

𝑧5

7!
− ⋯  

Since there are no negative powers of 𝑧 in the expansion, 𝑧 = 0 is a removable singularity. 

(𝑖𝑖)         (𝑧 + 1) 𝑠𝑖𝑛 
1

𝑧 − 2
= (𝑡 + 2 + 1) 𝑠𝑖𝑛 

1

𝑡
    where 𝑡 = 𝑧 − 2 

 

                                                  = (𝑡 + 3) {
1

𝑡
−

1

3! 𝑡3
+

1

5! 𝑡5
− ⋯ } 

                                                  = (1 −
1

3! 𝑡2
+

1

5! 𝑡4
− ⋯ ) + (

3

𝑡
−

1

2𝑡3
+

3

5! 𝑡5
− ⋯ ) 

....
120

1

2

1

6

13
1

432


tttt
 

    ...22

1

26

1

2

3
1

32









zzz

 

Since there are infinite number of terms in the negative powers of (z-2), z=2 is an essential 

singularity. 

(iii)  Poles of  
zz

zf
sincos

1


 are given by equating the denominator to zero,  

i.e., by cos z–sin z=0 or tan z = 1 or z = /4.  Clearly z = /4 is a simple pole of f(z). 

 

Example  2. What type of singularity have the following functions: 

 (i)  
ze1

1
 (ii) 

 4
2

1z

e z

  (iii) 
2

/1

z

e z

 

Solution: 

 (i) Poles of f(z) = 1/(1 - ez) are found by equating to zero 1- ez = 0 or ez = 1 = e2ni 

   z = 2ni (n= 0, 1, 2, …) 

 Clearly f(z) has a simple pole at z = 2i. 

 (ii) 
 

 
t

tz

e
t

e

t

e

z

e 2

4

2

4

12

4

2

1






 where t = z-1 

  
       









 ...
!5

2

!4

2

!3

2

!2

2

!1

2
1

5432

4

2 ttttt

t

e
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







 ...
15

4

3

2

3

4221
234

2 t

tttt
e  

       
 
























 ...
15

14

3

2

13

4

1

2

1

2

1

1
234

2 z

zzzz
e  

 Since there are finite (4) number of terms containing negative powers of (z-1), 

 Z = 1 is a pole of 4th order. 

(ii)   ...
2

...
!3

1

!2

1

!1

1
1

1 4
32

3222

/1













 z
zz

zzzzz

e
zf

z

  

Since there are infinite number of terms in the negative powers of z, therefore f(z) has 

an essential singularity at z =0. 

 

 

2.15. Residues: Let the Laurent expansion of a function 𝑓(𝑧) around an isolated singularity 

𝑧 = 𝑎 be  

𝑓(𝑧) = 𝑎0 + 𝑎1(𝑧 − 𝑎) + 𝑎2(𝑧 − 𝑎)2 + ⋯ +
𝑏1

𝑧 − 𝑎
+

𝑏2

(𝑧 − 𝑎)2
+ ⋯ 

In the expansion, 𝑏1, the coefficient of 
1

𝑧−𝑎
 is called the residue of 𝑓(𝑧) at the point 

𝑧 = 𝑎. This is written as  

𝑏1 = 𝑅𝑒𝑠. 𝑓(𝑧)𝑧=𝑎 

But, we know already that 

𝑏1 =
1

2𝜋𝑖
∫ 𝑓(𝑧)

𝐶

𝑑𝑧 

where  𝐶 is a curve surrounding 𝑧 = 𝑎. 

Hence
1

2𝜋𝑖
∫ 𝑓(𝑧)

𝐶

𝑑𝑧 = 𝑅𝑒𝑠. 𝑓(𝑧)𝑧=𝑎 

or ∫ 𝑓(𝑧)

𝐶

𝑑𝑧 = 2𝜋𝑖 {𝑅𝑒𝑠. 𝑓(𝑧)𝑧=𝑎}                       (1) 

It may sometimes happen that Laurent expansion for 𝑓(𝑧) around 𝑧 = 𝑎 can be easily 

got by algebraic manipulation. In that case 𝑏1 can be calculated and hence we may compute 

the integral  

∫ 𝑓(𝑧)

𝐶

𝑑𝑧 using the formula(1). 
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2.16. Cauchy’s Residue Theorem: If 𝐶 is a closed curve and 𝑓(𝑧) is analytic within and on 

𝐶 except at a finite number of singular points within 𝐶, then 

∫ 𝑓(𝑧)

𝐶

𝑑𝑧 = 2𝜋𝑖(𝑟1 + 𝑟2 + ⋯ + 𝑟𝑛) 

where 𝑟1, 𝑟2, … , 𝑟𝑛 are the residues of the function 𝑓(𝑧) at the singular points. 

Proof: Let 𝑓(𝑧) be a function analytic within and on the boundary of a region 𝑅 at all points 

except at the points 𝑧1, 𝑧2, … , 𝑧𝑛.  Around each singular point, we can draw a circle so small 

that it encloses no other singular point. Then these circles, together with the curve 𝐶 from the 

boundary of a multiply connected region in which 𝑓(𝑧) is everywhere analytic. Applying 

Cauchy’s integral theorem to the function 𝑓(𝑧) extended to the multiply connected region, 

we have 

 

1

2𝜋𝑖
∫ 𝑓(𝑧)

𝐶

𝑑𝑧 +
1

2𝜋𝑖
∫ 𝑓(𝑧)

𝐶1

𝑑𝑧 +
1

2𝜋𝑖
∫ 𝑓(𝑧)

𝐶2

𝑑𝑧 + ⋯ +
1

2𝜋𝑖
∫ 𝑓(𝑧)

𝐶𝑛

𝑑𝑧 = 0         (1) 

 In the integration in the combined contour, it is clear that the integration round 𝐶 is in 

the anticlockwise direction and the integrations around 𝐶1, 𝐶2, … , 𝐶𝑛 are in the clockwise 

direction. Hence in (1), we can reverse the direction of integration around 𝐶1, 𝐶2, … , 𝐶𝑛 and 

change the sign of these integrals. Then we have 

1

2𝜋𝑖
∫ 𝑓(𝑧)

𝐶

𝑑𝑧 =
1

2𝜋𝑖
∫ 𝑓(𝑧)

𝐶1

𝑑𝑧 +
1

2𝜋𝑖
∫ 𝑓(𝑧)

𝐶2

𝑑𝑧 + ⋯ +
1

2𝜋𝑖
∫ 𝑓(𝑧)

𝐶𝑛

𝑑𝑧             (2) 

where are the integrals are taken in the anticlockwise direction. 

But
1

2𝜋𝑖
∫ 𝑓(𝑧)

𝐶1

𝑑𝑧 = 𝑅𝑒𝑠. 𝑓(𝑧)𝑧=𝑧1
= 𝑟1 

Similarly
1

2𝜋𝑖
∫ 𝑓(𝑧)

𝐶2

𝑑𝑧 = 𝑅𝑒𝑠. 𝑓(𝑧)𝑧=𝑧2
= 𝑟2and so on. 

Hence (2) gives 
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1

2𝜋𝑖
∫ 𝑓(𝑧)

𝐶

𝑑𝑧 = 𝑟1 + 𝑟2 + ⋯ + 𝑟𝑛 

𝑖. 𝑒. , ∫ 𝑓(𝑧)

𝐶

𝑑𝑧 = 2𝜋𝑖(𝑟1 + 𝑟2 + ⋯ + 𝑟𝑛) 

 

EXAMPLES 

𝐄𝐗. 𝟏. Find the poles and residues of
𝑧

𝑧2 − 3𝑧 + 2
. 

𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧: Let 𝑓(𝑧) =
𝑧

𝑧2 − 3𝑧 + 2
=

𝑧

(𝑧 − 1)(𝑧 − 2)
 

Hence 𝑧 = 1 and 𝑧 = 2 are two simple poles. 

To find the residue at 𝑧 = 1, we expand the function in a Laurent series in powers of 𝑧 − 1. 

We can split 𝑓(𝑧) into partial fractions. 

We have 

𝑓(𝑧) = −
1

𝑧 − 1
+

2

𝑧 − 2
 

To expand in powers of 𝑧 − 1, we write 

      𝑓(𝑧) = −
1

𝑧 − 1
+

2

𝑧 − 1 − 1
 

                                   = −
1

𝑢
+

2

𝑢 − 1
where 𝑢 = 𝑧 − 1 

 = −
1

𝑢
−

2

1 − 𝑢
 

           = −
1

𝑢
− 2(1 − 𝑢)−1 

                                      = −
1

𝑢
− 2(1 + 𝑢 + 𝑢2 + 𝑢3 + ⋯ ) 

                                                          = −
1

𝑧 − 1
− 2[1 + (𝑧 − 1) + (𝑧 − 1)2 + ⋯ ] 

Coefficient of  
1

𝑧−1
= −1 and hence residue at 𝑧 = 1 is −1. 

To find the residue at 𝑧 = 2, we expand 𝑓(𝑧) in a Laurent’s series in powers of 𝑧 − 2. 

We have  

                               𝑓(𝑧) = −
1

𝑧 − 1
+

2

𝑧 − 2
=

2

𝑧 − 2
−

1

𝑧 − 2 + 1
 

                         =
2

𝑢
−

1

1 + 𝑢
where 𝑢 = 𝑧 − 2 
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=
2

𝑢
− (1 + 𝑢)−1 

                           =
2

𝑢
− (1 − 𝑢 + 𝑢2 − 𝑢3 + ⋯ ) 

                                                                  =
2

𝑧 − 2
− [1 − (𝑧 − 2) + (𝑧 − 2)2 − (𝑧 − 2)3 + ⋯ ] 

Coefficient of  
1

𝑧−2
= 2 and hence residue at 𝑧 = 2 is 2. 

 

𝐄𝐗. 𝟐. Obtain the Laurent expansion of the function
𝑒𝑧

(𝑧 − 1)2
, 

 in the neighbourhood of its singular point and hence find its residue. 

𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧: Let 𝑓(𝑧) =
𝑒𝑧

(𝑧 − 1)2
 

 𝑧 = 1 is a pole of the second order for the given function. 

                     𝑓(𝑧) =
𝑒𝑧

(𝑧 − 1)2
=

𝑒𝑧−1+1

(𝑧 − 1)2
 

                               =
𝑒𝑢+1

𝑢2
 putting 𝑧 − 1 = 𝑢 

                               =
𝑒𝑢 . 𝑒

𝑢2
 

                               =
𝑒

𝑢2
(1 +

𝑢

1
+

𝑢2

2!
+

𝑢3

3!
+ ⋯ ) 

                              =
𝑒

𝑢2
+

𝑒

𝑢
+

𝑒

𝑢2
(

𝑢2

2!
+

𝑢3

3!
+ ⋯ ) 

Coefficient of  
1

𝑢
 𝑖. 𝑒. , of

1

𝑧−1
 𝑖𝑠 = 𝑒. 

Therefore the required residue= 𝑒. 

 

EX.3. Find the poles and residues of 
1

𝑧2−1
. 

Solution: Let 𝑓(𝑧) =
1

𝑧2−1
=

1

(𝑧−1)(𝑧+1)
=

1

2
(

1

𝑧−1
−

1

𝑧+1
), using partial fractions. 

Poles of 𝑓(𝑧) are given by (𝑧 − 1)(𝑧 + 1) = 0, 𝑖. 𝑒. , 𝑧 = ±1. 

These are simple poles. 

To find the residue at 𝑧 = 1, we expand the function in a Laurent series in powers of 𝑧 − 1. 

To expand in powers of 𝑧 − 1, we write 

                            𝑓(𝑧) =
1

2
(

1

𝑧 − 1
−

1

𝑧 − 1 + 2
) =

1

2
(

1

𝑢
−

1

𝑢 + 2
) where 𝑢 = 𝑧 − 1 
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                                      =
1

2𝑢
−

1

4
(

1

1 +
𝑢
2

) =
1

2𝑢
−

1

4
(1 +

𝑢

2
)

−1

 

                                      =
1

2𝑢
−

1

4
(1 −

𝑢

2
+

𝑢2

4
−

𝑢3

8
+ ⋯ ) 

                                      =
1

2𝑢
−

1

4
+

𝑢

8
−

𝑢2

16
−

𝑢3

32
− ⋯ 

                                      = −
1

4
+

1

2(𝑧 − 1)
+

𝑧 − 1

8
−

(𝑧 − 1)2

16
− ⋯ 

Coefficient of 
1

𝑧−1
=

1

2
 and hence residue at 𝑧 = 1 is 

1

2
. 

To find the residue at 𝑧 = −1, we expand 𝑓(𝑧) in a Laurent series in powers of 𝑧 + 1, we 

have 

                              𝑓(𝑧) =
1

2
(

1

𝑧 + 1 − 2
−

1

𝑧 + 1
) =

1

2
(

1

𝑢 − 2
−

1

𝑢
) where 𝑢 = 𝑧 + 1 

                                       = −
1

4
(

1

1 −
𝑢
2

) −
1

2𝑢
 

                                       = −
1

4
(1 −

𝑢

2
)

−1

−
1

2𝑢
 

                                       = −
1

4
(1 +

𝑢

2
+

𝑢2

4
+

𝑢3

8
+ ⋯ ) −

1

2𝑢
 

                                       = −
1

4
(1 +

𝑧 + 1

2
+

(𝑧 + 1)2

4
+

(𝑧 + 1)3

8
+ ⋯ ) −

1

2(𝑧 + 1)
 

Coefficient of 
1

𝑧+1
= −

1

2
.  

Therefore residue at 𝑧 = −1 is −
1

2
. 

 

EX.4. Expand 𝑓(𝑧) =
𝑧

(𝑧+1)(𝑧+2)
  as a Laurent series about 𝑧 = −2 and hence find the residue 

at that point. 

𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧: Given 𝑓(𝑧) =
𝑧

(𝑧 + 1)(𝑧 + 2)
 

Here 𝑧 = −1 and 𝑧 = −2 are two simple poles. 

To find the residue at 𝑧 = −2, we expand the function in powers of 𝑧 + 2. 

We can split 𝑓(𝑧) into partial fractions. 

We have  𝑓(𝑧) =
𝑧

(𝑧 + 1)(𝑧 + 2)
=

2

𝑧 + 2
−

1

𝑧 + 1
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To expand in powers of 𝑧 + 2, we write 

                               𝑓(𝑧) =
2

𝑧 + 2
−

1

(𝑧 + 2) − 1
 

                                        =
2

𝑧 + 2
+

1

1 − (𝑧 + 2)
 

                                        =
2

𝑢
+

1

1 − 𝑢
=

2

𝑢
+ (1 − 𝑢)−1, where 𝑢 = 𝑧 + 1 

                                        =
2

𝑢
+ (1 + 𝑢 + 𝑢2 + 𝑢3 + ⋯ ∞) 

                                        =
2

𝑧 + 2
+ 1 + (𝑧 + 2) + (𝑧 + 2)2 + ⋯ 

Coefficient of 
1

𝑧+2
= 2 and hence residue at 𝑧 = −2 is 2. 

 

2.17. Evaluation of residues: The calculation of residues by the use of series expansion, as 

illustrated in worked examples 1 and 2 is often tedious.  Hence alternative procedures are 

available to determine residues. We now consider them. 

(i) Let 𝑓(𝑧) have a simple or first order pole at 𝑧 = 𝑎. 

We can then write 

𝑓(𝑧) = 𝑎0 + 𝑎1(𝑧 − 𝑎) + 𝑎2(𝑧 − 𝑎)2 + ⋯ +
𝑏1

𝑧 − 𝑎
            (1) 

By definition, 𝑏1 = {𝑅𝑒𝑠. 𝑓(𝑧)}𝑧=1 

Multiplying (1) by 𝑧 − 𝑎, we have, 

(𝑧 − 𝑎)𝑓(𝑧) = 𝑎0(𝑧 − 𝑎) + 𝑎1(𝑧 − 𝑎)2 + ⋯ + 𝑏1 

Taking limit of both sides as 𝑧 → 𝑎, we have 

lim
𝑧→𝑎

(𝑧 − 𝑎)𝑓(𝑧) = 𝑏1 

Therefore{𝑅𝑒𝑠. 𝑓(𝑧)}𝑧=1 = lim
𝑧→𝑎

(𝑧 − 𝑎)𝑓(𝑧) 

(ii) Often, it will be necessary to calculate the residues of a function 𝑓(𝑧) of the form 𝑓(𝑧) =

∅(𝑧)

𝛹(𝑎)
,  

where 𝛹(𝑧) has simple zeroes and hence 𝑓(𝑧) simple poles. 

Let 𝑧 = 𝑎 be a simple pole of 𝑓(𝑧). Then 𝛹(𝑎) must be =0. 

{𝑅𝑒𝑠. 𝑓(𝑧)}𝑧=𝑎 = lim
𝑧→𝑎

(𝑧 − 𝑎)
∅(𝑧)

𝛹(𝑧)
 

= lim
𝑧→𝑎

(𝑧 − 𝑎)
[∅(𝑎) + (𝑧 − 𝑎)∅′(𝑎) + ⋯ ]

[𝛹(𝑎) + (𝑧 − 𝑎)𝛹′(𝑎) + ⋯ ]
 (by Taylor′stheorem) 
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                                  = lim
𝑧→𝑎

(𝑧 − 𝑎)∅(𝑎) + (𝑧 − 𝑎)2∅′(𝑎) + ⋯

(𝑧 − 𝑎)𝛹′(𝑎) + ⋯
(since 𝛹(𝑎) = 0) 

                                 =
∅(𝑎)

𝛹′(𝑎)
 

(iii) Suppose 𝑓(𝑧) has a second order pole 𝑧 = 𝑎. Then we have  

𝑓(𝑧) = 𝑎0 + 𝑎1(𝑧 − 𝑎) + 𝑎2(𝑧 − 𝑎)2 + ⋯ +
𝑏1

𝑧 − 𝑎
+

𝑏2

(𝑧 − 𝑎)2
              (1) 

𝑏1 is the residue at 𝑧 = 𝑎 and it has to be found. 

Multiply both sides of (1) by (𝑧 − 𝑎)2 , we get 

(𝑧 − 𝑎)2 𝑓(𝑧) = 𝑎0(𝑧 − 𝑎)2 + 𝑎1(𝑧 − 𝑎)3 + 𝑎2(𝑧 − 𝑎)4 + ⋯ + 𝑏1(𝑧 − 𝑎) + 𝑏2         (2) 

Differentiating both sides of (2) with respect to 𝑧, we get 

𝑑

𝑑𝑧
[(𝑧 − 𝑎)2 𝑓(𝑧)] = 2𝑎0(𝑧 − 𝑎) + 3𝑎1(𝑧 − 𝑎)2 + 4𝑎2(𝑧 − 𝑎)3 + ⋯ + 𝑏1                       (3) 

Take the limit of both sides of (3), as 𝑧 → 𝑎. 

Then𝑏1 = lim
𝑧→𝑎

𝑑

𝑑𝑧
[(𝑧 − 𝑎)2 𝑓(𝑧)] 

Similarly let 𝑓(𝑧) has a pole of order 𝑚 at  𝑧 = 𝑎. Then we have 

𝑓(𝑧) = 𝑎0 + 𝑎1(𝑧 − 𝑎) + 𝑎2(𝑧 − 𝑎)2 + ⋯ +
𝑏1

𝑧 − 𝑎
+

𝑏2

(𝑧 − 𝑎)2
+ ⋯ +

𝑏𝑚

(𝑧 − 𝑎)𝑚
             (4) 

Multiplying both sides of (4) by (𝑧 − 𝑎)𝑚 , we have 

(𝑧 − 𝑎)𝑚𝑓(𝑧) = 𝑎0(𝑧 − 𝑎)𝑚 + 𝑎1(𝑧 − 𝑎)𝑚+1 + 𝑎2(𝑧 − 𝑎)𝑚+2 + ⋯ 

 +𝑏1(𝑧 − 𝑎)𝑚−1 + 𝑏2(𝑧 − 𝑎)𝑚−2 + ⋯ + 𝑏𝑚              (5) 

Differentiate both sides of (5) with respect to 𝑧, 𝑚 − 1times, we get 

𝑑𝑚−1

𝑑𝑧𝑚−1
[(𝑧 − 𝑎)𝑚 𝑓(𝑧)] = 𝑏1. (𝑚 − 1)! + 𝑡𝑒𝑟𝑚𝑠 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 (𝑧 − 𝑎)              (6)  

Take the limit of both sides of (6), as 𝑧 → 𝑎, we get 

lim
𝑧→𝑎

𝑑𝑚−1

𝑑𝑧𝑚−1
[(𝑧 − 𝑎)𝑚 𝑓(𝑧)] = 𝑏1. (𝑚 − 1)! 

or 𝑏1 =
1

(𝑚 − 1)!
lim
𝑧→𝑎

𝑑𝑚−1

𝑑𝑧𝑚−1
[(𝑧 − 𝑎)𝑚 𝑓(𝑧)] 

 

𝐄𝐗. 𝟓.  Find the poles and residues of
𝑧

𝑧2 − 3𝑧 + 2
. 

𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧: Let 𝑓(𝑧) =
𝑧

𝑧2 − 3𝑧 + 2
=

𝑧

(𝑧 − 1)(𝑧 − 2)
 

Here 𝑧 = 1 and 𝑧 = 2 are simple poles of 𝑓(𝑧). 
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Then {𝑅𝑒𝑠. 𝑓(𝑧)}𝑧=1 = lim
𝑧→1

(𝑧 − 1). 𝑓(𝑧) 

                                             = lim
𝑧→1

(𝑧 − 1).
𝑧

(𝑧 − 1)(𝑧 − 2)
 

                                             = lim
𝑧→1

𝑧

(𝑧 − 2)
= −1 

{𝑅𝑒𝑠. 𝑓(𝑧)}𝑧=2 = lim
𝑧→2

(𝑧 − 2). 𝑓(𝑧) 

                                             = lim
𝑧→2

(𝑧 − 2).
𝑧

(𝑧 − 1)(𝑧 − 2)
 

                                             = lim
𝑧→2

𝑧

(𝑧 − 1)
= 2 

 

𝐄𝐗. 𝟔. Find the  residue of
𝑧𝑒𝑧

(𝑧 − 𝑎)3
at 𝑧 = 𝑎. 

𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧: Let 𝑓(𝑧) =
𝑧𝑒𝑧

(𝑧 − 𝑎)3
 

Here 𝑧 = 𝑎 is a pole of order 3 for 𝑓(𝑧). 

Then {𝑅𝑒𝑠. 𝑓(𝑧)}𝑧=𝑎 =
1

2!
lim
𝑧→𝑎

𝑑2

𝑑𝑧2
(𝑧 − 𝑎)3. 𝑓(𝑧) 

                                             =
1

2
lim
𝑧→𝑎

𝑑2

𝑑𝑧2
(𝑧𝑒𝑧) 

                                             =
1

2
lim
𝑧→𝑎

𝑑

𝑑𝑧
(𝑧𝑒𝑧 + 𝑒𝑧) 

                                             =
1

2
lim
𝑧→𝑎

(𝑧𝑒𝑧 + 2𝑒𝑧) ==
1

2
𝑒𝑎(𝑎 + 2) 

 

EX.7. Evaluate the residues at the poles of the function  𝑓(𝑧) =
𝑧2−2𝑧

(𝑧+1)2(𝑧2+4)
 

𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧: Given that  𝑓(𝑧) =
𝑧2 − 2𝑧

(𝑧 + 1)2(𝑧2 + 4)
=

𝑧2 − 2𝑧

(𝑧 + 1)2(𝑧 − 2𝑖)(𝑧 + 2𝑖)
 

For the given function, 𝑧 = −1 is a pole of the second order and 𝑧 = 2𝑖, −2𝑖 are two simple 

poles. 

Then      {𝑅𝑒𝑠. 𝑓(𝑧)}𝑧=−1 = lim
𝑧 → −1

𝑑

𝑑𝑧
(𝑧 + 1)2. 𝑓(𝑧) 

                                               = lim
𝑧 → −1

𝑑

𝑑𝑧
(𝑧 + 1)2.

𝑧2 − 2𝑧

(𝑧 + 1)2(𝑧2 + 4)
 

                                               = lim
𝑧 → −1

𝑑

𝑑𝑧

𝑧2 − 2𝑧

(𝑧2 + 4)
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                                               = lim
𝑧 → −1

(𝑧2+4)(2𝑧−2)−(𝑧2−2𝑧) 2𝑧

(𝑧2+4)2        = −
14

15
 

                  {𝑅𝑒𝑠. 𝑓(𝑧)}𝑧=2𝑖 = lim
𝑧 → 2𝑖

(𝑧 − 2𝑖) . 𝑓(𝑧) 

                                           = lim
𝑧 → 2𝑖

(𝑧 − 2𝑖) .
𝑧2 − 2𝑧

(𝑧 + 1)2(𝑧 − 2𝑖)(𝑧 + 2𝑖)
 

                                           = lim
𝑧 → 2𝑖

𝑧2 − 2𝑧

(𝑧 + 1)2(𝑧 + 2𝑖)
 

                                           = lim
𝑧 → 2𝑖

𝑧2−2𝑧

(𝑧+1)2(𝑧+2𝑖)
 =

7+𝑖

25
 

           {𝑅𝑒𝑠. 𝑓(𝑧)}𝑧=−2𝑖 = lim
𝑧 → −2𝑖

(𝑧 + 2𝑖) . 𝑓(𝑧) 

                                           = lim
𝑧 → −2𝑖

(𝑧 + 2𝑖) .
𝑧2 − 2𝑧

(𝑧 + 1)2(𝑧 − 2𝑖)(𝑧 + 2𝑖)
 

                                           = lim
𝑧 → −2𝑖

𝑧2 − 2𝑧

(𝑧 + 1)2(𝑧 − 2𝑖)
 

                                           = lim
𝑧 → −2𝑖

𝑧2 − 2𝑧

(𝑧 + 1)2(𝑧 − 2𝑖)
     =

7 − 𝑖

25
 

 

𝐄𝐗. 𝟖. Determine the poles of the function (𝑖) 
𝑧

𝑐𝑜𝑠 𝑧
   (𝑖𝑖) 𝑐𝑜𝑡 𝑧 . 

𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧: (𝑖) The poles of 𝑓(𝑧) =
𝑧

𝑐𝑜𝑠 𝑧
 are given by 

                  𝑐𝑜𝑠 𝑧 = 0 

                  𝑖. 𝑒. , 𝑧 = (2𝑛 + 1)
𝜋

2
, 𝑛 being zero or an integer 

                  𝑖. 𝑒. , 𝑧 = (2𝑛 + 1)
𝜋

2
, 𝑛 = 0, ±1, ±2, … 

Hence these are simples of 𝑓(𝑧). 

       (𝑖𝑖) The poles of 𝑓(𝑧) = 𝑐𝑜𝑡 𝑧 are given by 𝑠𝑖𝑛 𝑧 = 0 

                  𝑖. 𝑒. , 𝑧 = 𝑛𝜋, 𝑛 = 0, ±1, ±2, … 

Which are simples of 𝑓(𝑧). 

We know that residue of 𝑓(𝑧) =
𝜙(𝑧)

𝛹(𝑧)
 at 𝑧 = 𝑧0 is  

𝜙(𝑧0)

𝛹′(𝑧0)
 

∴     Residue of 𝑓(𝑧) at 𝑧 = 𝑛𝜋 𝑖𝑠 = (
𝑐𝑜𝑠 𝑧

𝑐𝑜𝑠 𝑧
)

𝑧=𝑛𝜋
=

𝑐𝑜𝑠 𝑛𝜋

𝑐𝑜𝑠 𝑛𝜋
= 1 

 

𝐄𝐗. 𝟗. Find the poles of the function 𝑓(𝑧) =  
1

(𝑧 + 1)(𝑧 + 3)
and the residues  

at these poles. 

Solution: The given function  𝑓(𝑧) has two simple poles at 𝑧 = −1 and 𝑧 = −3. 
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∴     Residue of 𝑓(𝑧) at 𝑧 = −1 is lim
𝑧→−1

{(𝑧 + 1)𝑓(𝑧)} = lim
𝑧→−1

1

𝑧 + 3
=

1

2
 

Also the Residue of 𝑓(𝑧) at 𝑧 = −3 is lim
𝑧→−3

{(𝑧 + 3)𝑓(𝑧)} = lim
𝑧→−3

1

𝑧 + 1
= −

1

2
 

 

𝐄𝐗. 𝟏𝟎. Find  the poles of the function 𝑓(𝑧) =  
𝑧2

(𝑧 − 1)(𝑧 − 2)2
 and the residues  

at these poles. 

Solution: The given function  𝑓(𝑧) has two simple pole at 𝑧 = 1 and another pole of order 2 

at 𝑧 = 2. 

∴     Residue of 𝑓(𝑧) at 𝑧 = −1 is 

              lim
𝑧→1

{(𝑧 − 1)𝑓(𝑧)} = lim
𝑧→1

𝑧2

(𝑧 − 2)2
=

1

1
= 1 

Also the Residue of 𝑓(𝑧) at 𝑧 = 2 is 

              lim
𝑧→2

𝑑

𝑑𝑧
{(𝑧 − 2)2𝑓(𝑧)} = lim

𝑧→2

𝑑

𝑑𝑧
(

𝑧2

𝑧 − 1
) 

                                                        = lim
𝑧→2

(𝑧 − 1)(2𝑧) − 𝑧2. 1

(𝑧 − 1)2
 

                                                        = lim
𝑧→2

𝑧2 − 2𝑧

(𝑧 − 1)2
= 0 

𝐄𝐗. 𝟏𝟏. Determine the poles of the function 𝑓(𝑧) =  
𝑧2

(𝑧 + 2)(𝑧 − 1)2
and the residues 

 at each pole . 

Solution: 𝑧 = 1 and 𝑧 = −2 are the zeros of denominator of order 2 and 1 respectively. 

∴  𝑧 = 1 is a pole of order 2 and 𝑧 = −2 is pole of order 1 of 𝑓(𝑧). 

            [𝑅𝑒𝑠 𝑓(𝑧)]𝑧=−2 = lim
𝑧→−2

{(𝑧 + 2)𝑓(𝑧)} = lim
𝑧→−3

𝑧2

(𝑧 − 1)2
=

4

9
 

            [𝑅𝑒𝑠 𝑓(𝑧)]𝑧=1 = lim
𝑧→1

𝑑

𝑑𝑧
{(𝑧 − 1)2𝑓(𝑧)} = lim

𝑧→1

𝑑

𝑑𝑧
(

𝑧2

𝑧 + 2
) =

5

9
 

 

𝐄𝐗. 𝟏𝟐. Find the residue of  
𝑧𝑒𝑧

(𝑧 − 1)3
at its pole . 

𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧: Let 𝑓(𝑧) =
𝑧𝑒𝑧

(𝑧 − 1)3
 

Poles of 𝑓(𝑧) are obtained by putting the denominator equal to zero. 

∴    𝑧 = 1 is a pole of 𝑓(𝑧) of order 3. 
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We know that if 𝑓(𝑧) has a pole of order 𝑚 at 𝑧 = 𝑎 then, 

            [𝑅𝑒𝑠 𝑓(𝑧)]𝑧=𝑎 =
1

(𝑚 − 1)!
lim
𝑧→𝑎

𝑑𝑚−1

𝑑𝑧𝑚−1
{(𝑧 − 𝑎)𝑚𝑓(𝑧)} 

Here 𝑎 = 1, 𝑚 = 3 

∴         [𝑅𝑒𝑠 𝑓(𝑧)]𝑧=1 =
1

2!
lim
𝑧→1

𝑑2

𝑑𝑧2
{(𝑧 − 1)3𝑓(𝑧)} 

             =
1

2
lim
𝑧→1

𝑑2

𝑑𝑧2
(𝑧𝑒𝑧)     =

1

2
lim
𝑧→1

𝑑

𝑑𝑧
(𝑧𝑒𝑧 + 𝑒𝑧) 

                                               =
1

2
lim
𝑧→1

(𝑧𝑒𝑧 + 𝑒𝑧 + 𝑒𝑧) =
3𝑒

2
 

 

𝐄𝐗. 𝟏𝟑. Find the residue at z = 0 of the function 𝑓(𝑧) =  
1 + 𝑒𝑧

𝑠𝑖𝑛 𝑧 + 𝑧 𝑐𝑜𝑠 𝑧
 . 

Solution: The residue of 𝑓(𝑧) at 𝑧 = 0 is 

                lim
𝑧→0

{𝑧𝑓(𝑧)} = lim
𝑧→0

 𝑧.
1 + 𝑒𝑧

𝑠𝑖𝑛 𝑧 + 𝑧 𝑐𝑜𝑠 𝑧
= lim

𝑧→0
 𝑧.

1 + 𝑒𝑧

𝑧 (
𝑠𝑖𝑛 𝑧

𝑧 +  𝑐𝑜𝑠 𝑧)
 

                                      = lim
𝑧→0

 
1 + 𝑒𝑧

(
𝑠𝑖𝑛 𝑧

𝑧 +  𝑐𝑜𝑠 𝑧)
=

2

2
= 1 (∵ lim

𝑧→0

𝑠𝑖𝑛 𝑧

𝑧
= 1) 

An Alternate Method: 

       Residue  at 𝑧 = 0 is = lim
𝑧→0

{(𝑧 − 0)𝑓(𝑧)} = lim
𝑧→0

 
𝑧(1 + 𝑒𝑧)

𝑠𝑖𝑛 𝑧 + 𝑧 𝑐𝑜𝑠 𝑧
 (=

0

0
) 

                                = lim
𝑧→0

 
𝑧𝑒𝑧 + (1 + 𝑒𝑧)(1)

𝑐𝑜𝑠 𝑧 + 𝑧 (−𝑠𝑖𝑛 𝑧) + 𝑐𝑜𝑠 𝑧
 (using L′Hospital rule) 

                                =
0 + 1 + 1

1 + 0 + 1
= 1 

 

𝐄𝐗. 𝟏𝟒. Find the residues of the function 𝑓(𝑧) =  
1 − 𝑒2𝑧

𝑧4
at the poles. 

Solution: 𝑧 = 0 is the singular point of 𝑓(𝑧) 

             Expanding  𝑓(𝑧) =  
1 − 𝑒2𝑧

𝑧4
=

1 − [1 +
2𝑧
1! +

4𝑧2

2! +
8𝑧3

3! + ⋯ ]

𝑧4
 

                                             = − [
2

𝑧3
+

2

𝑧2
+

4

3
.
1

𝑧
+

2

3
+

4

15
𝑧 + ⋯ ] 

𝑧 = 0 is a pole of order 3, because 
1

𝑧3 is the highest negative power of (𝑧 − 0). 

The residue of 𝑓(𝑧) at 𝑧 = 0 is −
4

3
. 
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𝐄𝐗. 𝟏𝟓. Find the residue of 𝑓(𝑧) =  
𝑧3

(𝑧 − 1)4(𝑧 − 2)(𝑧 − 3)
at 𝑧 = 1. 

𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧: Let 𝜙(𝑧) =
𝑧3

(𝑧 − 2)(𝑧 − 3)
, so that 𝑓(𝑧) =  

𝜙(𝑧)

(𝑧 − 1)4
. 

Here 𝑧 = 1 is a pole of order 4. 

                        ∴     Residue of 𝑓(𝑧) at 𝑧 = 1 is 

∴    Residue of 𝑓(𝑧) at 𝑧 = 1 is =  [𝑅𝑒𝑠 𝑓(𝑧)]𝑧=1 =
𝜙′′′(1)

3!
 

But     𝜙(𝑧) =
𝑧3

(𝑧 − 2)(𝑧 − 3)
= 𝑧 + 5 −

8

𝑧 − 2
+

27

𝑧 − 3
   (on resolving partial fractions) 

          𝜙′(𝑧) = 1 +
8

(𝑧 − 2)2
−

27

(𝑧 − 3)2
 

         𝜙′′(𝑧) = −
16

(𝑧 − 2)3
+

54

(𝑧 − 3)3
 

        𝜙′′′(𝑧) =
48

(𝑧 − 2)4
−

162

(𝑧 − 3)4
 

 ∴    𝜙′′′(1) = 48 −
162

16
=

303

8
 

∴      [𝑅𝑒𝑠 𝑓(𝑧)]𝑧=1 =
𝜙′′′(1)

3!
=

1

3!
.
303

8
=

101

16
 

 

EX.16. Find the residue of  

𝑓(𝑧) =  
𝑧2

𝑧4 + 1
 at these singular points which lie inside the circle |𝑧| = 2. 

𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧: Let  𝑓(𝑧) =  
𝑧2

𝑧4 + 1
  

Poles of 𝑓(𝑧) are obtained by putting the denominator equal to zero. 

𝑖. 𝑒., 𝑧4 + 1 = 0 𝑜𝑟 𝑧4 = −1 

or   𝑧 = (−1)1/4 = (𝑐𝑜𝑠 𝜋 + 𝑖 𝑠𝑖𝑛 𝜋)1/4 

           = 𝑐𝑜𝑠 (
2𝑛𝜋 + 𝜋

4
) + 𝑖 𝑠𝑖𝑛 (

2𝑛𝜋 + 𝜋

4
) 

∴     The four values of 𝑧 are 

𝑐𝑜𝑠 
𝜋

4
+ 𝑖 𝑠𝑖𝑛 

𝜋

4
, 𝑐𝑜𝑠 

3𝜋

4
+ 𝑖 𝑠𝑖𝑛 

3𝜋

4
, 𝑐𝑜𝑠 

5𝜋

4
+ 𝑖 𝑠𝑖𝑛 

5𝜋

4
 and 𝑐𝑜𝑠 

7𝜋

4
+ 𝑖 𝑠𝑖𝑛 

7𝜋

4
 

𝑖. 𝑒. ,
1

√2
+ 𝑖

1

√2
, −

1

√2
+ 𝑖

1

√2
, −

1

√2
− 𝑖

1

√2
        and       

1

√2
− 𝑖

1

√2
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or     
1 + 𝑖

√2
 ,

−1 + 𝑖

√2
,
−1 − 𝑖

√2
 and 

1 − 𝑖

√2
 

Hence the simple poles of  𝑓(𝑧) are 
±1±𝑖

√2
 and all these lies within the circle |𝑧| = 2 

with centre 0 and radius 2. 

Now let   𝑓(𝑧) =
𝑧2

𝑧4 + 1
=

𝜙(𝑧)

𝛹(𝑧)
 

∴        [𝑅𝑒𝑠 𝑓(𝑧)]
𝑧=

1+𝑖

√2

=

𝜙 (
1 + 𝑖

√2
)

𝛹′ (
1 + 𝑖

√2
)

 =
𝑖

4𝑖 (
1 + 𝑖

√2
)

=
1

2√2(1 + 𝑖)

=
1 − 𝑖

4√2
    [∵ [𝑅𝑒𝑠 𝑓(𝑧)]𝑧=𝑧0

=
𝜙(𝑧0)

𝛹(𝑧0)
] 

          [𝑅𝑒𝑠 𝑓(𝑧)]
𝑧=

−1+𝑖

√2

=

𝜙 (
−1 + 𝑖

√2
)

𝛹′ (
−1 + 𝑖

√2
)

 =
−𝑖

−4𝑖 (
−1 + 𝑖

√2
)

=
1

2√2(−1 + 𝑖)
=

−1 − 𝑖

4√2
 

          [𝑅𝑒𝑠 𝑓(𝑧)]
𝑧=

−1−𝑖

√2

=

𝜙 (
−1 − 𝑖

√2
)

𝛹′ (
−1 − 𝑖

√2
)

 =
−𝑖

−4𝑖 (
1 + 𝑖

√2
)

=
−1

2√2(1 + 𝑖)
=

−1 − 𝑖

4√2
 

          [𝑅𝑒𝑠 𝑓(𝑧)]
𝑧=

1−𝑖

√2

=

𝜙 (
1 − 𝑖

√2
)

𝛹′ (
−1 − 𝑖

√2
)

 =
−𝑖

−4𝑖 (
1 − 𝑖

√2
)

=
1

2√2(1 − 𝑖)
=

1 + 𝑖

4√2
 

 

𝐄𝐗. 𝟏𝟕. Find the residue of  (𝑖)
𝑧2 − 2𝑧

(𝑧 + 1)2(𝑧2 + 1)
  (𝑖𝑖) 𝑡𝑎𝑛 𝑧    at each pole. 

𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧: (𝑖) Let 𝑓(𝑧) =
𝑧2 − 2𝑧

(𝑧 + 1)2(𝑧2 + 1)
 

∴        Poles of 𝑓(𝑧) are −1, 𝑖 and − 𝑖. 

Observe that −1 is a pole of order two and the poles ±𝑖 are or order one. 

∴         [𝑅𝑒𝑠 𝑓(𝑧)]𝑧=−1 =
1

(2 − 1)!
 lim
𝑧→−1

[
𝑑

𝑑𝑧
(𝑧 + 1)2𝑓(𝑧)] = lim

𝑧→−1
[

𝑑

𝑑𝑧
(

𝑧2 − 2𝑧

𝑧2 + 1
)] 

                                          = lim
𝑧→−1

[
(𝑧2 + 1)(2𝑧 − 2) − (𝑧2 − 2𝑧)(2𝑧)

(𝑧2 + 1)2
] = −

1

2
 

                [𝑅𝑒𝑠 𝑓(𝑧)]𝑧=𝑖 = liim
𝑧→𝑖

[(𝑧 − 𝑖)𝑓(𝑧)] 

                                           = liim
𝑧→𝑖

[
𝑧2 − 2𝑧

(𝑧 + 1)2(𝑧 + 𝑖)
] =

𝑖2 − 2𝑖

(𝑖 + 1)2(𝑖 + 𝑖)
=

1 + 2𝑖

4
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             [𝑅𝑒𝑠 𝑓(𝑧)]𝑧=−𝑖 = liim
𝑧→−𝑖

[(𝑧 + 𝑖)𝑓(𝑧)] 

                                           = liim
𝑧→−𝑖

[
𝑧2 − 2𝑧

(𝑧 + 1)2(𝑧 − 𝑖)
] =

(−𝑖)2 − 2(−𝑖)

(−𝑖 + 1)2(−2𝑖)
=

1 − 2𝑖

4
 

(𝑖𝑖) Let 𝑓(𝑧) = 𝑡𝑎𝑛 𝑧 =
𝑠𝑖𝑛 𝑧

𝑐𝑜𝑠 𝑧
 

∴     Poles of 𝑓(𝑧) are given by 𝑐𝑜𝑠 𝑧 = 0 

𝑖. 𝑒., 𝑧 = (2𝑛 + 1)
𝜋

2
, 𝑤ℎ𝑒𝑟𝑒 𝑛 = 0, ±1, ±2, ±3, … 

All these poles are simple poles of 𝑓(𝑧). 

Denoting each pole by ′𝑎′, we have 

             [𝑅𝑒𝑠 𝑓(𝑧)]𝑧=𝑎 = liim
𝑧→𝑎

[(𝑧 − 𝑎)𝑓(𝑧)] 

                                         = liim
𝑧→𝑎

(𝑧 − 𝑎)𝑓(𝑧)

𝑐𝑜𝑠 𝑧
   (=

0

0
) 

                                         = liim
𝑧→𝑎

(𝑧 − 𝑎)𝑐𝑜𝑠 𝑧 + 𝑠𝑖𝑛 𝑧

−𝑠𝑖𝑛 𝑧
    (L − Hospital Rule) 

                                         = −1 

Hence residue of 𝑓(𝑧) at each of the poles is −1. 

 

𝐄𝐗. 𝟏𝟖. Find the poles and residues of  
3𝑧 + 1

(𝑧 + 1)(2𝑧 − 1)
 . 

𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧: Let 𝑓(𝑧) =
3𝑧 + 1

(𝑧 + 1)(2𝑧 − 1)
 

The poles of 𝑓(𝑧) are given by (𝑧 + 1)(2𝑧 − 1) = 0 

𝑖. 𝑒., 𝑧 + 1 = 0    𝑜𝑟   2𝑧 − 1 = 0  𝑖. 𝑒. , 𝑧 = −1,
1

2
 

∴    𝑓(𝑧) has two simple poles at 𝑧 = −1 and 
1

2
. 

Residue at 𝑧 = −1 is given by 

             [𝑅𝑒𝑠 𝑓(𝑧)]𝑧=−1 = lim
𝑧→−1

(𝑧 + 1)𝑓(𝑧) 

                                           = lim
𝑧→−1

3𝑧 + 1

2𝑧 − 1
=

2

3
 

Residue at 𝑧 =
1

2
 is given by 

             [𝑅𝑒𝑠 𝑓(𝑧)]
𝑧=

1
2

= lim
𝑧→

1
2

(𝑧 −
1

2
) 𝑓(𝑧) 

                                           =
1

2
 lim
𝑧→

1
2

(2𝑧 − 1)𝑓(𝑧) 
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                                           =
1

2
 lim

𝑧→
1

2

3𝑧+1

𝑧+1
   =

1

2
 (

3

2
+1

1

2
+1

) =
5

6
 

 

EX.19. Find the poles of 𝑓(𝑧) and the residues of the poles which lie on imaginary axis if 

𝑓(𝑧) =
𝑧2 + 2𝑧

(𝑧 + 1)2(𝑧2 + 4)
                 

𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧: (𝑖) we have 𝑓(𝑧) =
𝑧2 + 2𝑧

(𝑧 + 1)2(𝑧2 + 4)
=

𝑧2 + 2𝑧

(𝑧 + 1)2(𝑧 + 2𝑖)(𝑧 − 2𝑖)
 

Poles of 𝑓(𝑧) are obtained by putting the denominator equal to zero. 

∴  Poles of 𝑓(𝑧) are 𝑧 = −1, −2𝑖, 2𝑖 

Obviously  𝑧 = −1 is a double pole and 𝑧 = ±2𝑖 are simple poles. 

Now we have to calculate the residues at 𝑧 = ±2𝑖. 

To calculate residue of 𝒇(𝒛) at 𝒛 = 𝟐𝒊 

             [𝑅𝑒𝑠 𝑓(𝑧)]𝑧=2𝑖 = lim
𝑧→2𝑖

(𝑧 − 2𝑖)𝑓(𝑧) 

                                           =  lim
𝑧→2𝑖

[
𝑧2 + 2𝑧

(𝑧 + 1)2(𝑧 + 2𝑖)
] =

−4 + 4𝑖

(2𝑖 + 1)2(4𝑖)
 

                                           =
𝑖 − 1

𝑖(−3 + 4𝑖)
=

1 − 𝑖

4 + 3𝑖
=

1 − 7𝑖

25
 

To calculate residue of 𝒇(𝒛) at 𝒛 = −𝟐𝒊 

             [𝑅𝑒𝑠 𝑓(𝑧)]𝑧=−2𝑖 = lim
𝑧→−2𝑖

(𝑧 + 2𝑖)𝑓(𝑧) 

                                           =  lim
𝑧→−2𝑖

[
𝑧2 + 2𝑧

(𝑧 + 1)2(𝑧 − 2𝑖)
] =

−4 − 4𝑖

(2𝑖 + 1)2(−4𝑖)
 

                                           =
𝑖 + 1

𝑖(−3 + 4𝑖)
=

−1 − 𝑖

4 + 3𝑖
= −

1

25
(7 + 𝑖) 

 

EX.20. Find the poles and residues at each pole of 𝑡𝑎𝑛ℎ 𝑧. 

𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧: Let  𝑓(𝑧) = 𝑡𝑎𝑛ℎ 𝑧 =
𝑠𝑖𝑛ℎ 𝑧

𝑐𝑜𝑠ℎ 𝑧
=

𝑒𝑧 − 𝑒−𝑧

𝑒𝑧 + 𝑒−𝑧
=

𝑒2𝑧 − 1

𝑒2𝑧 + 1
 

Poles of 𝑓(𝑧) are given by 𝑒2𝑧 + 1 = 0 

𝑖. 𝑒. , (𝑒𝑧 + 𝑖)(𝑒𝑧 − 𝑖) = 0 

or  𝑒𝑧 = 𝑖, −𝑖  𝑜𝑟 𝑒𝑧 = 𝑒𝑖
𝜋
2 , 𝑒−𝑖

𝜋
2 

or  𝑧 = 𝑖
𝜋

2
, −𝑖

𝜋

2
 

∴      𝑧 = ±𝑖
𝜋

2
 are simple poles of 𝑓(𝑧). 
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Now, let  𝑓(𝑧) =
𝑒2𝑧 − 1

𝑒2𝑧 + 1
=

𝜙(𝑧)

𝛹(𝑧)
 

Residue of 𝑓(𝑧) 𝑎𝑡 𝑧 = 𝑖
𝜋

2
 𝑖𝑠 =

𝜙 (𝑖
𝜋
2

)

𝛹′ (𝑖
𝜋
2)

 

                                        = [
𝑒2𝑧 − 1

𝑑
𝑑𝑧

(𝑒2𝑧 + 1)
]

𝑧=𝑖
𝜋
2

= [
𝑒2𝑧 − 1

2𝑒2𝑧
]

𝑧=𝑖
𝜋
2

 

                                        =
1

2
[1 − 𝑒−2𝑧]

𝑧=𝑖
𝜋
2

=
1

2
(1 − 𝑒−𝑖𝜋) = 1 

Residue of 𝑓(𝑧) 𝑎𝑡 𝑧 = −𝑖
𝜋

2
 𝑖𝑠 =

𝜙 (−𝑖
𝜋
2)

𝛹′ (−𝑖
𝜋
2)

 

                                        = [
𝑒2𝑧 − 1

𝑑
𝑑𝑧

(𝑒2𝑧 + 1)
]

𝑧=−𝑖
𝜋
2

= [
𝑒2𝑧 − 1

2𝑒2𝑧
]

𝑧=−𝑖
𝜋
2

 

                                        =
1

2
[1 − 𝑒−2𝑧]

𝑧=−𝑖
𝜋
2

=
1

2
(1 − 𝑒𝑖𝜋) = 1 

 

𝐄𝐗. 𝟐𝟏. Find the poles and residues at each pole of 𝑓(𝑧) =
𝑠𝑖𝑛2𝑧

(𝑧 −
𝜋
6)

2 

𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧:  We have 𝑓(𝑧) =
𝑠𝑖𝑛2𝑧

(𝑧 −
𝜋
6)

2 

Poles of 𝑓(𝑧) are obtained by putting the denominator equal to zero. 

∴    Poles of  𝑓(𝑧) are 𝑧 =
𝜋

6
 is a double pole. 

To calculate residue of 𝒇(𝒛) at 𝒛 =
𝝅

𝟔
 

Residue of 𝑓(𝑧) at 𝑧 =
𝜋

6
 is =

1

(2 − 1)!
 lim
𝑧→

𝜋
6

[
𝑑

𝑑𝑧
{(𝑧 −

𝜋

6
)

2

𝑓(𝑧)}] 

                                                    = lim
𝑧→

𝜋
6

[
𝑑

𝑑𝑧
(𝑠𝑖𝑛2𝑧)] = lim

𝑧→
𝜋
6

[2 𝑠𝑖𝑛 𝑧. 𝑐𝑜𝑠 𝑧] 

                                                    = lim
𝑧→

𝜋
6

(𝑠𝑖𝑛 2𝑧) = 𝑠𝑖𝑛 (
2𝜋

6
) = 𝑠𝑖𝑛

𝜋

3
=

√3

2
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𝐄𝐗. 𝟐𝟐. Find the poles and residues at each pole of 
𝑐𝑜𝑡 𝑧 𝑐𝑜𝑡ℎ 𝑧

𝑧3
. 

𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧: The poles of 
𝑐𝑜𝑡 𝑧 𝑐𝑜𝑡ℎ 𝑧

𝑧3
 are given by 𝑧 = 0 which is a pole of order 3. 

Now 
𝑐𝑜𝑡 𝑧 𝑐𝑜𝑡ℎ 𝑧

𝑧3
=

𝑐𝑜𝑠 𝑧 𝑐𝑜𝑠ℎ 𝑧

𝑧3𝑠𝑖𝑛 𝑧 𝑠𝑖𝑛ℎ 𝑧
 

                                   =
1

𝑧3

[1 −
𝑧2

2! +
𝑧4

4! − ⋯ ] [1 +
𝑧2

2! +
𝑧4

4! + ⋯ ]

[𝑧 −
𝑧3

3! +
𝑧5

5! − ⋯ ] [𝑧 +
𝑧3

3! +
𝑧5

5! + ⋯ ]
 

                                   =
1

𝑧3
(

1 +
𝑧2

2! +
𝑧4

4! −
𝑧2

2! −
𝑧4

(2!)2 −
𝑧6

2! 4! +
𝑧4

4! +
𝑧6

2! 4! + ⋯

𝑧2 +
𝑧4

3! +
𝑧6

5! −
𝑧4

3! −
𝑧6

(3!)2 −
𝑧8

3! 5! +
𝑧6

5! +
𝑧8

3! 5! …
) 

                                   =
1

𝑧3
(

1 + 𝑧4 (
1

12 −
1
4) + ⋯

𝑧2 + [
2
5! −

1
(3!)2] 𝑧6 + ⋯

) 

                                   =
1

𝑧3
(

1 −
1
6 𝑧4 + ⋯

𝑧2 −
1

90 𝑧6 + ⋯
) =

1

𝑧5
(

1 −
1
6 𝑧4 + ⋯

1 −
1

90 𝑧4 + ⋯
) 

 

𝐄𝐗. 𝟐𝟑. Evaluate ∫
𝑧 − 2

𝑧(𝑧 − 1)
𝐶

𝑑𝑧 , where 𝐶 is the circle|𝑧| = 2. 

𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧: Let 𝑓(𝑧) =
𝑧 − 2

𝑧(𝑧 − 1)
 

The given function has two simple poles at 𝑧 = 0 and 𝑧 = 1. 

These lie within the circle |𝑧| = 2. 

By Cauchy’s Residue theorem, 

∫ 𝑓(𝑧)

𝐶

𝑑𝑧 = 2𝜋𝑖 × sum of the residues of 𝑓(𝑧)at the interior poles. 

Hence we have to calculate the residues at 𝑧 = 0 and 𝑧 = 1. 

                    Residue at 𝑧 = 0 is = lim
𝑧→0

𝑧 . 𝑓(𝑧) 

 = lim
𝑧→0

𝑧 .
𝑧−2

𝑧(𝑧−1)
         = lim

𝑧→0

𝑧−2

𝑧−1
= 2 

                    Residue at 𝑧 = 1 is = lim
𝑧→1

(𝑧 − 1) . 𝑓(𝑧) 

  = lim
𝑧→1

(𝑧 − 1) .
𝑧−2

𝑧(𝑧−1)
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  = lim
𝑧→1

𝑧−2

𝑧
= −1 

                    Hence ∫
𝑧 − 2

𝑧(𝑧 − 1)
𝐶

𝑑𝑧 = 2𝜋𝑖 ×  (2 − 1) = 2𝜋𝑖 

 

𝐄𝐗. 𝟐𝟒. Evaluate ∫
4 − 3𝑧

𝑧(𝑧 − 1)(𝑧 − 2)
𝐶

𝑑𝑧 , where 𝐶 is the circumference of the circle|𝑧| =
3

2
. 

𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧: Let 𝑓(𝑧) =
4 − 3𝑧

𝑧(𝑧 − 1)(𝑧 − 2)
 

The given function has three first order poles at 𝑧 = 0, 𝑧 = 1 and 𝑧 = 2. Of these, 

only 𝑧 = 0 and 𝑧 = 1 lie within the circle |𝑧| =
3

2
. 

Hence it is enough if we calculate the residues at 𝑧 = 0 and 𝑧 = 1. 

 Residue of 𝑓(𝑧) at 𝑧 = 0 is = lim
𝑧→0

𝑧 . 𝑓(𝑧) 

                                                     = lim
𝑧→0

𝑧 .
4 − 3𝑧

𝑧(𝑧 − 1)(𝑧 − 2)
 

                                                     = lim
𝑧→0

4 − 3𝑧

(𝑧 − 1)(𝑧 − 2)
 

                                                     =
4

−1 × −2
= 2 

             Residue of 𝑓(𝑧) at 𝑧 = 1 is = lim
𝑧→1

(𝑧 − 1) . 𝑓(𝑧) 

                                                    = lim
𝑧→1

(𝑧 − 1) .
4 − 3𝑧

𝑧(𝑧 − 1)(𝑧 − 2)
 

                                                    = lim
𝑧→1

4 − 3𝑧

𝑧(𝑧 − 2)
 

                                                    =
1

1(1 − 2)
= −1 

Therefore by Cauchy’s Residue theorem, the value of the given integral 

                                   = 2𝜋𝑖 × sum of the residues of 𝑓(𝑧)at the interior poles 

                                   = 2𝜋𝑖 (2 − 1) = 2𝜋𝑖 

 

𝐄𝐗. 𝟐𝟓. Evaluate ∫ 𝑡𝑎𝑛 𝑧

𝐶

𝑑𝑧 , where 𝐶 is the curve|𝑧| = 2. 

𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧:   Let 𝑓(𝑧) = 𝑡𝑎𝑛 𝑧 =
𝑠𝑖𝑛 𝑧

𝑐𝑜𝑠 𝑧
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The poles of  𝑓(𝑧) are given by 𝑐𝑜𝑠 𝑧 = 0 

             𝑖. 𝑒. , 𝑧 = (2𝑛 + 1)
𝜋

2
, 𝑛 being zero or an integer. 

Of the many poles, 𝑧 =
𝜋

2
 and , 𝑧 = −

𝜋

2
 are the only poles lying inside the given 

contour |𝑧| = 2. Hence it is enough if we calculate the corresponding residues. 

                    Residue of 𝑓(𝑧) at 𝑧 = −
𝜋

2
is = lim

𝑧 → −
𝜋
2

𝑠𝑖𝑛 𝑧

𝑑
𝑑𝑧

(𝑐𝑜𝑠 𝑧)
 

                                                            = lim
𝑧 → −

𝜋
2

𝑠𝑖𝑛 𝑧

−𝑠𝑖𝑛 𝑧
= −1 

     Similarly  Residue of 𝑓(𝑧) at 𝑧 =
𝜋

2
is = lim

𝑧 → 
𝜋
2

𝑠𝑖𝑛 𝑧

𝑑
𝑑𝑧

(𝑐𝑜𝑠 𝑧)
 

                                                                = lim
𝑧 → 

𝜋
2

𝑠𝑖𝑛 𝑧

−𝑠𝑖𝑛 𝑧
= −1 

Therefore by Cauchy’s Residue theorem, the value of the given integral 

                                   = 2𝜋𝑖 × sum of the residues of 𝑓(𝑧)at the interior poles 

                                   = 2𝜋𝑖 (−1 − 1) = −4𝜋𝑖 

 

𝐄𝐗. 𝟐𝟔. Evaluate ∫
𝑑𝑧

(𝑧2 + 4)2
 , around the closed contour|𝑧 − 𝑖| = 2. 

𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧:   Let 𝑓(𝑧) =
1

(𝑧2 + 4)2
=

1

(𝑧 − 2𝑖)2(𝑧 + 2𝑖)2
 

and this has a pole of order 2 at each of the points 𝑧 = 2𝑖 and 𝑧 = −2𝑖. 

 |𝑧 − 𝑖| = 2 is a circle with centre at 𝒊and radius 2 units. 

 The pole 𝑧 = 2𝑖 is inside this circle and 𝑧 = −2𝑖 is outside. 

So it is enough if we find the residue at 𝑧 = 2𝑖. 

Residue at 𝑧 = 2𝑖 is 

                                       = lim
𝑧 →2𝑖

𝑑

𝑑𝑧
(𝑧 − 2𝑖)2

1

(𝑧 − 2𝑖)2(𝑧 + 2𝑖)2
 

                                       = lim
𝑧 →2𝑖

𝑑

𝑑𝑧

1

(𝑧 + 2𝑖)2
 

                                       = lim
𝑧 →2𝑖

−2

(𝑧 + 2𝑖)3
 

                                       =
−2

(4𝑖)3
=

1

32 𝑖
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𝐄𝐗. 𝟐𝟕.  Evaluate ∮
2𝑧 − 1

𝑧(𝑧 + 2)(2𝑧 + 1)
𝑐

𝑑𝑧 where 𝑐 is the circle |𝑧| = 1. 

𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧: Here 𝑓(𝑧) =
2𝑧 − 1

𝑧(𝑧 + 2)(2𝑧 + 1)
 has three simple poles at 𝑧 = 0, 𝑧 = −2 and 𝑧

= −
1

2
. 

But the only poles 𝑧 = 0 and 𝑧 = −
1

2
 lies inside the circle |𝑧| = 1. 

Now, the residue of 𝑓(𝑧) at 𝑧 = 0 is 

∴     [𝑅𝑒𝑠 𝑓(𝑧)]𝑧=0 = lim
𝑧→0

𝑧 𝑓(𝑧) = lim
𝑧→0

2𝑧 − 1

(𝑧 + 2)(2𝑧 + 1)
= −

1

2.1
= −

1

2
 

Also the residue of 𝑓(𝑧) at 𝑧 = −
1

2
 is 

       [𝑅𝑒𝑠 𝑓(𝑧)]
𝑧=− 

1
2

= lim
𝑧→− 

1
2

(2𝑧 + 1) 𝑓(𝑧) = lim
𝑧→− 

1
2

2𝑧 − 1

𝑧(𝑧 + 2)
= −

2

−3
4

=
8

3
 

∴     By Residue theorem, we have  

                          ∮
2𝑧 − 1

𝑧(𝑧 + 2)(2𝑧 + 1)
𝑐

𝑑𝑧 = 2𝜋𝑖 (−
1

2
+

8

3
) =

13

3
𝜋𝑖 

 

𝐄𝐗. 𝟐𝟖.  Evaluate ∮ 𝑡𝑎𝑛 𝑧

𝑐

𝑑𝑧 where 𝑐 is the circle |𝑧| = 2. 

𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧: Here 𝑓(𝑧) = tan 𝑧 =
𝑠𝑖𝑛 𝑧

𝑐𝑜𝑠 𝑧
 

The poles of 𝑓(𝑧) are given by 𝑐𝑜𝑠 𝑧 = 0 

𝑖. 𝑒. , 𝑧 = ±(2𝑛 + 1)
𝜋

2
, 𝑛 = 0,1, 2 …. 

Out of these only 𝑧 = ±
𝜋

2
(±1.570) lies inside 𝑐: |𝑧| = 2 

 ∴       [𝑅𝑒𝑠 𝑓(𝑧)]
𝑧=±

𝜋
2

= lim
𝑧→±

𝜋
2

(𝑧 ±
𝜋

2
) 

𝑠𝑖𝑛 𝑧

𝑐𝑜𝑠 𝑧
= lim

𝑧→±
𝜋
2

𝑠𝑖𝑛 𝑧 + (𝑧 ±
𝜋
2) . 𝑐𝑜𝑠 𝑧

−𝑠𝑖𝑛 𝑧
= −1 

By using residue theorem, ∮ 𝑡𝑎𝑛 𝑧

𝑐

𝑑𝑧 = 2𝜋𝑖 (−1 − 1) = −4𝜋𝑖 
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𝐄𝐗. 𝟐𝟗.  Evaluate ∮
1

(𝑧2 + 4)2

𝑐

𝑑𝑧 where 𝑐 is the circle |𝑧 − 𝑖| = 2. 

𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧: Here 𝑓(𝑧) =
1

(𝑧2 + 4)2
 has double poles at 𝑧 = ±2𝑖. Of these poles only 𝑧

= 2𝑖  

lies inside 𝑐. 

Again        ∮
1

(𝑧2 + 4)2

𝑐

𝑑𝑧 = ∮
1

(𝑧 + 2𝑖)2(𝑧 − 2𝑖)2

𝑐

𝑑𝑧 

Since 
1

(𝑧 + 2𝑖)2
 is analytic in 𝑐, apply Cauchy′s integral formula for derivatives 

∴        ∮
1

(𝑧2 + 4)2

𝑐

𝑑𝑧 =
2𝜋𝑖

1!

𝑑

𝑑𝑧
[

1

(𝑧 + 2𝑖)2
]

𝑧=2𝑖

=
𝜋

16
 

 

𝐄𝐗. 𝟑𝟎.  Evaluate ∫
𝑧 𝑐𝑜𝑠 𝑧

(𝑧 −
𝜋
2)

3

𝑐

𝑑𝑧 where 𝑐 is the circle (𝑖) |𝑧 − 1| = 1     (𝑖𝑖) |𝑧| = 2. 

𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧: ( 𝑖) Let 𝑓(𝑧) =
𝑧 𝑐𝑜𝑠 𝑧

(𝑧 −
𝜋
2)

3 

𝑧 =
𝜋

2
 is a pole of order 3 of the function 𝑓(𝑧) and it lies within the given circle. 

∴       [𝑅𝑒𝑠 𝑓(𝑧)]
𝑧=

𝜋
2

=
1

(3 − 1)!
 lim

𝑧→
𝜋
2

[
𝑑3−1

𝑑𝑧3−1
{(𝑧 −

𝜋

2
)

3

 𝑓(𝑧)}] 

                                      =
1

2!
 lim
𝑧→

𝜋
2

[
𝑑2

𝑑𝑧2
(𝑧 𝑐𝑜𝑠 𝑧)] 

                                      =
1

2
 lim
𝑧→

𝜋
2

[
𝑑

𝑑𝑧
(𝑐𝑜𝑠 𝑧 − 𝑧 𝑠𝑖𝑛 𝑧)] 

                                      =
1

2
 lim
𝑧→

𝜋
2

(−𝑧 𝑐𝑜𝑠 𝑧 − 2 𝑠𝑖𝑛 𝑧) = −1 

∴      By Residue theorem,  

                           ∫
𝑧 𝑐𝑜𝑠 𝑧

(𝑧 −
𝜋
2)

3

𝑐

𝑑𝑧 = 2𝜋𝑖 × sum of the residues of 𝑓(𝑧) at the interior poles 

                                                    = 2𝜋𝑖(−1) = −2𝜋𝑖 
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𝐄𝐗. 𝟑𝟏.  Evaluate ∫
𝑐𝑜𝑡ℎ 𝑧

𝑧 − 𝑖
𝑐

𝑑𝑧 where 𝑐 is   |𝑧| = 2. 

𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧: Let 𝑓(𝑧) =
𝑐𝑜𝑡ℎ 𝑧

𝑧 − 𝑖
=

𝑐𝑜𝑠ℎ 𝑧

(𝑧 − 𝑖) 𝑠𝑖𝑛ℎ 𝑧
 

The poles of 𝑓(𝑧) are given by (𝑧 − 𝑖) 𝑠𝑖𝑛ℎ 𝑧 = 0 

𝑖. 𝑒. , 𝑧 = 𝑖, ±𝑛𝜋𝑖, 𝑛 being zero or an integer. Thus out of the many poles, 𝑧 = 𝑖 and 𝑧 = 0 are 

the only poles lying inside the given circle |𝑧| = 2. Hence it is enough if we calculate the 

corresponding residues. 

      [𝑅𝑒𝑠 𝑓(𝑧)]𝑧=𝑖 = lim
𝑧→𝑖

[(𝑧 − 𝑖)𝑓(𝑧)] 

                                  = lim
𝑧→𝑖

[(𝑧 − 𝑖)
𝑐𝑜𝑠ℎ 𝑧

(𝑧 − 𝑖) 𝑠𝑖𝑛ℎ 𝑧
] = lim

𝑧→𝑖
 𝑐𝑜𝑡ℎ 𝑧 = 𝑐𝑜𝑡ℎ 𝑖 

      [𝑅𝑒𝑠 𝑓(𝑧)]𝑧=0 =
𝜙(0)

𝛹′(0)
 where 𝑓(𝑧) =

𝑐𝑜𝑠ℎ 𝑧

(𝑧 − 𝑖) 𝑠𝑖𝑛ℎ 𝑧
=

𝜙(𝑧)

𝛹(𝑧)
 

= [
𝑐𝑜𝑠ℎ 𝑧

(𝑧 − 𝑖) 𝑐𝑜𝑠ℎ 𝑧 +  𝑠𝑖𝑛ℎ 𝑧
]

𝑧=0

= −
1

𝑖
 

∴      By Residue theorem,  

                           ∫
𝑐𝑜𝑡ℎ 𝑧

𝑧 − 𝑖
𝑐

𝑑𝑧 = 2𝜋𝑖 × sum of the residues of 𝑓(𝑧) at the interior poles 

                                                  = 2𝜋𝑖 (𝑐𝑜𝑡ℎ 𝑖 −
1

𝑖
) 

 

𝐄𝐗. 𝟑𝟐.  Evaluate ∫
𝑒2𝑧

(𝑧 − 1)(𝑧 − 2)
𝑐

𝑑𝑧 where 𝑐 is the circle |𝑧| = 3. 

𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧: Let 𝑓(𝑧) =
𝑒2𝑧

(𝑧 − 1)(𝑧 − 2)
 

𝑧 = 1 and 𝑧 = 2 are simple poles of 𝑓(𝑧) and both poles lie inside C. 

Now we have to calculate the residues at 𝑧 = 1 and 𝑧 = 2. 

∴       [𝑅𝑒𝑠 𝑓(𝑧)]𝑧=1 = lim
𝑧→1

[(𝑧 − 1)𝑓(𝑧)] 

                                  = lim
𝑧→1

𝑒2𝑧

𝑧 − 2
=

𝑒2

1 − 2
= −𝑒2 

and      [𝑅𝑒𝑠 𝑓(𝑧)]𝑧=2 = lim
𝑧→2

[(𝑧 − 1)𝑓(𝑧)] 

                                  = lim
𝑧→2

𝑒2𝑧

𝑧 − 1
=

𝑒4

2 − 1
= 𝑒4 
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∴      By Residue theorem,  

                           ∫
𝑒2𝑧

(𝑧 − 1)(𝑧 − 2)
𝑐

𝑑𝑧

= 2𝜋𝑖 × sum of the residues of 𝑓(𝑧) at the interior poles 

                                                  = 2𝜋𝑖(−𝑒2 + 𝑒4) 

𝐄𝐗. 𝟑𝟑.  Evaluate ∫
12𝑧 − 7

(2𝑧 + 3)(𝑧 − 1)2

𝑐

𝑑𝑧 where 𝑐 is the circle 𝑥2 + 𝑦2 = 4. 

𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧: Let 𝑓(𝑧) =
12𝑧 − 7

(2𝑧 + 3)(𝑧 − 1)2
 

For the given function, 𝑧 = 1 is a pole of second order and 𝑧 = −
3

2
 is a simple pole. 

Now we have to calculate the residues at 𝑧 = 1 and 𝑧 = −
3

2
. 

∴             [𝑅𝑒𝑠 𝑓(𝑧)]𝑧=1 =
1

(2 − 1)!
lim
𝑧→1

𝑑

𝑑𝑧
[(𝑧 − 1)2𝑓(𝑧)] 

                                           = lim
𝑧→1

𝑑

𝑑𝑧
[

12𝑧 − 7

(2𝑧 + 3)
] = 2 

and        [𝑅𝑒𝑠 𝑓(𝑧)]
𝑧=−

3
2

= lim
𝑧→−

3
2

[(2𝑧 + 3)𝑓(𝑧)] 

                                           = lim
𝑧→−

3
2

12𝑧 − 7

(𝑧 − 1)2
= −2 

∴      By Residue theorem,  

                           ∫
12𝑧 − 7

(2𝑧 + 3)(𝑧 − 1)2

𝑐

𝑑𝑧 

= 2𝜋𝑖 × sum of the residues of 𝑓(𝑧) at the interior poles 

                                                                        = 2𝜋𝑖(2 − 2) = 0 

 

𝐄𝐗. 𝟑𝟒.  Evaluate ∫
𝑒𝑧

(𝑧2 + 𝜋2)2

𝑐

𝑑𝑧 where C is the circle |𝑧| = 4. 

𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧: Let 𝑓(𝑧) =
𝑒𝑧

(𝑧2 + 𝜋2)2
 

For 𝑓(𝑧), 𝑧 = ±𝑖𝜋 are double poles which lie inside 𝑐. 

∴             [𝑅𝑒𝑠 𝑓(𝑧)]𝑧=𝑖𝜋 =
1

(2 − 1)!
lim

𝑧→𝑖𝜋

𝑑

𝑑𝑧
[(𝑧 − 𝑖𝜋)2𝑓(𝑧)] 
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                                             = lim
𝑧→𝑖𝜋

𝑑

𝑑𝑧
[

𝑒𝑧

(𝑧 + 𝑖𝜋)2
] =

𝑖 + 𝜋

4𝜋3
 

and        [𝑅𝑒𝑠 𝑓(𝑧)]𝑧=𝑖𝜋 =
1

(2 − 1)!
lim

𝑧→−𝑖𝜋

𝑑

𝑑𝑧
[(𝑧 + 𝑖𝜋)2𝑓(𝑧)] 

                                             = lim
𝑧→−𝑖𝜋

𝑑

𝑑𝑧
[

𝑒𝑧

(𝑧 − 𝑖𝜋)2
] =

−𝑖 + 𝜋

4𝜋3
 

∴      By Residue theorem,  

                           ∫
𝑒𝑧

(𝑧2 + 𝜋2)2

𝑐

𝑑𝑧 = 2𝜋𝑖 × sum of the residues of 𝑓(𝑧) at the interior poles 

                                                             = 2𝜋𝑖 (
𝑖 + 𝜋

4𝜋3
+

−𝑖 + 𝜋

4𝜋3
) =

𝑖

𝜋
 

 

𝐄𝐗. 𝟑𝟓.  Evaluate ∫
𝑠𝑖𝑛 𝑧

𝑧 𝑐𝑜𝑠 𝑧
𝑐

𝑑𝑧 where 𝑐 is the circle |𝑧| = 𝜋 by Residue theorem. 

𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧: Let 𝑓(𝑧) =
𝑠𝑖𝑛 𝑧

𝑧 𝑐𝑜𝑠 𝑧
 

The poles of 𝑓(𝑧) are given by 𝑧 𝑐𝑜𝑠 𝑧 = 0 

𝑖. 𝑒., 𝑧 = 0, (2𝑛 + 1)
𝜋

2
, 𝑛 being zero or an integer. 

𝑖. 𝑒., 𝑧 = 0, ±
𝜋

2
, ±

3𝜋

2
, … 

Of the many simple poles, 𝑧 = 0, 𝑧 =
𝜋

2
 and  𝑧 = −

𝜋

2
 are the only poles lying inside the 

circles |𝑧| = 𝜋. Hence it is enough if we calculate the corresponding residues. 

Now let    𝑓(𝑧) =
𝑠𝑖𝑛 𝑧

𝑧 𝑐𝑜𝑠 𝑧
=

𝜙(𝑧)

𝛹(𝑧)
. Then 𝛹′(𝑧) = 𝑐𝑜𝑠 𝑧 − 𝑧 𝑠𝑖𝑛 𝑧 

∴             [𝑅𝑒𝑠 𝑓(𝑧)]𝑧=0 =
𝜙(0)

𝛹′(0)
=

0

1
= 0 

                [𝑅𝑒𝑠 𝑓(𝑧)]
𝑧=

𝜋
2

=
𝜙 (

𝜋
2)

𝛹′ (
𝜋
2)

=
1

−
𝜋
2

= −
2

𝜋
 

                [𝑅𝑒𝑠 𝑓(𝑧)]
𝑧=−

𝜋
2

=
𝜙 (−

𝜋
2)

𝛹′ (−
𝜋
2)

=
−1

−
𝜋
2

=
2

𝜋
 

∴      By Residue theorem,  
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                           ∫
𝑠𝑖𝑛 𝑧

𝑧 𝑐𝑜𝑠 𝑧
𝑐

𝑑𝑧 = 2𝜋𝑖 × sum of the residues of 𝑓(𝑧) at the interior poles 

                                                             = 2𝜋𝑖 (0 −
2

𝜋
+

2

𝜋
) = 0 

𝐄𝐗. 𝟑𝟔.  Evaluate ∫
𝑧

(𝑧 − 1)(𝑧 − 2)2

𝑐

𝑑𝑧 where 𝑐 is the circle 

 |𝑧 − 2| =
1

2
 by Residue theorem. 

𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧: Let 𝑓(𝑧) =
𝑧

(𝑧 − 1)(𝑧 − 2)2
 

The poles of 𝑓(𝑧) are given by (𝑧 − 1)(𝑧 − 2)2 = 0, 𝑖. 𝑒. , 𝑧 = 1 and 𝑧 = 2 

𝑧 = 1 is a simple pole and 𝑧 = 2 is a pole of the second order. 

Of these, only 𝑧 = 2 lie within the circle  |𝑧 − 2| =
1

2
. 

Now we have to calculate the residue at 𝑧 = 2. 

        [𝑅𝑒𝑠 𝑓(𝑧)]𝑧=2 =
1

(2 − 1)!
lim
𝑧→2

𝑑

𝑑𝑧
[(𝑧 − 2)2𝑓(𝑧)] 

                                   = lim
𝑧→2

𝑑

𝑑𝑧
(

𝑧

𝑧 − 1
) = lim

𝑧→2

𝑑

𝑑𝑧
(1 +

1

𝑧 − 1
) = −1 

∴      By Residue theorem,  

                           ∫
𝑧

(𝑧 − 1)(𝑧 − 2)2

𝑐

𝑑𝑧 

= 2𝜋𝑖 × sum of the residues of 𝑓(𝑧) at the interior poles 

                                                                      = 2𝜋𝑖(−1) = −2𝜋𝑖 

 

2.18. Evaluation of Definite Integrals:  

One of the important applications of the theory of residues consists in the evaluation 

of certain types of real definite integrals. These integrals often arise in physical problems. It 

must be observed that a definite integral that can be evaluated by the use of Cauchy’s residue 

theorem may be evaluated by other methods although not to easily. However, there are some 

simple integrals like ∫ 𝑒−𝑥2∞

0
𝑑𝑥 which cannot be evaluated by Cauchy’s method. We shall 

now consider some integrals which can be evaluated by applying the residue theorem. These 

integral are evaluated by making the path of integration a suitable contour in the complex 

plane. This process is called contour integration.  
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2.19. Integration round the unit circle:  

An integral of the type ∫ 𝑓(𝑐𝑜𝑠 𝜃, 𝑠𝑖𝑛 𝜃)
2𝜋

0
𝑑𝜃, where the integrand is a rational 

function of 𝑐𝑜𝑠 𝜃 and 𝑠𝑖𝑛 𝜃 can be evaluated by putting 𝑒𝑖𝜃 = 𝑧. 

Then 𝑐𝑜𝑠 𝜃 =
𝑒𝑖𝜃 + 𝑒−𝑖𝜃

2
=

𝑧 +
1
𝑧

2
 ; 𝑠𝑖𝑛 𝜃 =

𝑒𝑖𝜃 − 𝑒−𝑖𝜃

2𝑖
=

𝑧 −
1
𝑧

2𝑖
 

                   Also 𝑒𝑖𝜃𝑖 𝑑𝜃 = 𝑑𝑧 and so 𝑑𝜃 =
𝑑𝑧

𝑖𝑧
 

Hence ∫ 𝑓(𝑐𝑜𝑠 𝜃, 𝑠𝑖𝑛 𝜃)

2𝜋

0

𝑑𝜃 = ∫ 𝐹(𝑧)

𝐶

𝑑𝑧 

where 𝐹(𝑧) is a rational function of 𝑧 and 𝐶 is the unit circle |𝑧| = 1. 

But ∫ 𝐹(𝑧)

𝐶

𝑑𝑧 = 2𝜋𝑖 ∑ 𝑅 

where ∑ 𝑅 denotes the sum of the residues of 𝐹(𝑧) at its poles inside 𝐶. 

 

  

EX.37. By integrating round a circle of unit radius, show that 

∫
𝑐𝑜𝑠 3𝜃

5 − 4 𝑐𝑜𝑠 𝜃

2𝜋

0

 𝑑𝜃 =
𝜋

12
. 

Solution: Let 𝑧 = 𝑒𝑖𝜃. Then 𝑑𝑧 = 𝑒𝑖𝜃𝑖 𝑑𝜃 = 𝑖𝑧 𝑑𝜃. 

Therefore 𝑑𝜃 =
𝑑𝑧

𝑖𝑧
and 𝑐𝑜𝑠 𝜃 =

𝑧 +
1
𝑧

2
 

                                 𝑐𝑜𝑠 3𝜃 =
𝑒𝑖.3𝜃 + 𝑒−𝑖.3𝜃

2
=

𝑧3 +
1
𝑧3

2
 

Let 𝐶 be the unit circle |𝑧| = 1. 

The given integral I  is 

= ∫
(𝑧3 +

1
𝑧3)

2 [5 −
4 (𝑧 +

1
𝑧)

2 ]
𝐶

𝑑𝑧

𝑖𝑧
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= ∫
𝑧6 + 1

2 𝑧3 [5 − 2𝑧 −
2
𝑧

]𝐶

𝑑𝑧

𝑖𝑧
 

        =
1

2𝑖
∫

𝑧6 + 1

 𝑧3(5𝑧 − 2𝑧2 − 2)
𝐶

 𝑑𝑧 

          = −
1

2𝑖
∫

𝑧6 + 1

 𝑧3(2𝑧2 − 5𝑧 + 2)
𝐶

 𝑑𝑧 

           = −
1

2𝑖
∫

𝑧6 + 1

 𝑧3(2𝑧 − 1)(𝑧 − 2)
𝐶

 𝑑𝑧 

                           = −
1

2𝑖
∫ 𝑓

𝐶

(𝑧) 𝑑𝑧                                     (1) 

The poles of 𝑓(𝑧) are: 

(i) 𝑧 = 0, a pole of order 3  (ii) 𝑧 =
1

2
 and      (iii) 𝑧 = 2. 

Of these only 𝑧 = 0 and 𝑧 =
1

2
 are inside the unit circle. Hence we have to calculate 

the corresponding residues. 

Residue of 𝑓(𝑧) at 𝑧 =
1

2
 is  

= lim
𝑧 → 

1
2

(𝑧 −
1
2) (𝑧6 + 1)

 𝑧3(2𝑧 − 1)(𝑧 − 2)
= lim

𝑧 → 
1
2

(𝑧6 + 1)

 2𝑧3(𝑧 − 2)
= −

65

24
 

It will be easier to get the residue at the multiple pole 𝑧 = 0, by expansion of 𝑓(𝑧). 

                  𝑓(𝑧) =
𝑧6 + 1

 𝑧3(2𝑧 − 1)(𝑧 − 2)
=

(𝑧3 +
1
𝑧3)

(1 − 2𝑧)(2 − 𝑧)
 

                            =
(𝑧3 +

1
𝑧3)

2(1 − 2𝑧) (1 −
𝑧
2)

 

                           =  
1

2
(𝑧3 +

1

𝑧3
) (1 − 2𝑧)−1 (1 −

𝑧

2
)

−1

 

                           =  
1

2
(𝑧3 +

1

𝑧3
) (1 + 2𝑧 + 4𝑧2 + ⋯ ) (1 +

𝑧

2
+

𝑧2

4
+ ⋯ ) 

                           =  
1

2
(𝑧3 +

1

𝑧3
) (1 + 2𝑧 + 4𝑧2 + ⋯ ) (1 +

𝑧

2
+

𝑧2

4
+ ⋯ ) 
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                           =  
1

2
(𝑧3 +

1

𝑧3
) [1 +

5𝑧

2
+ 𝑧2 (

1

4
+ 1 + 4) + ⋯ ] 

Coefficient of  
1

𝑧
 in the right hand side product 

                           =  
1

2
 × 1 × (

1

4
+ 1 + 4) =

21

8
 

Hence by the residue theorem, 

∫ 𝑓(𝑧)

𝐶

 𝑑𝑧 = 2𝜋𝑖 × sum of the above two residues 

                                                       = 2𝜋𝑖 (−
65

24
+

21

8
) = −

𝜋𝑖

6
 

Hence substituting in (1),  

                                                𝐼 = −
1

2𝑖
× −

𝜋𝑖

6
=

𝜋

12
 

 

EX.38. Evaluate by contour integration 

∫
𝑠𝑖𝑛2𝜃

𝑎 + 𝑏 𝑐𝑜𝑠 𝜃

2𝜋

0

𝑑𝜃, 𝑎 > 𝑏 > 0. 

Solution: Let  𝑧 = 𝑒𝑖𝜃  and 𝐶 be the unit circle |𝑧| = 1. 

Then 𝑑𝑧 = 𝑒𝑖𝜃𝑖 𝑑𝜃 = 𝑖𝑧 𝑑𝜃 or 𝑑𝜃 =
𝑑𝑧

𝑖𝑧
 

𝑐𝑜𝑠 𝜃 =
𝑧 +

1
𝑧

2
and 𝑠𝑖𝑛 𝜃 =

𝑧 −
1
𝑧

2𝑖
 

The given integral 𝐼 is 

= ∫
(𝑧 −

1
𝑧)

2

4𝑖2 [𝑎 +
𝑏 (𝑧 +

1
𝑧)

2 ]
𝐶

𝑑𝑧

𝑖𝑧
 

= ∫
(𝑧2 − 1)2. 2

−4𝑧2 (2𝑎 + 𝑏𝑧 +
𝑏
𝑧)𝐶

𝑑𝑧

𝑖𝑧
 

     = −
1

2𝑖
∫

(𝑧2 − 1)2

𝑧2(𝑏𝑧2 + 2𝑎𝑧 + 𝑏)
𝐶

𝑑𝑧 

     = −
1

2𝑖
∫

(𝑧2 − 1)2

𝑧2. 𝑏(𝑧 − 𝑝)(𝑧 − 𝑞)
𝐶

𝑑𝑧 

where  𝑝 and 𝑞 are the roots of 𝑏𝑧2 + 2𝑎𝑧 + 𝑏 = 0. 
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                                                                     = −
1

2𝑖
∫ 𝑓(𝑧)

𝐶

𝑑𝑧                    (1) 

The poles of 𝑓(𝑧) are: 

(i) 𝑧 = 0, a double pole  (ii) 𝑧 = 𝑝 and 𝑧 = 𝑞. 

Solving 𝑏𝑧2 + 2𝑎𝑧 + 𝑏 = 0, we have 

                                                         𝑧 =
−2𝑎 ± √4𝑎2 − 4𝑏2

2𝑏
 

                                                             =
−𝑎 ± √𝑎2 − 𝑏2

𝑏
 

                                                             =
−𝑎 + √𝑎2 − 𝑏2

𝑏
,
−𝑎 − √𝑎2 − 𝑏2

𝑏
 

                                                             = −
𝑎

𝑏
+

√𝑎2 − 𝑏2

𝑏
, −

𝑎

𝑏
−

√𝑎2 − 𝑏2

𝑏
 

As 𝑎 > 𝑏,
𝑎

𝑏
> 1 and the  root −

𝑎

𝑏
−

√𝑎2−𝑏2

𝑏
 is numerically greater than 1. 

Hence the pole 𝑧 = −
𝑎

𝑏
+

√𝑎2−𝑏2

𝑏
 alone is inside the unit circle. We can take this as 𝑝, 

and the other pole 𝑧 = −
𝑎

𝑏
+

√𝑎2−𝑏2

𝑏
 as 𝑞. 

Also 𝑝𝑞 = product of the two values of  𝑧 = 1. 

We have now to calculate the residues of 𝑓(𝑧)at 𝑧 = 𝑝 and 𝑧 = 0. 

Residue at 𝑧 = 𝑝is 

                                             = lim
𝑧→𝑝

(𝑧 − 𝑝)(𝑧2 − 1)2

𝑧2. 𝑏(𝑧 − 𝑝)(𝑧 − 𝑞)
 

                                             = lim
𝑧→𝑝

(𝑧2 − 1)2

𝑧2. 𝑏(𝑧 − 𝑞)
 

                                             =
(𝑝2 − 1)2

𝑝2. 𝑏(𝑝 − 𝑞)
=

(𝑝2 − 𝑝𝑞)2

𝑏 𝑝2(𝑝 − 𝑞)
=

𝑝2(𝑝 − 𝑞)2

𝑏 𝑝2(𝑝 − 𝑞)
 

                                             =
𝑝 − 𝑞

𝑏
=

1

𝑏
[
−𝑎 + √𝑎2 − 𝑏2

𝑏
−  

−𝑎 − √𝑎2 − 𝑏2

𝑏
] 

                                             =
1

𝑏
[
−𝑎 + √𝑎2 − 𝑏2 + 𝑎 + √𝑎2 − 𝑏2

𝑏
] 

                                             =
2√𝑎2 − 𝑏2

𝑏2
 

Residue at 𝑧 = 0is  
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                                             = lim
𝑧→0

𝑑

𝑑𝑧

𝑧2(𝑧2 − 1)2

𝑧2(𝑏𝑧2 + 2𝑎𝑧 + 𝑏)
 

                                             = lim
𝑧 →0

(𝑏𝑧2 + 2𝑎𝑧 + 𝑏)2(𝑧2 − 1)2𝑧 − (𝑧2 − 1)2(2𝑏𝑧 + 2𝑎)

(𝑏𝑧2 + 2𝑎𝑧 + 𝑏)2
 

                                             = −
2𝑎

𝑏2
 

Hence by residue theorem,  

∫ 𝑓(𝑧)

𝐶

𝑑𝑧 = 2𝜋𝑖 × sum of the above two residues 

                                                      = 2𝜋𝑖 × (
2√𝑎2 − 𝑏2

𝑏2
−

2𝑎

𝑏2
) =

4𝜋𝑖

𝑏2
[√𝑎2 − 𝑏2 − 𝑎] 

Hence substituting in (1),  

                                                      𝐼 = −
1

2𝑖
×

4𝜋𝑖

𝑏2
[√𝑎2 − 𝑏2 − 𝑎] 

                                                          =
2𝜋

𝑏2
[𝑎 − √𝑎2 − 𝑏2] 

 

EX.39. Show by the method of residues, ∫
𝑑𝜃

𝑎+𝑏 𝑐𝑜𝑠 𝜃

𝜋

0
=

𝜋

√𝑎2−𝑏2
 (𝑎 > 𝑏 > 0). 

or Show that ∫
𝑑𝜃

𝑎 + 𝑏 𝑐𝑜𝑠 𝜃

2𝜋

0

=
2𝜋

√𝑎2 − 𝑏2
  (𝑎 > 𝑏 > 0). 

𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧: We have  ∫
𝑑𝜃

𝑎 + 𝑏 𝑐𝑜𝑠 𝜃

𝜋

0

=
1

2
∫

𝑑𝜃

𝑎 + 𝑏 𝑐𝑜𝑠 𝜃

2𝜋

0

                     (1) 

Let 𝑐 be the circle |𝑧| = 1. 

Put   𝑧 = 𝑒𝑖𝜃 , so that 𝑑𝜃 =
𝑑𝑧

𝑖𝑧
 and 𝑐𝑜𝑠 𝜃 =

𝑧 +
1
𝑧

2
=

𝑧2 + 1

2𝑧
.  

∴        ∫
𝑑𝜃

𝑎 + 𝑏 𝑐𝑜𝑠 𝜃

2𝜋

0

= ∫
1

𝑎 + 𝑏 [
𝑧2 + 1`

2𝑧 ]𝑐

.
𝑑𝑧

𝑖𝑧
 

                                       =
1

𝑖
∫

2

𝑏𝑧2 + 2𝑎𝑧 + 𝑏
𝑑𝑧

𝑐

 

                                       =
2

𝑖
∫

1

𝑏𝑧2 + 2𝑎𝑧 + 𝑏
𝑑𝑧

𝑐

 

                                       =
2

𝑖
∫ 𝑓(𝑧)𝑑𝑧

𝑐
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Now, the poles of 𝑓(𝑧) are the roots of    𝑏𝑧2 + 2𝑎𝑧 + 𝑏 = 0, so 

                          𝑧 =
−2𝑎 ± √4𝑎2 − 4𝑏2

2𝑏
=

−𝑎 ± √𝑎2 − 𝑏2

𝑏
 

are the poles. 

𝛼 =
−𝑎 + √𝑎2 − 𝑏2

𝑏
, 𝛽 =

−𝑎 − √𝑎2 − 𝑏2

𝑏
 

Since 𝑎 > 𝑏 > 0, we have |𝛽| > 1. But the product of the roots is 1. 

𝑖. 𝑒. , |𝛼𝛽| > 1 so that |𝛼| < 1. 

Thus, 𝑧 = 𝛼 is the only simple pole lies inside 𝑐 and so  

                             𝑓(𝑧) =
1

𝑏(𝑧 − 𝛼)(𝑧 − 𝛽)
 

∴        [𝑅𝑒𝑠 𝑓(𝑧)]𝑧=𝛼 = lim
𝑧→𝛼

(𝑧 − 𝛼) 𝑓(𝑧) 

                                       = lim
𝑧→𝛼

(𝑧 − 𝛼)
2

𝑖

1

𝑏(𝑧 − 𝛼)(𝑧 − 𝛽)
 

                                       =
2

𝑖
lim
𝑧→𝛼

1

𝑏(𝑧 − 𝛽)
==

2

𝑖

1

𝑏(𝑧 − 𝛼)
 

                                       =
2

𝑖

1

𝑏 [
2√𝑎2 − 𝑏2

𝑏
]

=
1

𝑖√𝑎2 − 𝑏2
 

Thus,    ∫
𝑑𝜃

𝑎 + 𝑏 𝑐𝑜𝑠 𝜃

2𝜋

0

= 2𝜋𝑖 (
1

𝑖√𝑎2 − 𝑏2
) =

2𝜋

√𝑎2 − 𝑏2
 

Hence ∫
𝑑𝜃

𝑎 + 𝑏 𝑐𝑜𝑠 𝜃

𝜋

0

=
𝜋

√𝑎2 − 𝑏2
     [From (1)] 

 

Note: 1. In place of 𝑎 and 𝑏 whatever the values we take with 𝑎 > 𝑏 > 0, we can solve the 

integrals. 

        2. Similarly we can prove  

                                   ∫
𝑑𝜃

𝑎 + 𝑏 𝑠𝑖𝑛 𝜃

2𝜋

0

=
2𝜋

√𝑎2 − 𝑏2
 

         𝟑.  Taking 𝑎 = 3 and 𝑏 = 2 in the above example, we get ∫
𝑑𝜃

3 + 2 𝑐𝑜𝑠 𝜃

𝜋

0

=
𝜋

√5
 . 

         𝟒.  Observe that  ∫
𝑑𝜃

𝑎 + 𝑏 𝑠𝑖𝑛 𝜃

𝜋

0

=
𝜋

√𝑎2 − 𝑏2
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𝐄𝐗. 𝟒𝟎. Evaluate by contour integration ∫
𝑑𝜃

2 − 𝑠𝑖𝑛 𝜃

2𝜋

0

 . 

𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧: Write 𝑧 = 𝑟𝑒𝑖𝜃 , then 𝑑𝜃 =
𝑑𝑧

𝑖𝑧
  and so 𝑠𝑖𝑛 𝜃 =

𝑧 −
1
𝑧

2𝑖
=

𝑧2 − 1

2𝑖𝑧
. 

∴      ∫
𝑑𝜃

2 − 𝑠𝑖𝑛 𝜃

2𝜋

0

= ∫
1

2 − (
𝑧2 − 1

2𝑖𝑧
)𝑐

 
𝑑𝑧

𝑖𝑧
, where 𝑐: |𝑧| = 1 

                                 = ∫
2𝑖𝑧

4𝑖𝑧 − 𝑧2 + 1
𝑐

 
𝑑𝑧

𝑖𝑧
 

                                 = −2 ∫
1

𝑧2 − 4𝑖𝑧 − 1
𝑐

 𝑑𝑧 

                                 = −2 ∫ 𝑓(𝑧)

𝑐

 𝑑𝑧, where 𝑓(𝑧) =
1

𝑧2 − 4𝑖𝑧 − 1
 

Now, the poles of 𝑓(𝑧) are the roots of 𝑧2 − 4𝑖𝑧 − 1 = 0. 

The roots are 𝑧 =
4𝑖 ± √(4𝑖)2 + 4

2
=

4𝑖 ± √−16 + 4

2
= (2 ± √3)𝑖 

Denote 𝛼 = (2 + √3)𝑖 and 𝛽 = (2 − √3)𝑖 and 𝛼 and 𝛽 are the simple poles. 

Observe that 𝛼𝛽 = −1 and |𝛼| > 1 so |𝛽| < 1. 

Therefore, 𝛽 is only pole lie inside unit circle 𝑐. 

Now,         [𝑅𝑒𝑠 𝑓(𝑧)]𝑧=𝛽 =
1

𝛽 − 𝛼
= −

1

2√3𝑖
 

∴     By Residue theorem, we have 

∫ 𝑓(𝑧)

𝑐

 𝑑𝑧 = 2𝜋𝑖 (−
1

2√3𝑖
) = −

𝜋

√3
 

Hence,         ∫
𝑑𝜃

2 − 𝑠𝑖𝑛 𝜃

2𝜋

0

= −2 (−
𝜋

√3
) =

2𝜋

√3
 

 

𝐄𝐗. 𝟒𝟏.  Show that ∫
𝑑𝜃

𝑎2 + 𝑠𝑖𝑛2 𝜃

𝜋

0

=
𝜋

𝑎√𝑎2 + 1
 for 𝑎 > 0. 

𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧: Write   𝐼 = ∫
𝑑𝜃

𝑎2 + 𝑠𝑖𝑛2 𝜃

𝜋

0

= ∫
2𝑑𝜃

2𝑎2 + (1 − 𝑐𝑜𝑠 2𝜃)

𝜋

0
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Put 2𝜃 = 𝜙;   2 𝑑𝜃 = 𝑑𝜙   

∴            𝐼 = ∫
𝑑𝜙

2𝑎2 + 1 − 𝑐𝑜𝑠 𝜙

2𝜋

0

 

Put     𝑧 = 𝑒𝑖𝜙;   𝑑𝜙 =
𝑑𝑧

𝑖𝑧
    

∴            𝐼 = ∫
1

2𝑎2 + 1 − (
𝑧2 + 1

2𝑧
)𝑐

 .
𝑑𝑧

𝑖𝑧
    where   𝑐: |𝑧| = 1 

                  =
1

𝑖
∫

2𝑧

(4𝑎2 + 2)𝑧 − 𝑧2 − 1
𝑐

 .
𝑑𝑧

𝑧
 

                  = −
2

𝑖
∫ 𝑓(𝑧)

𝑐

 𝑑𝑧 

Now, the poles of 𝑓(𝑧) are given by 

                 𝑧 =
(4𝑎2 + 2) ± √[−(4𝑎2 + 2)]2 − 4

2
= (2𝑎2 + 1) ± 2𝑎√𝑎2 + 1 

Let 𝛼 = (2𝑎2 + 1) + 2𝑎√𝑎2 + 1 and 𝛽 = (2𝑎2 + 1) − 2𝑎√𝑎2 + 1 

Observe that |𝛼| > 1 and since 𝛼𝛽 = 1, we have |𝛽| < 1. 

So 𝛽 is the only pole lies within 𝑐. 

∴             [𝑅𝑒𝑠 𝑓(𝑧)]𝑧=𝛽 = lim
𝑧→𝛽

(𝑧 − 𝛽)  𝑓(𝑧) 

                                            = lim
𝑧→𝛽

1

𝑧 − 𝛼
=

1

𝛽 − 𝛼
=

1

−4𝑎√𝑎2 + 1
 

∴           By Residue theorem, we have 

                𝐼 = −
2

𝑖
 .  2𝜋𝑖 .  

1

−4𝑎√𝑎2 + 1
  =

𝜋

𝑎√𝑎2 + 1
 

𝐍𝐨𝐭𝐞:  ∫
𝑑𝜃

𝑎2 + 𝑐𝑜𝑠2 𝜃

𝜋

0

=
𝜋

𝑎√𝑎2 + 1
 

 

𝐄𝐗. 𝟒𝟐. Show that ∫
𝑑𝜃

2 + cos 𝜃

2𝜋

0

=
2π

√3
. 

𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧: Let 𝐼 = ∫
𝑑𝜃

2 + cos 𝜃

2𝜋

0

  

On the unit circle |𝑧| = 1, we have 
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                 𝑧 = 𝑒𝑖𝜃 , 𝑑𝜃 =
𝑑𝑧

𝑖𝑧
 𝑎𝑛𝑑 𝑐𝑜𝑠 𝜃 =

1

2
(𝑧 +

1

𝑧
) =

𝑧2 + 1

2𝑧
 

Substituting these values, we get 

                  𝐼 = ∫
1

2 +
𝑧2 + 1

2𝑧𝑐

 .
𝑑𝑧

𝑖𝑧
=

2

𝑖
∫

𝑑𝑧

𝑧2 + 4𝑧 + 1
𝑐

  

Where 𝑐 is the unit circle |𝑧| = 1. 

The integrand 𝑓(𝑧) =
1

𝑧2 + 4𝑧 + 1
 has simple poles given by 

                  𝑧 =
−4 ± √16 − 4

2
= −2 ± √3 

Of these only  𝑧 = −2 + √3 lies inside 𝑐. 

∴             [𝑅𝑒𝑠 𝑓(𝑧)]𝑧=−2+√3 = lim
𝑧→−2+√3

{𝑧 − (−2 + √3)}  𝑓(𝑧) 

 

                                                     = lim
𝑧→−2+√3

[
1

𝑧 + 2 + √3
] =

1

2√3
 

∴           By Residue theorem, we have 

                                              𝐼 =
2

𝑖
 .  2𝜋𝑖 × (Sum of the residues of 𝑓(𝑧) at the poles within c) 

                                                = 2𝜋𝑖 .
2

𝑖
 .

1

2√3
=

2𝜋

√3
 

 

EX.43. Use the method of contour integration to prove that 

∫
𝑑𝜃

1 + 𝑎2 + 2𝑎 cos 𝜃

2𝜋

0

=
2𝑎π

1 − 𝑎2
, 0 < 𝑎 < 1 

Solution: Let 𝑧 = 𝑒𝑖𝜃 and 𝐶 be the unit circle |𝑧| = 1. 

Then  𝑑𝑧 = 𝑒𝑖𝜃𝑖 𝑑𝜃 or 𝑑𝜃 =
𝑑𝑧

𝑖𝑧
 and 𝑐𝑜𝑠 𝜃 =

1

2
(𝑧 +

1

𝑧
) =

𝑧2 + 1

2𝑧
 

The given integral 𝐼 is 

                          = ∫
1

1 + 𝑎2 − 2𝑎 
𝑧2 + 1

2𝑧𝐶

 .
𝑑𝑧

𝑖𝑧
=

1

𝑖
∫

𝑑𝑧

𝑎𝑧2 − (1 + 𝑎2)𝑧 + 𝑎
𝐶

 

The poles of the integrand are given by 

                                
(1 + 𝑎2) ± √(1 − 𝑎2)2

2𝑎
 𝑖. 𝑒. ,

1

𝑎
and 𝑎. 

Of these poles only 𝑧0 = 𝑎 lies inside 𝐶 (∵   𝑎 < 1) 
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Residue at 𝑧 = 𝑎 is 

                        = lim
𝑧→𝑎

(𝑧 − 𝑎)
1

(𝑧 −
1
𝑎) (𝑧 − 𝑎)

 

                        = lim
𝑧→𝑎

1

(𝑧 −
1
𝑎)

=
1

𝑎 −
1
𝑎

=
𝑎

𝑎2 − 1
 

By Residue theorem, 𝐼 = −
1

𝑖
 .2𝜋𝑖 .

𝑎

𝑎2 − 1
=

2𝑎𝜋

1 − 𝑎2
 

 

𝐄𝐗. 𝟒𝟒.  Evaluate  ∫
𝑑𝜃

(5 − 3 𝑠𝑖𝑛 𝜃)2

2𝜋

0

 using residue theorem. 

Solution: Let 𝑧 = 𝑒𝑖𝜃 and 𝐶 be the unit circle |𝑧| = 1. 

Then  𝑑𝑧 = 𝑒𝑖𝜃𝑖 𝑑𝜃 or 𝑑𝜃 =
𝑑𝑧

𝑖𝑧
 and 𝑠𝑖𝑛 𝜃 =

1

2𝑖
(𝑧 −

1

𝑧
) =

𝑧2 − 1

2𝑖𝑧
 

Substituting these values, we get 

             𝐼 = ∫
𝑑𝜃

(5 − 3 𝑠𝑖𝑛 𝜃)2

2𝜋

0

= ∫
𝑑𝑧

𝑖𝑧 [5 − 3 (
𝑧2 − 1

2𝑖𝑧 )]
2

𝐶

 

                = ∫
𝑑𝑧

𝑖𝑧[10𝑖𝑧 − 3(𝑧2 − 1)]2

𝐶

 .4𝑖2𝑧2 

                = 4𝑖 ∫
𝑧 𝑑𝑧

(3𝑧2 − 10𝑖𝑧 − 3)2

𝐶

 

                = 4𝑖 ∫ 𝑓(𝑧)

𝐶

𝑑𝑧, where 𝑓(𝑧) =
𝑧

(3𝑧2 − 10𝑖𝑧 − 3)2
                        (1) 

Now we have to evaluate ∫ 𝑓(𝑧)

𝐶

𝑑𝑧 

The poles of 𝑓(𝑧) are given by      3𝑧2 − 10𝑖𝑧 − 3 = 0 

𝑖. 𝑒. ,      𝑧 =
10𝑖 ± √−100 + 36

6
=

10𝑖 ± 8𝑖

6
 

𝑖. 𝑒. ,      𝑧 =
10𝑖 + 8𝑖

6
= 3𝑖  and   𝑧 =

10𝑖 − 8𝑖

6
=

𝑖

3
 

Out of these two poles only the pole  𝑧 =
𝑖

3
 of order 2 lies within the circle |𝑧| = 1. 

Residue of 𝑓(𝑧) at 𝑧 =
𝑖

3
 is =

1

(2 − 1)!
lim
𝑧→

𝑖
3

𝑑

𝑑𝑧
[(𝑧 −

𝑖

3
)

2

𝑓(𝑧)] 

                                                    = lim
𝑧→

𝑖
3

𝑑

𝑑𝑧
[
1

9
(3𝑧 − 𝑖)2

𝑧

(3𝑧2 − 10𝑖𝑧 − 3)2
] 
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                                                     = lim
𝑧→

𝑖

3

𝑑

𝑑𝑧
[

1

9
(3𝑧 − 𝑖)2 𝑧

(3𝑧−𝑖)2(𝑧−3𝑖)2
] 

                                                    = lim
𝑧→

𝑖
3

𝑑

𝑑𝑧
[
1

9

𝑧

(𝑧 − 3𝑖)2
] = −

5

256
 

Thus by Residue theorem,  

                       ∫ 𝑓(𝑧)

𝐶

𝑑𝑧 = 2𝜋𝑖 × (Sum of the residues) 

                                            = 2𝜋𝑖 (−
5

256
) = −

10𝜋𝑖

256
                   (2) 

Hence     𝐼 = 4𝑖 (−
10𝜋𝑖

256
)    [From (1) and (2)] 

                     ∴     ∫
𝑑𝜃

(5 − 3 𝑠𝑖𝑛 𝜃)2

2𝜋

0

=
5𝜋

32
  

 

𝐄𝐗. 𝟒𝟓.  Show that ∫
𝑑𝜃

𝑎 + 𝑏 𝑠𝑖𝑛 𝜃

2𝜋

0

= ∫
𝑑𝜃

𝑎 + 𝑏 𝑐𝑜𝑠 𝜃

2𝜋

0

=
2𝜋

√𝑎2 − 𝑏2
, 𝑎 > 𝑏 > 0  

using residue theorem. 

𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧: Let     𝐼 = ∫
𝑑𝜃

𝑎 + 𝑏 𝑠𝑖𝑛 𝜃

2𝜋

0

 

Let 𝑧 = 𝑒𝑖𝜃  and 𝐶 be the unit circle |𝑧| = 1. 

Then  𝑑𝑧 = 𝑒𝑖𝜃𝑖 𝑑𝜃 or 𝑑𝜃 =
𝑑𝑧

𝑖𝑧
 and 𝑠𝑖𝑛 𝜃 =

1

2𝑖
(𝑧 −

1

𝑧
) =

𝑧2 − 1

2𝑖𝑧
 

∴                𝐼 = ∫
1

𝑎 +
𝑏
2𝑖 (𝑧 −

1
𝑧)𝐶

 .
𝑑𝑧

𝑖𝑧
= ∫

2𝑧𝑖

2𝑖𝑎𝑧 + 𝑏(𝑧2 − 1)
𝐶

 .
𝑑𝑧

𝑖𝑧
 

                     = 2 ∫
𝑑𝑧

𝑏𝑧2 + 2𝑖𝑎𝑧 − 𝑏
𝐶

=
2

𝑏
∫

𝑑𝑧

𝑧2 +
2𝑎
𝑏 𝑖𝑧 − 1𝐶

 

                      =
2

𝑏
∫ 𝑓(𝑧)

𝐶

𝑑𝑧, where 𝑓(𝑧) = 𝑧2 +
2𝑎

𝑏
𝑖𝑧 − 1 =

1

(𝑧 − 𝛼)(𝑧 − 𝛽)
 

where 𝛼 + 𝛽 = −
2𝑎𝑖

𝑏
 and 𝛼𝛽 = −1 

The poles of 𝑓(𝑧) are given by  𝑧2 +
2𝑎

𝑏
𝑖𝑧 − 1 = 0 
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∴               𝑧 =
1

2
[−

2𝑎𝑖

𝑏
± √

−4𝑎2

𝑏2
+ 4] =

1

2
[−

2𝑎𝑖

𝑏
±

2𝑖

𝑏
√𝑎2 − 𝑏2] 

                      =
𝑖

𝑏
[−𝑎 ± √𝑎2 − 𝑏2] 

Let the poles of 𝑓(𝑧) be 

               𝛼 =
𝑖

𝑏
(−𝑎 + √𝑎2 − 𝑏2)  and 𝛽 =

𝑖

𝑏
(−𝑎 − √𝑎2 − 𝑏2) 

Out of these poles 𝑧 = 𝛼 lies within the circle |𝑧| = 1. 

Residue of 𝑓(𝑧) at  𝑧 = 𝛼 is 

             [𝑅𝑒𝑠 𝑓(𝑧)]𝑧=𝛼 = lim
𝑧→𝛼

[(𝑧 − 𝛼)𝑓(𝑧)] 

                                         = lim
𝑧→𝛼

[(𝑧 − 𝛼)
1

(𝑧 − 𝛼)(𝑧 − 𝛽)
] =

1

𝛼 − 𝛽
 

                                         =
1

√(𝛼 + 𝛽)2 − 4𝛼𝛽
=

1

√−4𝑎2

𝑏2 + 4

 

                                         =
𝑏

√−4𝑎2 + 4𝑏2
=

𝑏

2𝑖√𝑎2 − 𝑏2
 

Thus by Residue theorem,  

                                ∫ 𝑓(𝑧)

𝐶

𝑑𝑧 = 2𝜋𝑖 .
𝑏

2𝑖√𝑎2 − 𝑏2
=

𝜋𝑏

√𝑎2 − 𝑏2
 

Hence    𝐼 =
2

𝑏
∫ 𝑓(𝑧)

𝐶

𝑑𝑧 =
2

𝑏
 .

𝜋𝑏

√𝑎2 − 𝑏2
 

∴     ∫
𝑑𝜃

𝑎 + 𝑏 𝑠𝑖𝑛 𝜃

2𝜋

0

=
2𝜋

√𝑎2 − 𝑏2
 

Similarly we can prove that     ∫
𝑑𝜃

𝑎 + 𝑏 𝑐𝑜𝑠 𝜃

2𝜋

0

=
2𝜋

√𝑎2 − 𝑏2
 

∴     ∫
𝑑𝜃

𝑎 + 𝑏 𝑠𝑖𝑛 𝜃

2𝜋

0

= ∫
𝑑𝜃

𝑎 + 𝑏 𝑐𝑜𝑠 𝜃

2𝜋

0

=
2𝜋

√𝑎2 − 𝑏2
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2.20. Evaluation of certain real integrals between the limits −∞ 𝒂𝒏𝒅 ∞: 

We shall now prove the following theorem: 

Let 𝑄(𝑧) be a function satisfying the following conditions: 

(a) 𝑄(𝑧) is analytic in the upper half of the 𝑧-plane, except at a finite number of 

poles. 

(b) 𝑄(𝑧)has no poles on the real axis. 

(c) Let |𝑧 𝑄(𝑧)| = 0 as |𝑧| → ∞ through the values of 𝑧 such that 0 ≤ 𝑎𝑚𝑝 𝑧 ≤ 𝜋. 

Then ∫ 𝑄(𝑥)

∞

−∞

𝑑𝑥 = 2𝜋𝑖 ×  sum of the residues of𝑄(𝑧)at its poles which lie on theupper 

half plane. 

Consider a semicircle with centre at 𝑧 = 0 and with radius 𝑅 sufficiently large so as to 

include all the poles of 𝑄(𝑧) which lie in the upper half plane as shown in the figure. 

Then by Cauchy’s residue theorem, we have  

∫ 𝑄(𝑧)

𝐶1+𝐶2

𝑑𝑧 = 2𝜋𝑖 × ∑ residues of 𝑄(𝑧)at all poles within𝐶1 + 𝐶2 

∫ 𝑄(𝑧)

𝑅

−𝑅

𝑑𝑧 + ∫ 𝑄(𝑧)

𝐶2

𝑑𝑧 = 2𝜋𝑖 × ∑ residues                  (1) 

Now , in ∫ 𝑄(𝑧)

𝐶2

𝑑𝑧, 𝑝𝑢𝑡 𝑧 = 𝑅 𝑒𝑖𝜃  

Then 𝑑𝑧 = 𝑅 𝑒𝑖𝜃 𝑖 𝑑𝜃 = 𝑖𝑧 𝑑𝜃 

Therefore  

| ∫ 𝑄(𝑧)

𝐶2

𝑑𝑧| = ∫|𝑄(𝑧) 𝑖𝑧|

𝜋

0

𝑑𝜃 = ∫|𝑄(𝑧) 𝑧|

𝜋

0

𝑑𝜃                        (2) 

Now, by condition (c) of this theorem, 

Let  |𝑧 𝑄(𝑧)| = 0 as |𝑧|𝑖. 𝑒. , 𝑅 → ∞. 

Hence if 𝑅 is large enough, we can find an arbitrary small positive quantity 𝛿 such 

that |𝑧 𝑄(𝑧)| < 𝛿. 
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Then, from (2), we have the inequality 

| ∫ 𝑄(𝑧)

𝐶2

𝑑𝑧| < ∫ 𝛿

𝜋

0

𝑑𝜃 

                                                                               𝑖. 𝑒. , < 𝛿𝜋, 𝑖. 𝑒. , < a very small quantity 

               This means that ∫ 𝑄(𝑧)

𝐶2

𝑑𝑧 = 0 𝑎𝑠 𝑅 → ∞. 

Hence taking limits in (1), as 𝑅 → ∞, we have 

∫ 𝑄(𝑥)

∞

−∞

𝑑𝑥 = 2𝜋𝑖 ∑ residues 

𝐍𝐨𝐭𝐞 𝟏: In problems  it will be easier to directly show that ∫ 𝑄(𝑧)

𝐶2

𝑑𝑧 → 0 as 𝑧 → ∞  

instead of applying the theorem. 

Note 2: The theorem will be specially useful in the case when 𝑄(𝑧)is a rational function. 

Note 3: In particular, if 𝑄(𝑧) =
𝑝(𝑧)

𝑞(𝑧)
 such that the degree of the denominator is greater than 

that of the numerator by at least two and 𝑞(𝑧) has no poles on the real axis, the conditions of 

the theorem are automatically satisfied. Hence we have the following important result: 

If 𝑝(𝑧) and 𝑞(𝑧) are real polynomials such that the degree of 𝑞(𝑧) is greater than that 

of 𝑝(𝑧) by at least two and if 𝑞(𝑧) = 0 has no real roots, then 

∫
𝑝(𝑧)

𝑞(𝑧)

∞

−∞

 𝑑𝑧 = 2𝜋𝑖 × sum of the residues of
𝑝(𝑧)

𝑞(𝑧)
at its poles in the upper half of the  

𝑧 − plane. 
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𝐄𝐗. 𝟒𝟔. Evaluate by contour integration ∫
𝑑𝑧

𝑥4 + 𝑎4

∞

𝟎

 . 

𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧: 𝐻𝑒𝑟𝑒 𝑤𝑒 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟  ∫
𝑑𝑧

𝑧4 + 𝑎4

𝐶

= ∫ 𝑄(𝑧)

𝐶

𝑑𝑧  

where 𝐶 is the contour consisting of the semicircle 𝐶2 of radius  𝑅  and 𝐶1 is the segment 

of the real axis from −𝑅 to 𝑅 as shown in the above figure. 

Then ∫ 𝑄(𝑥)

𝑅

−𝑅

 𝑑𝑥 + ∫ 𝑄(𝑧)  𝑑𝑧 = 2𝜋𝑖 ∑ residues of 𝑄(𝑧)in the upper half plane        (1) 

Now |𝑧| = 𝑅 on𝐶2 

And |𝑧4 + 𝑎4| ≥ |𝑧|4 − 𝑎4 

𝑖. 𝑒. , ≥ 𝑅4 − 𝑎4 

Therefore |
1

𝑧4 + 𝑎4
| ≤

1

𝑅4 − 𝑎4
 

Hence | ∫ 𝑄(𝑧)𝑑𝑧

𝐶2

| = | ∫
1

𝑧4 + 𝑎4
𝑑𝑧

𝐶2

| 

             ≤ ∫
1

𝑅4 − 𝑎4

𝐶2

|𝑑𝑧| 

≤
𝜋. 𝑅

𝑅4 − 𝑎4
 

and this approaches zero as 𝑅 → ∞. 

Therefore ∫ 𝑄(𝑧)𝑑𝑧

𝐶2

= 0 in the limit as 𝑅 → ∞ 

Hence taking limit in (1), as 𝑅 → ∞, we have 

∫ 𝑄(𝑧)𝑑𝑧

∞

−∞

= 2𝜋𝑖 ∑ 𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠  𝑜𝑓 𝑄(𝑧)(2) 

To get the residues of 𝑄(𝑧), we solve the equation 𝑧4 + 𝑎4 = 0. 

                    𝑖. 𝑒. , 𝑧4 = −𝑎4 = 𝑎4𝑒𝑖𝜋 , 𝑎4𝑒𝑖3𝜋, 𝑎4𝑒𝑖5𝜋, 𝑎4𝑒𝑖7𝜋  

              Therefore 𝑧 = 𝑎𝑒
1
4

𝑖𝜋, 𝑎𝑒
1
4

𝑖3𝜋 , 𝑎𝑒
1
4

𝑖5𝜋 , 𝑎𝑒
1
4

𝑖7𝜋
 

Of these four poles, the arguments of the first two points only lie between 0 and  𝜋. 

Hence the first two alone are in the upper half plane. 
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              Residue of 𝑄(𝑧) =
1

𝑧4 + 𝑎4
at 𝑧 = 𝑎𝑒

1
4

𝑖𝜋is 

                                             = lim
z→𝑎𝑒

1
4

𝑖𝜋

1

4z3
 

                                             = lim
z→𝑎𝑒

1
4

𝑖𝜋

z

4z4
=

𝑎𝑒
1
4

𝑖𝜋

−4𝑎4
= −

𝑒
1
4

𝑖𝜋

4𝑎3
 

  Similarly Residue of 𝑄(𝑧) =
1

𝑧4 + 𝑎4
at 𝑧 = 𝑎𝑒

1
4

𝑖3𝜋is 

                                             = −
𝑒

1
4

𝑖3𝜋

4𝑎3
= −

𝑒𝑖(𝜋−
1
4

𝜋)

4𝑎3
= −

𝑒𝑖𝜋. 𝑒−
1
4

𝑖𝜋

4𝑎3
=

𝑒−
1
4

𝑖𝜋

4𝑎3
 

Sum of the two residues 

                                             = −
𝑒

1
4

𝑖𝜋

4𝑎3
+

𝑒−
1
4

𝑖𝜋

4𝑎3
= −

1

4𝑎3
(𝑒

1
4

𝑖𝜋 − 𝑒−
1
4

𝑖𝜋) 

                                             = −
1

4𝑎3
× 2𝑖 𝑠𝑖𝑛 

𝜋

4
              (3) 

Hence substituting (3) in (2), we get 

∫ 𝑄(𝑧)𝑑𝑧

∞

−∞

= 2𝜋𝑖 × −
1

4𝑎3
× 2𝑖 𝑠𝑖𝑛 

𝜋

4
 

=
𝜋

𝑎3
.

1

√2
 

∫
1

𝑧4 + 𝑎4
𝑑𝑧

∞

−∞

=
𝜋

𝑎3√2
 

Since 
1

𝑧4+𝑎4 is an even function of  𝑧, we have  

∫
1

𝑧4 + 𝑎4
𝑑𝑧

∞

−∞

= 2 ∫
1

𝑧4 + 𝑎4
𝑑𝑧

∞

0

=
𝜋

𝑎3√2
 

Therefore ∫
1

𝑧4 + 𝑎4
𝑑𝑧

∞

0

=
𝜋

2 𝑎3√2
 

 

𝐄𝐗. 𝟒𝟕. Evaluate ∫
𝑑𝑥

(𝑥2 + 𝑎2)2

∞

0

 . 

𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧: Since 
1

(𝑥2 + 𝑎2)2
 is an even function of 𝑥, we have 
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            ∫
𝑑𝑥

(𝑥2 + 𝑎2)2

∞

0

=
1

2
∫

𝑑𝑥

(𝑥2 + 𝑎2)2

∞

−∞

                                          (1) 

Here we consider ∫
𝑑𝑧

(𝑧2 + 𝑎2)2

𝐶

= ∫ 𝑓(𝑧)𝑑𝑧

𝐶

 

where 𝐶 is the contour consisting of the semi-circle 𝐶𝑅  of radius 𝑅 together with the 

part of the real axis from – 𝑅 to 𝑅. 

The integrand has two poles of order 2 at 𝑧 = 𝑖𝑎 and 𝑧 = −𝑖𝑎. But 𝑧 = 𝑖𝑎 only lies inside 

the semi-circle of the contour 𝐶. 

∴    By Residue theorem, 

          ∫ 𝑓(𝑧)𝑑𝑧

𝐶

= 2𝜋𝑖 × (sum of the residues) 

                              = 2𝜋𝑖 × [𝑅𝑒𝑠 𝑓(𝑧)]𝑧=𝑎𝑖  

                              = 2𝜋𝑖 × lim
𝑧→𝑎𝑖

𝑑

𝑑𝑧
{(𝑧 − 𝑎𝑖)2

1

(𝑧 − 𝑎𝑖)2(𝑧 + 𝑎𝑖)2
} 

                              = 2𝜋𝑖 × lim
𝑧→𝑎𝑖

𝑑

𝑑𝑧
{

1

(𝑧 + 𝑎𝑖)2
} 

                              = 2𝜋𝑖 × lim
𝑧→𝑎𝑖

−2

(𝑧 + 𝑎𝑖)3
 

                              = 2𝜋𝑖 ×
−2

(2𝑎𝑖)3
=

𝜋

2𝑎3
 

𝑖. 𝑒. , ∫ 𝑓(𝑥)𝑑𝑥

𝑅

−𝑅

+ ∫ 𝑓(𝑧)𝑑𝑧

𝐶𝑅

=
𝜋

2𝑎3
 

𝑖. 𝑒. , ∫
𝑑𝑥

(𝑥2 + 𝑎2)2

𝑅

−𝑅

+ ∫
𝑑𝑧

(𝑧2 + 𝑎2)2

𝐶𝑅

=
𝜋

2𝑎3
                                                  (2) 

Now       | ∫
𝑑𝑧

(𝑧2 + 𝑎2)2

𝐶𝑅

| ≤ ∫
|𝑑𝑧|

|(𝑧2 + 𝑎2)2|
𝐶𝑅

 

                  ≤
1

(𝑅2 − 𝑎2)2
∫ 𝑅𝑑𝜃

𝜋

0

   [
∵  |𝑧2 + 𝑎2| > |𝑧|2 − |−𝑎|2 and 𝑧 = 𝑅𝑒𝑖𝜃

⇒ 𝑑𝑧 = 𝑅𝑒𝑖𝜃. 𝑖𝑑𝜃 = 𝑖𝑧𝑑𝜃,   |𝑑𝑧| = 𝑅𝑑𝜃
] 

                                               =
𝑅𝜋

(𝑅2 − 𝑎2)2
 

and this → 0 as 𝑅 → ∞ 

            ∴  ∫
𝑑𝑧

(𝑧2 + 𝑎2)2

𝐶𝑅

→ 0 as 𝑅 → ∞ 

Hence by making 𝑅 → ∞, equation (2) becomes 
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                                  ∫
𝑑𝑥

(𝑥2 + 𝑎2)2

∞

−∞

=
𝜋

2𝑎3
 

                  or        ∫
𝑑𝑥

(𝑥2 + 𝑎2)2

∞

0

=
𝜋

4𝑎3
 , from (1) 

𝐍𝐨𝐭𝐞: Evaluate  ∫
𝑑𝑥

(𝑥2 + 1)2

∞

0

 using Residue theorem.  

Putting 𝑎 = 1 in the above problem, we get ∫
𝑑𝑥

(𝑥2 + 1)2

∞

0

=
𝜋

4
 . 

 

𝐄𝐗. 𝟒𝟖. Using the method of contour integration, prove that ∫
𝑑𝑥

𝑥6 + 1

∞

0

=
𝜋

3
 . 

𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧: Since integrand is an even function, we have ∫
𝑑𝑥

𝑥6 + 1

∞

−∞

=
1

2
∫

𝑑𝑥

𝑥6 + 1

∞

0

 

Consider ∫
𝑑𝑥

𝑧6 + 1
𝐶

= ∫ 𝑓(𝑧)𝑑𝑧

𝐶

   

where 𝐶 is the contour consisting of the semi − circle 𝐶𝑅 of radius 𝑅 together with the 

real axis from – 𝑅 to 𝑅. 

The poles of 𝑓(𝑧) =
1

𝑧6 + 1
 are the roots of the equation 𝑧6 + 1 = 0. 

𝑖. 𝑒. ,    𝑧6 + 1 = 0   ⇒    𝑧 = (−1)
1
6 

            ∴       𝑧 = (𝑐𝑜𝑠 𝜋 + +𝑖 𝑠𝑖𝑛 𝜋)
1
6 

                         = [𝑐𝑜𝑠 (2𝑛𝜋 + 𝜋) + +𝑖 𝑠𝑖𝑛 (2𝑛𝜋 + 𝜋)]
1
6 

                         = 𝑐𝑜𝑠 
(2𝑛 + 1)𝜋

6
+ 𝑖 𝑠𝑖𝑛 

(2𝑛 + 1)𝜋

6
      (by DeMoivre′s theorem) 

           where 𝑛 = 0, 1, 2, 3, 4, 5. 

or   𝑧 = 𝑒𝑖
(2𝑛+1)𝜋

6   where 𝑛 = 0, 1, 2, 3, 4, 5. 

or   𝑧 = 𝑒𝑖𝜋/6, 𝑒3𝑖𝜋/6, 𝑒5𝑖𝜋/6, 𝑒7𝑖𝜋/6, 𝑒9𝑖𝜋/6, 𝑒11𝑖𝜋/6 

of these poles only 𝑧 = 𝑒𝑖𝜋/6, 𝑒3𝑖𝜋/6, 𝑒5𝑖𝜋/6 lies inside the semi-circle. 

∴            [𝑅𝑒𝑠 𝑓(𝑧)]
𝑧=𝑒𝑖𝜋/6 = lim

𝑧→𝑒𝑖𝜋/6
[(𝑧 − 𝑒𝑖𝜋/6)

1

𝑧6 + 1
]      (=

0

0
) 
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                                                 = lim
𝑧→𝑒𝑖𝜋/6

[
1

6𝑧5
]    (By L′Hospital′s rule) 

                                                 =
1

6
𝑒−5𝑖𝜋/6 

Similarly  [𝑅𝑒𝑠 𝑓(𝑧)]
𝑧=𝑒3𝑖𝜋/6 =

1

6
𝑒−5𝑖𝜋/2 

and             [𝑅𝑒𝑠 𝑓(𝑧)]
𝑧=𝑒5𝑖𝜋/6 =

1

6
𝑒−25𝑖𝜋/6 

hence by residue theorem, we have 

          ∫ 𝑓(𝑧)𝑑𝑧

𝐶

= 2𝜋𝑖 × (sum of the residues at he poles within 𝐶) 

                              =
2𝜋𝑖

6
× [𝑒−5𝑖𝜋/6 + 𝑒−5𝑖𝜋/2 + 𝑒−25𝑖𝜋/6] 

          =
𝜋𝑖

3
× [(𝑐𝑜𝑠

5𝜋

6
− 𝑖 𝑠𝑖𝑛

5𝜋

6
) + (𝑐𝑜𝑠

5𝜋

2
− 𝑖 𝑠𝑖𝑛

5𝜋

2
) + (𝑐𝑜𝑠

25𝜋

6
− 𝑖 𝑠𝑖𝑛

25𝜋

6
)] 

                              =
2𝜋𝑖

3
 

𝑖. 𝑒. , ∫ 𝑓(𝑥)𝑑𝑥

𝑅

−𝑅

+ ∫ 𝑓(𝑧)𝑑𝑧

𝐶𝑅

=
2𝜋

3
 

But ∫ 𝑓(𝑧)𝑑𝑧

𝐶𝑅

 → 0 as 𝑧 = 𝑅𝑒𝑖𝜃 and 𝑅 → ∞  

Hence ∫ 𝑓(𝑥)𝑑𝑥

∞

−∞

=
2𝜋

3
 

𝑖. 𝑒., ∫
𝑑𝑥

𝑥6 + 1

∞

−∞

=
2𝜋

3
  or           ∫

𝑑𝑥

𝑥6 + 1

∞

0

=
𝜋

3
 

 

𝐄𝐗. 𝟒𝟗. Prove that ∫
𝑥2

(𝑥2 + 𝑎2)(𝑥2 + 𝑏2)

∞

−∞

𝑑𝑥 =
𝜋

𝑎 + 𝑏
 (𝑎 > 0, 𝑏 > 0, 𝑎 ≠ 𝑏). 

Solution: To evaluate the given integral, consider 

                                  ∫
𝑧2

(𝑧2 + 𝑎2)(𝑧2 + 𝑏2)

∞

−∞

𝑑𝑧 = ∫ 𝑓(𝑧)𝑑𝑧

𝐶

 

where 𝐶 is the contour consisting of the semi-circle 𝐶𝑅 of radius 𝑅 together with the part 

of the real axis from – 𝑅 to 𝑅. 
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             The poles of 𝑓(𝑧) =
𝑧2

(𝑧2 + 𝑎2)(𝑧2 + 𝑏2)
 are 𝑧 = ±𝑖𝑎, 𝑧 = ±𝑖𝑏. 

But 𝑧 = 𝑖𝑎 and 𝑧 = 𝑖𝑏 are the only two poles lie in the upper half of the 𝑧-plane. 

∴        [𝑅𝑒𝑠 𝑓(𝑧)]𝑧=𝑖𝑎 = lim
𝑧→𝑖𝑎

(𝑧 − 𝑖𝑎)𝑓(𝑧) 

                                        = lim
𝑧→𝑖𝑎

(𝑧 − 𝑖𝑎)
𝑧2

(𝑧2 + 𝑎2)(𝑧2 + 𝑏2)
 

                                        = lim
𝑧→𝑖𝑎

𝑧2

(𝑧 + 𝑖𝑎)(𝑧2 + 𝑏2)
=

−𝑎2

(𝑖𝑎 + 𝑖𝑎)(−𝑎2 + 𝑏2)
=

𝑎

2𝑖(𝑎2 − 𝑏2)
 

Also  [𝑅𝑒𝑠 𝑓(𝑧)]𝑧=𝑖𝑏 = lim
𝑧→𝑖𝑏

(𝑧 − 𝑖𝑏)𝑓(𝑧) 

                                        = lim
𝑧→𝑖𝑏

(𝑧 − 𝑖𝑏)
𝑧2

(𝑧2 + 𝑎2)(𝑧2 + 𝑏2)
 

                                        = lim
𝑧→𝑖𝑏

𝑧2

(𝑧 + 𝑖𝑏)(𝑧2 + 𝑎2)
=

−𝑏2

(𝑖𝑏 + 𝑖𝑏)(𝑎2 − 𝑏2)
=

−𝑏

2𝑖(𝑎2 − 𝑏2)
 

By Cauchy’s Residue theorem, we have 

          ∫ 𝑓(𝑧)𝑑𝑧

𝐶

= 2𝜋𝑖 × (sum of the residues at he poles within 𝐶) 

 ∴       ∫ 𝑓(𝑧)𝑑𝑧

𝐶

= 2𝜋𝑖 [
𝑎

2𝑖(𝑎2 − 𝑏2)
−

𝑏

2𝑖(𝑎2 − 𝑏2)
] 

                              = 𝜋 [
𝑎 − 𝑏

𝑎2 − 𝑏2
] =

𝜋

𝑎 + 𝑏
 

𝑖. 𝑒. , ∫ 𝑓(𝑥)𝑑𝑥

𝑅

−𝑅

+ ∫ 𝑓(𝑧)𝑑𝑧

𝐶𝑅

=
𝜋

𝑎 + 𝑏
  But ∫ 𝑓(𝑧)𝑑𝑧

𝐶𝑅

 → 0 as 𝑧 = 𝑅𝑒𝑖𝜃 and 𝑅 → ∞  

Hence ∫ 𝑓(𝑥)𝑑𝑥

∞

−∞

= ∫
𝑥2

(𝑥2 + 𝑎2)(𝑥2 + 𝑏2)

∞

−∞

𝑑𝑥 =
𝜋

𝑎 + 𝑏
 

 

𝐄𝐗. 𝟓𝟎. Prove that ∫
𝑥2

(𝑥2 + 1)(𝑥2 + 4)

∞

−∞

𝑑𝑥 using residue theorem. 

Solution: To evaluate the given integral, consider 

                                  ∫
𝑧2

(𝑧2 + 1)(𝑧2 + 4)

∞

−∞

𝑑𝑧 = ∫ 𝑓(𝑧)𝑑𝑧

𝐶
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where 𝐶 is the contour consisting of the semi-circle 𝐶𝑅 of radius 𝑅 together with the part 

of the real axis from – 𝑅 to 𝑅. 

             The poles of 𝑓(𝑧) =
𝑧2

(𝑧2 + 1)(𝑧2 + 4)
 are 𝑧 = ±𝑖, 𝑧 = ±2𝑖. 

But 𝑧 = 𝑖 and 𝑧 = 2𝑖 are the only two poles lie inside 𝐶. 

∴        [𝑅𝑒𝑠 𝑓(𝑧)]𝑧=𝑖 = lim
𝑧→𝑖

(𝑧 − 𝑖)𝑓(𝑧) 

                                        = lim
𝑧→𝑖

(𝑧 − 𝑖)
𝑧2

(𝑧2 + 1)(𝑧2 + 4)
 

                                        = lim
𝑧→𝑖

𝑧2

(𝑧 + 𝑖)(𝑧2 + 4)
=

−1

(𝑖 + 𝑖)(−1 + 4)
=

−1

6𝑖
 

Also  [𝑅𝑒𝑠 𝑓(𝑧)]𝑧=2𝑖 = lim
𝑧→2𝑖

(𝑧 − 2𝑖)𝑓(𝑧) 

                                        = lim
𝑧→2𝑖

(𝑧 − 2𝑖)
𝑧2

(𝑧2 + 1)(𝑧2 + 4)
 

                                        = lim
𝑧→2𝑖

𝑧2

(𝑧2 + 1)(𝑧 + 2𝑖)
=

−4

(−4 + 1)(2𝑖 + 2𝑖)
=

1

3𝑖
 

By Cauchy’s Residue theorem, we have 

          ∫ 𝑓(𝑧)𝑑𝑧

𝐶

= 2𝜋𝑖 × (sum of the residues at he poles within 𝐶) 

 ∴       ∫ 𝑓(𝑧)𝑑𝑧

𝐶

= 2𝜋𝑖 [
−1

6𝑖
+

1

3𝑖
] =

𝜋

3
 

 𝑖. 𝑒. , ∫ 𝑓(𝑥)𝑑𝑥

𝑅

−𝑅

+ ∫ 𝑓(𝑧)𝑑𝑧

𝐶𝑅

=
𝜋

3
  But ∫ 𝑓(𝑧)𝑑𝑧

𝐶𝑅

 → 0 as 𝑧 = 𝑅𝑒𝑖𝜃 and 𝑅 → ∞  

Hence ∫ 𝑓(𝑥)𝑑𝑥

∞

−∞

= ∫
𝑥2

(𝑥2 + 1)(𝑥2 + 4)

∞

−∞

𝑑𝑥 =
𝜋

3
 

 

𝐄𝐗. 𝟓𝟏. Evaluate by contour integration ∫
𝑑𝑥

1 + 𝑥2

∞

0

 . 

𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧: Consider ∫
𝑑𝑥

1 + 𝑥2

∞

0

= ∫ 𝑓(𝑧)𝑑𝑧

𝐶

 

where 𝐶 is the contour consisting of the semi-circle 𝐶𝑅 of radius 𝑅 together with the part 

of the real axis from – 𝑅 to 𝑅. 
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 The integrand has simple poles at 𝑧 = ±𝑖. The pole 𝑧 = 𝑖 is inside 𝐶 and 𝑧 = −𝑖 is 

outside 𝐶. 

[𝑅𝑒𝑠 𝑓(𝑧)]𝑧=𝑖 = lim
𝑧→𝑖

(𝑧 − 𝑖)𝑓(𝑧) = lim
𝑧→𝑖

1

𝑧 + 𝑖
=

1

2𝑖
 

Hence by Cauchy’s residue theorem, 

                                          ∫ 𝑓(𝑧)𝑑𝑧

𝐶

= 2𝜋𝑖 ×
1

2𝑖
= 𝜋 

                              𝑖. 𝑒. , ∫ 𝑓(𝑥)𝑑𝑥

𝑅

−𝑅

+ ∫ 𝑓(𝑧)𝑑𝑧

𝐶𝑅

= 𝜋 

But ∫ 𝑓(𝑧)𝑑𝑧

𝐶𝑅

 → 0 as 𝑧 = 𝑅𝑒𝑖𝜃 and 𝑅 → ∞  

Hence ∫ 𝑓(𝑥)𝑑𝑥

∞

−∞

= ∫
1

(𝑥2 + 1)

∞

−∞

𝑑𝑥 = 𝜋 

                          or        ∫
1

𝑥2 + 1

∞

0

𝑑𝑥 =
𝜋

2
 

 

𝐄𝐗. 𝟓𝟐. Prove that ∫
𝑥2 − 𝑥 + 2

𝑥4 + 10𝑥2 + 9

∞

−∞

𝑑𝑥 =
5𝜋

12
 . 

Solution: To evaluate the given integral, we consider 

                     ∫
𝑧2 − 𝑧 + 2

𝑧4 + 10𝑧2 + 9
𝐶

𝑑𝑧 = ∫
𝑧2 − 𝑧 + 2

(𝑧2 + 1)(𝑧2 + 9)
𝐶

𝑑𝑧 = ∫ 𝑓(𝑧)

𝐶

𝑑𝑧 

where 𝐶 is the contour consisting of the semi-circle 𝐶𝑅 of radius 𝑅 together with the part 

of the real axis from – 𝑅 to 𝑅. Observe that the integrand has simple poles at 𝑧 = ±𝑖, 𝑧 =

±3𝑖. But 𝑧 = 𝑖 and 𝑧 = 3𝑖 are the only poles lie inside the semi-circle of the contour 𝐶. 

          ∴    By Residue theorem, we have 

                  ∫ 𝑓(𝑧)𝑑𝑧

𝐶

= 2𝜋𝑖{[𝑅𝑒𝑠 𝑓(𝑧)]𝑧=𝑖 + [𝑅𝑒𝑠 𝑓(𝑧)]𝑧=3𝑖} 

                                     = 2𝜋𝑖 [lim
𝑧→𝑖

(𝑧 − 𝑖)𝑓(𝑧) + lim
𝑧→3𝑖

(𝑧 − 3𝑖)𝑓(𝑧)] 

                                     = 2𝜋𝑖 [lim
𝑧→𝑖

𝑧2 − 𝑧 + 2

(𝑧 + 𝑖)(𝑧2 + 9)
+ lim

𝑧→3𝑖

𝑧2 − 𝑧 + 2

(𝑧2 + 1)(𝑧 + 3𝑖)
] 
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                                     = 2𝜋𝑖 [
𝑖2 − 𝑖 + 2

(𝑖 + 𝑖)(𝑖2 + 9)
+

9𝑖2 − 3𝑖 + 2

(9𝑖2 + 1)(3𝑖 + 3𝑖)
] 

                                     = 2𝜋𝑖 [
−𝑖 + 1

16𝑖
+

−3𝑖 − 7

−48𝑖
] =

5𝜋

12
 

𝑖. 𝑒. ,   ∫ 𝑓(𝑥)𝑑𝑥

𝑅

−𝑅

+ ∫ 𝑓(𝑧)𝑑𝑧

𝐶𝑅

=
5𝜋

12
 

Taking 𝑅 → ∞, ∫ 𝑓(𝑥)𝑑𝑥

∞

−∞

=
5𝜋

12
 where lim

𝑅→∞
∫ 𝑓(𝑧)𝑑𝑧

𝐶𝑅

= 0 

Hence      ∫
𝑥2 − 𝑥 + 2

𝑥4 + 10𝑥2 + 9

∞

−∞

𝑑𝑥 =
5𝜋

12
. 

𝐄𝐗. 𝟓𝟑. Use the method of contour integration to evaluate ∫
𝑥2

(𝑥2 + 𝑎2)3

∞

−∞

𝑑𝑥. 

𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧: Let  𝑓(𝑧) =
𝑧2

(𝑧2 + 𝑎2)3
 

Consider ∫ 𝑓(𝑧)𝑑𝑧

𝐶

 where  𝐶 is a closed contour consisting of the upper half 𝐶𝑅 of a large circle  

|𝑧| = 𝑅 and the real axis from −𝑅 to 𝑅.  

Poles of 𝑓(𝑧) are given by (𝑧2 + 𝑎2)3 = 0 or 𝑧2 = −𝑎2 ⇒ 𝑧 = ±𝑖𝑎 

Evidently 𝑧 = 𝑖𝑎 is the only pole of order 3 lie within 𝐶. 

To get residue at 𝑧 = 𝑖𝑎, put 𝑧 = 𝑖𝑎 + 𝑤 in 𝑓(𝑧). Then  

                 𝑓(𝑖𝑎 + 𝑤) =
(𝑖𝑎 + 𝑤)2

[(𝑖𝑎 + 𝑤)2 + 𝑎2]3
=

𝑤2 − 𝑎2 + 2𝑖𝑎𝑤

(𝑤2 + 2𝑖𝑎𝑤)3
 

                                      =
𝑤2 − 𝑎2 + 2𝑖𝑎𝑤

(2𝑖𝑎𝑤)3
[1 +

𝑤

2𝑖𝑎
]

−3

 

                                      = −
1

8𝑖
.
𝑤2 − 𝑎2 + 2𝑖𝑎𝑤

𝑎3𝑤3
[1 −

3𝑤

2𝑖𝑎
+

6𝑤2

4𝑖2𝑎2
− ⋯ ] 

                                      =
𝑤2 − 𝑎2 + 2𝑖𝑎𝑤

−8𝑖𝑎3
[

1

𝑤3
−

3

2𝑖𝑎𝑤2
−

3

2𝑎2𝑤
− ⋯ ] 

         Hence residue = coefficient of
1

𝑤
 

                                      = −
1

8𝑖𝑎3
[1 +

3

2
− 3] =

1

16𝑖𝑎3
 

         Hence by Cauchy’s Residue theorem, we have 
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                ∫ 𝑓(𝑧)𝑑𝑧

𝐶

= 2𝜋𝑖 × sum of the residues within 𝐶 

𝑖. 𝑒. ,   ∫ 𝑓(𝑥)𝑑𝑥

𝑅

−𝑅

+ ∫ 𝑓(𝑧)𝑑𝑧

𝐶𝑅

= 2𝜋𝑖 ×
1

16𝑖𝑎3
 

𝑖. 𝑒. ,   ∫
𝑥2

(𝑥2 + 𝑎2)3
𝑑𝑥

𝑅

−𝑅

+ ∫
𝑧2

(𝑧2 + 𝑎2)3
𝑑𝑧

𝐶𝑅

=
𝜋

8𝑎3
                                       (1) 

Now   | ∫
𝑧2

(𝑧2 + 𝑎2)3
𝑑𝑧

𝐶𝑅

| ≤ ∫
|𝑧|2

(|𝑧2 + 𝑎2|)3
𝑑𝑧

𝐶𝑅

 

                                                 ≤
𝑅2

(𝑅2 − 𝑎2)3
∫ 𝑅𝑑𝜃

𝜋

0

 [∵ 𝑧 = 𝑅𝑒𝑖𝜃, |𝑑𝑧| = 𝑅𝑑𝜃] 

                                                =
𝑅2𝜋

(𝑅2 − 𝑎2)3
 and this → 0 as 𝑅 → ∞ 

∴ ∫
𝑧2

(𝑧2 + 𝑎2)3
𝑑𝑧

𝐶𝑅

= 0 as 𝑅 → ∞ 

Hence by making 𝑅 → ∞, equation (1)becomes ∫
𝑥2

(𝑥2 + 𝑎2)3

∞

−∞

𝑑𝑥 =
𝜋

8𝑎3
 

 

𝐄𝐗. 𝟓𝟒. Evaluate ∫
𝑑𝑥

(𝑥2 + 9)(𝑥2 + 4)2

∞

0

 using residue theorem. 

𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧: Here we consider  ∫
𝑑𝑧

(𝑧2 + 9)(𝑧2 + 4)2

∞

0

= ∫ 𝑓(𝑧)𝑑𝑧

𝐶

 

where 𝐶 is the contour consisting of the semi-circle 𝐶𝑅 of radius 𝑅 and the segment of 

the real axis from – 𝑅 to 𝑅. 

For the function 𝑓(𝑧), 𝑧 = ±3𝑖 are two simple poles and 𝑧 = ±2𝑖 are two poles of 

second order. Of these four poles, only 𝑧 = 2𝑖 and 𝑧 = 3𝑖 are inside 𝐶. 

               [𝑅𝑒𝑠 𝑓(𝑧)]𝑧=2𝑖 =
1

(2 − 1)!
lim
𝑧→2𝑖

𝑑

𝑑𝑧
[(𝑧 − 2𝑖)2𝑓(𝑧)] 

                                            = lim
𝑧→2𝑖

𝑑

𝑑𝑧
[

1

(𝑧2 + 9)(𝑧 + 2𝑖)2
] 

                                            = lim
𝑧→2𝑖

[
−2(2𝑧2 + 2𝑧𝑖 + 9)

(𝑧2 + 9)2(𝑧 + 2𝑖)3
] =

3𝑖

800
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               [𝑅𝑒𝑠 𝑓(𝑧)]𝑧=3𝑖 = lim
𝑧→3𝑖

[(𝑧 − 3𝑖)𝑓(𝑧)] 

                                            = lim
𝑧→2𝑖

[
1

(𝑧 + 3𝑖)(𝑧2 + 4)2
] 

                                            =
−𝑖

150
 

Hence by Cauchy’s Residue theorem, we have 

                ∫ 𝑓(𝑧)𝑑𝑧

𝐶

= 2𝜋𝑖 × sum of the residues within 𝐶 

𝑖. 𝑒. ,   ∫ 𝑓(𝑥)𝑑𝑥

𝑅

−𝑅

+ ∫ 𝑓(𝑧)𝑑𝑧

𝐶𝑅

= 2𝜋𝑖 × (
3𝑖

800
−

𝑖

150
) =

7𝜋

1200
                    (1) 

Hence by making 𝑅 → ∞, equation (1) becomes 

                              ∫ 𝑓(𝑥)𝑑𝑥

∞

−∞

+ lim
𝑅→∞

∫ 𝑓(𝑧)𝑑𝑧

𝐶𝑅

=
7𝜋

1200
 

when 𝑅 → ∞, |𝑧| → ∞, ∴ ∫ 𝑓(𝑧)𝑑𝑧

𝐶𝑅

= 0 

           Thus ∫ 𝑓(𝑥)𝑑𝑥

∞

−∞

=
7𝜋

1200
 

             𝑖. 𝑒. ,      ∫
𝑑𝑥

(𝑥2 + 9)(𝑥2 + 4)2

∞

−∞

=
7𝜋

1200
 

             or         2 ∫
𝑑𝑥

(𝑥2 + 9)(𝑥2 + 4)2

∞

0

=
7𝜋

1200
 

               or        ∫
𝑑𝑥

(𝑥2 + 9)(𝑥2 + 4)2

∞

0

=
7𝜋

2400
 

 

𝐄𝐗. 𝟓𝟓. Prove that ∫
𝑥2 − 𝑥 + 2

𝑥4 + 10𝑥2 + 9
𝑑𝑥

∞

−∞

=
5𝜋

12
 . 

Solution: To evaluate the given integral, we consider 

               ∫
𝑧2 − 𝑧 + 2

𝑧4 + 10𝑧2 + 9
𝑑𝑧

∞

−∞

= ∫
𝑧2 − 𝑧 + 2

(𝑧2 + 1)(𝑧2 + 9)
𝑑𝑧 = ∫ 𝑓(𝑧)𝑑𝑧

𝐶

∞

0

 

where 𝐶 is the contour consisting of the semi-circle 𝐶𝑅 of radius 𝑅 together with the part 

of the real axis from – 𝑅 to 𝑅. Observe that the integrand has simple poles at 𝑧 = ±𝑖 and 
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𝑧 = ±3𝑖. But 𝑧 = 𝑖 and 𝑧 = 3𝑖 are the only two poles lie inside the semi-circle of the 

contour 𝐶 

For the function 𝑓(𝑧), 𝑧 = ±3𝑖 are two simple poles and 𝑧 = ±2𝑖 are two poles of 

second order. Of these four poles, only 𝑧 = 2𝑖 and 𝑧 = 3𝑖 are inside 𝐶. 

Hence by Cauchy’s Residue theorem, we have 

                ∫ 𝑓(𝑧)𝑑𝑧

𝐶

= 2𝜋𝑖 × sum of the residues within 𝐶 

                                    = 2𝜋𝑖{[𝑅𝑒𝑠 𝑓(𝑧)]𝑧=𝑖 + [𝑅𝑒𝑠 𝑓(𝑧)]𝑧=3𝑖} 

                                    = 2𝜋𝑖 [lim
𝑧→𝑖

(𝑧 − 𝑖)𝑓(𝑧) + lim
𝑧→3𝑖

(𝑧 − 3𝑖)𝑓(𝑧)] 

                                    = 2𝜋𝑖 [lim
𝑧→𝑖

𝑧2 − 𝑧 + 2

(𝑧 + 𝑖)(𝑧2 + 9)
+ lim

𝑧→3𝑖

𝑧2 − 𝑧 + 2

(𝑧 + 𝑖)(𝑧 + 3𝑖)
] 

                                    = 2𝜋𝑖 ×
10

48𝑖
=

5𝜋

12
 

         𝑖. 𝑒. ,   ∫ 𝑓(𝑥)𝑑𝑥

𝑅

−𝑅

+ ∫ 𝑓(𝑧)𝑑𝑧

𝐶𝑅

=
5𝜋

12
         (∵ on real axis 𝑧 = 𝑥) 

Taking 𝑅 → ∞, ∫ 𝑓(𝑥)𝑑𝑥

∞

−∞

=
5𝜋

12
 where lim

𝑅→∞
∫ 𝑓(𝑧)𝑑𝑧

𝐶𝑅

= 0 

Hence ∫
𝑥2 − 𝑥 + 2

𝑥4 + 10𝑥2 + 9
𝑑𝑥

∞

−∞

=
5𝜋

12
 

𝐍𝐨𝐭𝐞: Instead of proving separately that ∫ 𝑄(𝑧)𝑑𝑧

𝐶2

= 0 at 𝑅 → ∞, we can remark that  

𝑄(𝑧) satisfies the conditions of the theorem 8 and start directly from equation (2). 
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2.21. Evaluation of certain improper integrals involving trigonometric functions:     

 Consider the product 𝑒𝑖𝑚𝑧𝑄(𝑧) where 𝑚 > 0 and 𝑄(𝑧) satisfies the conditions of the  

theorem in 8.  

Now                |𝑒𝑖𝑚𝑧| = |𝑒𝑖𝑚(𝑥+𝑖𝑦)| 

                          = |𝑒𝑖𝑚𝑥 . 𝑒−𝑚𝑦| 

             = 𝑒−𝑚𝑦 

< 1, for 𝑦 > 0 

Therefore |𝑒𝑖𝑚𝑧𝑄(𝑧)| = |𝑒𝑖𝑚𝑥|. |𝑄(𝑧)| 

< 𝑄(𝑧) 

Since ∫ 𝑒𝑖𝑚𝑧𝑄(𝑧)

𝐶2

→ 0 where𝐶2is the semicircle of the above figure, it follows that 

∫ 𝑒𝑖𝑚𝑧𝑄(𝑧)

𝐶2

= 0 

Hence the conclusions of theorem 8 can be applied for 𝑒𝑖𝑚𝑧𝑄(𝑧). 

 So we have the following result: 

∫ 𝑒𝑖𝑚𝑧𝑄(𝑧)

∞

−∞

𝑑𝑧 = 2𝜋𝑖 ∑ residues of𝑒𝑖𝑚𝑧𝑄(𝑧)at its poles in the upper half plane. 

On taking the real and imaginary parts of this result, we see that by this method we can 

evaluate integrals of the type 

∫ 𝑓(𝑥)

∞

−∞

 𝑐𝑜𝑠 𝑚𝑥 𝑑𝑥 and ∫ 𝑓(𝑥)

∞

−∞

 𝑠𝑖𝑛 𝑚𝑥 𝑑𝑥  

 

𝐄𝐗. 𝟓𝟔. Evaluate by contour integration ∫
𝑐𝑜𝑠 𝑚𝑥

𝑎2 + 𝑥2

∞

0

𝑑𝑥. 

Solution: Here we consider 

∫
𝑒𝑖𝑚𝑧

𝑎2 + 𝑧2

𝐶

𝑑𝑧 = ∫ 𝑄(𝑧)

𝐶

𝑑𝑧 

where C is the contour consisting of the semicircle 𝐶2 of radius 𝑅 and 𝐶1 is the segment of 

the real axis from −𝑅 to 𝑅 as shown in the above figure. 

Then ∫ 𝑄(𝑥)

𝑅

−𝑅

𝑑𝑥 + ∫ 𝑄(𝑧)

𝐶2

𝑑𝑧 = 2𝜋𝑖 ∑ reidues of 𝑄(𝑧)in the upper half plane       (1) 
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Now |𝑧| = 𝑅 on 𝐶2. 

|𝑧2 + 𝑎2| ≥ |𝑧|2 − 𝑎2 

                ≥ 𝑅2 − 𝑎2 

               Therefore               |
1

𝑧2 + 𝑎2
| ≤

1

𝑅2 − 𝑎2
 

|𝑒𝑖𝑚𝑧| = |𝑒𝑖𝑚(𝑥+𝑖𝑦)| = |𝑒𝑖𝑚𝑥 . 𝑒−𝑖𝑚𝑦| 

                                                = 𝑒−𝑚𝑦 < 1 since 𝑦 > 0 in the upper half plane. 

Therefore |
𝑒𝑖𝑚𝑧

𝑧2+𝑎2
| =  |𝑒𝑖𝑚𝑧|. |

1

𝑧2+𝑎2
| 

<
1

𝑅2 − 𝑎2
 

              Hence | ∫
𝑒𝑖𝑚𝑧

𝑧2 + 𝑎2
𝑑𝑧

C2

| < ∫
1

𝑅2 − 𝑎2
|𝑑𝑧|

C2

 

<
𝜋. 𝑅

𝑅2 − 𝑎2
 

and this approaches zero as 𝑅 → 0. 

Therefore ∫ 𝑄(𝑧)

𝐶2

𝑑𝑧 = 0 in the limit 𝑅 → ∞. 

Hence taking limits in (1), as 𝑅 → ∞, we have  

∫ 𝑄(𝑥)

∞

−∞

𝑑𝑥 = 2𝜋𝑖 ∑ reidues of 𝑄(𝑧)(2) 

To get the residues of 𝑄(𝑧), we solve 𝑧2 + 𝑎2 = 0. 

This gives 𝑧 = ±𝑖𝑎. The only pole in the upper half of the 𝑧-plane is  𝑖𝑎. 

               Residue at 𝑧 = 𝑖𝑎 is = lim
𝑧→𝑖𝑎

(𝑧 − 𝑖𝑎)𝑒𝑖𝑚𝑧

𝑧2 + 𝑎2
 

= lim
𝑧→𝑖𝑎

𝑒𝑖𝑚𝑧

𝑧 + 𝑖𝑎
 

=
𝑒𝑖𝑚.𝑖𝑎

𝑖𝑎 + 𝑖𝑎
=

𝑒−𝑚𝑎

2𝑖𝑎
                                     (3) 

Substituting (3) in (2), we get 

∫ 𝑄(𝑥)

∞

−∞

𝑑𝑥 = 2𝜋𝑖 ×
𝑒−𝑚𝑎

2𝑖𝑎
=

𝜋

𝑎
𝑒−𝑚𝑎  

                                                  𝑖. 𝑒., ∫
𝑒𝑖𝑚𝑥

𝑥2 + 𝑎2

∞

−∞

𝑑𝑥 =
𝜋

𝑎
𝑒−𝑚𝑎             (4) 
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Equating the real part of both sides, 

∫
𝑐𝑜𝑠 𝑚𝑥

𝑎2 + 𝑥2

∞

−∞

𝑑𝑥 =
𝜋

𝑎
𝑒−𝑚𝑎 

Since 
𝑐𝑜𝑠 𝑚𝑥

𝑎2+𝑥2  is an even function of 𝑥, we have 

∫
𝑐𝑜𝑠 𝑚𝑥

𝑎2 + 𝑥2

∞

−∞

𝑑𝑥 = 2 ∫
𝑐𝑜𝑠 𝑚𝑥

𝑎2 + 𝑥2

∞

0

𝑑𝑥 =
𝜋

𝑎
𝑒−𝑚𝑎 

                Therefore                     ∫
𝑐𝑜𝑠 𝑚𝑥

𝑎2 + 𝑥2

∞

0

𝑑𝑥 =
𝜋

2𝑎
𝑒−𝑚𝑎 

 

𝐄𝐗. 𝟓𝟕. Prove that ∫
𝑐𝑜𝑠 𝑎𝑥

𝑥2 + 1
𝑑𝑥 = 𝜋𝑒−𝑎

∞

−∞

, 𝑎 ≥ 0. 

Solution: We know that 𝑐𝑜𝑠 𝑎𝑥 is the real part of 𝑒𝑖𝑎𝑥 . 

         ∴  We consider the function   𝑓(𝑧) =
𝑒𝑖𝑎𝑧

𝑧2 + 1
. 

Now, the poles of 𝑓(𝑧) are given by 𝑧 = ±𝑖, but 𝑧 = 𝑖 is the only pole lie in the 

upper half of the 𝑧-plane. 

          ∴      [𝑅𝑒𝑠 𝑓(𝑧)]𝑧=𝑖 = lim
𝑧→𝑖

(𝑧 − 𝑖)𝑓(𝑧) = lim
𝑧→𝑖

𝑒𝑖𝑎𝑧

𝑧 + 𝑖
=

𝑒−𝑎

2𝑖
 

           Thus ∫
𝑒𝑖𝑎𝑧

𝑧2 + 1
𝑑𝑧

𝐶

= 2𝜋𝑖 (
𝑒−𝑎

2𝑖
) = 𝜋𝑒−𝑎                              (1) 

where 𝐶 is the contour consisting of the semi-circle 𝐶𝑅 of radius 𝑅 together with 

the part of the real axis from – 𝑅 to 𝑅. 

On the semi-circle 𝐶𝑅, 𝑧 = 𝑅𝑒𝑖𝜃  

               Observe that  lim
𝑅→∞

∫ 𝑓(𝑧)𝑑𝑧

𝐶𝑅

= 0 

∴ From (1), we get ∫ 𝑓(𝑥)𝑑𝑥 = 𝜋𝑒−𝑎

∞

−∞

 

Now, equating the real parts, we get ∫
𝑐𝑜𝑠 𝑎𝑥

𝑥2 + 1
𝑑𝑥 = 𝜋𝑒−𝑎

∞

−∞

. 
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𝐄𝐗. 𝟓𝟖. Evaluate ∫
𝑐𝑜𝑠 𝑥

(𝑥2 + 1)2
𝑑𝑥

∞

0

. 

𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧: Let ∫
𝑐𝑜𝑠 𝑥

(𝑥2 + 1)2
𝑑𝑥

∞

0

= ∫ 𝑓(𝑥)𝑑𝑥

∞

0

 

where     𝑓(𝑥) =
𝑐𝑜𝑠 𝑥

(𝑥2 + 1)2
= R. P. of 

𝑒𝑖𝑥

(𝑥2 + 1)2
 

Consider the integral 

                         ∫ 𝑓(𝑧)𝑑𝑧

𝐶

= ∫
𝑒𝑖𝑧

(𝑧2 + 1)2
𝑑𝑧

𝐶

                                    (1) 

where 𝐶 is the contour consisting of the semi-circle 𝐶𝑅 of radius 𝑅 together with 

the part of the real axis from – 𝑅 to 𝑅. 

From (1), ∫ 𝑓(𝑧)𝑑𝑧

𝐶

= ∫ 𝑓(𝑥)𝑑𝑥

𝑅

−𝑅

+ ∫ 𝑓(𝑧)𝑑𝑧

𝐶𝑅

      (on the real axis, 𝑧 = 𝑥)                 (2) 

Now the poles of 𝑓(𝑧) are given by 𝑧2 + 1 = 0, 𝑖. 𝑒. , 𝑧 = ±𝑖 

Of these poles only the pole 𝑧 = 𝑖 of order 2 lie inside the upper half of the plane 

(i.e., the circle 𝐶). 

                 ∴     [𝑅𝑒𝑠 𝑓(𝑧)]𝑧=𝑖 =
1

(2 − 1)!
lim
𝑧→𝑖

[
𝑑

𝑑𝑧
(𝑧 − 𝑖)2𝑓(𝑧)] 

                                                    = lim
𝑧→𝑖

𝑑

𝑑𝑧
[(𝑧 − 𝑖)2

𝑒𝑖𝑧

(𝑧 + 𝑖)2(𝑧 − 𝑖)2
] 

                                                    = lim
𝑧→𝑖

𝑑

𝑑𝑧
[

𝑒𝑖𝑧

(𝑧 + 𝑖)2
] = −

𝑖

2𝑒
 

By Residue theorem, we have  

                             ∫ 𝑓(𝑧)𝑑𝑧

𝐶

= 2𝜋𝑖 × sum of residues of 𝑓(𝑧) at the poles within 𝐶 

                                                 = 2𝜋𝑖 (−
𝑖

2𝑒
) =

𝜋

𝑒
                                      (3) 

As 𝑅 → ∞, for any point 𝑧 on the semi-circle 𝐶𝑅, |𝑧| → ∞, 𝑖. 𝑒. , 𝑓(𝑧) → 0 

                    ∴      lim
|𝑧|→∞

∫ 𝑓(𝑧)𝑑𝑧

𝐶𝑅

→ 0                 (4) 

From (2), (3) and (4), we get 
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                                                 ∫ 𝑓(𝑥)𝑑𝑥 =
𝜋

𝑒

∞

−∞

 

              𝑖. 𝑒. ,                 ∫
𝑒𝑖𝑥

(𝑥2 + 1)2

∞

−∞

𝑑𝑥 =
𝜋

𝑒
 

Equating real parts both sides, we get 

                                                     ∫
𝑐𝑜𝑠 𝑥

(𝑥2 + 1)2
𝑑𝑥

∞

−∞

=
𝜋

𝑒
 

                       ∴                            ∫
𝑐𝑜𝑠 𝑥

(𝑥2 + 1)2
𝑑𝑥

∞

0

=
𝜋

2𝑒
 

 

𝐄𝐗. 𝟓𝟗. Evaluate ∫
𝑥 𝑠𝑖𝑛 𝑚𝑥

𝑥4 + 16
𝑑𝑥

∞

0

 using residue theorem. 

𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧: Consider the integral ∫
𝑧 𝑠𝑖𝑛 𝑚𝑧

𝑧4 + 16
𝑑𝑧

𝐶

= ∫ 𝑓(𝑧)𝑑𝑧

𝐶

 

where 𝐶 is the contour consisting of the semi-circle 𝐶𝑅 of radius 𝑅 and bounding 

diameter – 𝑅 to 𝑅. 

We know that sin 𝑚𝑧 is the imaginary part of 𝑒𝑖𝑚𝑧 . 

             ∴    Take 𝑓(𝑧) =
𝑧 𝑒𝑖𝑚𝑧

𝑧4 + 16
 

Poles of 𝑓(𝑧) are given by 𝑧4 + 16 = 0 

𝑖. 𝑒., 𝑧4 = −16 = 16(𝑐𝑜𝑠 𝜋 + 𝑖 𝑠𝑖𝑛 𝜋) 

or            𝑧4 = 24[𝑐𝑜𝑠 (2𝑛 + 1)𝜋 + 𝑖 𝑠𝑖𝑛 (2𝑛 + 1)𝜋] 

or            𝑧 = 2 [𝑐𝑜𝑠
(2𝑛 + 1)𝜋

4
+ 𝑖 𝑠𝑖𝑛

(2𝑛 + 1)𝜋

4
]  where 𝑛 = 0, 1, 2, 3 

If 𝑛 = 0, 𝑧1 = 2 [𝑐𝑜𝑠
𝜋

4
+ 𝑖 𝑠𝑖𝑛

𝜋

4
] = 2 (

1

√2
+ 𝑖

1

√2
) = √2 + 𝑖√2 

If 𝑛 = 1, 𝑧1 = 2 [𝑐𝑜𝑠
3𝜋

4
+ 𝑖 𝑠𝑖𝑛

3𝜋

4
] = 2 (−

1

√2
+ 𝑖

1

√2
) = −√2 + 𝑖√2 

If 𝑛 = 2, 𝑧1 = 2 [𝑐𝑜𝑠
5𝜋

4
+ 𝑖 𝑠𝑖𝑛

5𝜋

4
] = 2 (−

1

√2
− 𝑖

1

√2
) = −√2 − 𝑖√2 

If 𝑛 = 3, 𝑧1 = 2 [𝑐𝑜𝑠
7𝜋

4
+ 𝑖 𝑠𝑖𝑛

7𝜋

4
] = 2 (

1

√2
− 𝑖

1

√2
) = √2 − 𝑖√2 
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Of these poles, only the two poles  𝑧1 = 2𝑒𝑖
𝜋

4 = √2 + 𝑖√2 and 𝑧2 = 2𝑒𝑖
3𝜋

4 = −√2 + 𝑖√2 

lie within the circle 𝐶. 

Hence we have to calculate the corresponding residues. 

               [𝑅𝑒𝑠 𝑓(𝑧)]𝑧=𝑧1
= lim

𝑧→𝑧1

(𝑧 − 𝑧1) 𝑓(𝑧) 

                                             = lim
𝑧→𝑧1

(𝑧 − 𝑧1)
𝑧 𝑒𝑖𝑚𝑧

𝑧4 + 16
   (=

0

0
) . Applying L Hospital′s rule 

                                             = lim
𝑧→𝑧1

(𝑧 − 𝑧1) {𝑒𝑖𝑚𝑧 + 𝑧. 𝑖𝑚. 𝑒𝑖𝑚𝑧} + 𝑧𝑒𝑖𝑚𝑧

4𝑧3
 

                                             =
𝑧1 𝑒𝑖𝑚𝑧1

4𝑧1
3 =

 𝑒𝑖𝑚𝑧1

4𝑧1
2 =

 𝑒𝑖𝑚(√2+𝑖√2)

4(√2 + 𝑖√2)
2               (1) 

                                             =
 𝑒𝑖𝑚√2−𝑚√2

8(1 + 𝑖)2
=

 𝑒−𝑚√2𝑒𝑖𝑚√2

8(2𝑖)
=

𝑖 𝑒−𝑚√2(𝑐𝑜𝑠 𝑚√2 + 𝑖 𝑠𝑖𝑛 𝑚√2)

−16
 

Similarly    [𝑅𝑒𝑠 𝑓(𝑧)]𝑧=𝑧2
= lim

𝑧→𝑧2

(𝑧 − 𝑧2) 𝑓(𝑧) 

                                                   =
 𝑒𝑖𝑚(−√2+𝑖√2)

4(√2 + 𝑖√2)
2      (from (1)) 

                                                   =
𝑖 𝑒−𝑚√2(𝑐𝑜𝑠 𝑚√2 − 𝑖 𝑠𝑖𝑛 𝑚√2)

16
 

By Residue theorem, 

                             ∫ 𝑓(𝑧)𝑑𝑧

𝐶

= 2𝜋𝑖 × sum of residues of 𝑓(𝑧) at the poles within 𝐶 

                          = 2𝜋𝑖 [
𝑖 𝑒−𝑚√2(𝑐𝑜𝑠 𝑚√2 + 𝑖 𝑠𝑖𝑛 𝑚√2)

−16
+

𝑖 𝑒−𝑚√2(𝑐𝑜𝑠 𝑚√2 − 𝑖 𝑠𝑖𝑛 𝑚√2)

16
] 

                               = 2𝜋𝑖 (−
𝑖

16
𝑒−𝑚√2) [(𝑐𝑜𝑠 𝑚√2 + 𝑖 𝑠𝑖𝑛 𝑚√2) − (𝑐𝑜𝑠 𝑚√2 − 𝑖 𝑠𝑖𝑛 𝑚√2)] 

                                   =
𝜋

8
𝑒−𝑚√2(2𝑖 𝑠𝑖𝑛 𝑚√2) 

                                        = 𝑖
𝜋

4
𝑒−𝑚√2𝑠𝑖𝑛 𝑚√2 

𝑖. 𝑒. , ∫ 𝑓(𝑥)𝑑𝑥

𝑅

−𝑅

+ ∫ 𝑓(𝑧)𝑑𝑧

𝐶𝑅

= 𝑖
𝜋

4
𝑒−𝑚√2𝑠𝑖𝑛 𝑚√2                      (2) 

On the semi − circle 𝐶𝑅, 𝑧 = 𝑅𝑒𝑖𝜃 , we observe that ∫ 𝑓(𝑧)𝑑𝑧

𝐶𝑅

→ 0 as 𝑅 → ∞. 
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∴        From (2), we get 

                           ∫ 𝑓(𝑥)𝑑𝑥

∞

−∞

= 𝑖
𝜋

4
𝑒−𝑚√2𝑠𝑖𝑛 𝑚√2                       

                         ∫
𝑥 𝑒𝑖𝑚𝑥

𝑥4 + 16
𝑑𝑥 =

∞

−∞

𝑖
𝜋

4
𝑒−𝑚√2𝑠𝑖𝑛 𝑚√2 

Now equating the imaginary parts, we get 

                                 ∫
𝑥 𝑠𝑖𝑛 𝑚𝑥

𝑥4 + 16
𝑑𝑥

∞

−∞

=
𝜋

4
𝑒−𝑚√2𝑠𝑖𝑛 𝑚√2 

      𝑖. 𝑒. ,                  2 ∫
𝑥 𝑠𝑖𝑛 𝑚𝑥

𝑥4 + 16
𝑑𝑥

∞

0

=
𝜋

4
𝑒−𝑚√2𝑠𝑖𝑛 𝑚√2 

      or                        ∫
𝑥 𝑠𝑖𝑛 𝑚𝑥

𝑥4 + 16
𝑑𝑥

∞

0

=
𝜋

8
𝑒−𝑚√2𝑠𝑖𝑛 𝑚√2 

𝐍𝐨𝐭𝐞: ∫
𝑥 𝑠𝑖𝑛 𝑚𝑥

𝑥4 + 𝑎4
𝑑𝑥

∞

0

=
𝜋

2𝑎2
𝑒

− 
𝑎𝑚

√2 𝑠𝑖𝑛 (
𝑎𝑚

√2
) 

 

EX.60. Show by the method of contour integration that 

∫
𝑐𝑜𝑠 𝑚𝑥

(𝑥2 + 𝑎2)2
𝑑𝑥

∞

0

=
𝜋

4𝑎3
(1 + 𝑚𝑎)𝑒−𝑚𝑎   (𝑎 > 0, 𝑏 > 0) 

𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧: Let ∫
𝑐𝑜𝑠 𝑚𝑥

(𝑥2 + 𝑎2)2
𝑑𝑥

∞

0

= ∫ 𝑓(𝑥)𝑑𝑥

∞

0

 

          where 𝑓(𝑥) =
𝑐𝑜𝑠 𝑚𝑥

(𝑥2 + 𝑎2)2
= Real part of 

𝑒𝑖𝑚𝑥

(𝑥2 + 𝑎2)2
 

Consider the integral ∫ 𝑓(𝑧)𝑑𝑧

𝐶

= ∫
𝑒𝑖𝑚𝑧

(𝑧2 + 𝑎2)2

𝐶

𝑑𝑧 

where 𝐶 is the closed contour consisting of the semi-circle 𝐶𝑅: |𝑧| = 𝑅 and real axis from 

– 𝑅 to 𝑅. 

                ∴ ∫ 𝑓(𝑧)𝑑𝑧

𝐶

= ∫ 𝑓(𝑥)𝑑𝑥

𝑅

−𝑅

+ ∫ 𝑓(𝑧)𝑑𝑧

𝐶𝑅

       (on real axis 𝑧 = 𝑥)                (1) 

               Evidently lim
|𝑧|→𝑎

1

(𝑧2 + 𝑎2)2
= 0 
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Hence lim
𝑅→∞

∫
𝑒𝑖𝑚𝑧

(𝑧2 + 𝑎2)2
𝑑𝑧

𝐶𝑅

= 0 or lim
𝑅→∞

∫ 𝑓(𝑧)𝑑𝑧

𝐶𝑅

= 0                  (2) 

Now the poles of 𝑓(𝑧) are given by 𝑧2 + 𝑎2 = 0, 𝑖. 𝑒. , 𝑧 = ±𝑖𝑎 

Of these poles only the pole 𝑧 = 𝑖𝑎 of order 2 lie inside the circle 𝐶. 

                 [𝑅𝑒𝑠 𝑓(𝑧)]𝑧=𝑖𝑎 =
1

(2 − 1)!
lim

𝑧→𝑖𝑎
[

𝑑

𝑑𝑧
(𝑧 − 𝑖𝑎)2𝑓(𝑧)] 

                                              = lim
𝑧→𝑖𝑎

[
𝑑

𝑑𝑧

𝑒𝑖𝑚𝑧

(𝑧 + 𝑖𝑎)2
] 

                                              = lim
𝑧→𝑖𝑎

(𝑧 + 𝑖𝑎)2. 𝑖𝑚. 𝑒𝑖𝑚𝑧 − 𝑒𝑖𝑚𝑧 . 2(𝑧 + 𝑖𝑎)

(𝑧 + 𝑖𝑎)4
 

                                              = lim
𝑧→𝑖𝑎

𝑒𝑖𝑚𝑧(𝑧 + 𝑖𝑎)[𝑖𝑚(𝑧 + 𝑖𝑎) − 2]

(𝑧 + 𝑖𝑎)4
 

                      = lim
𝑧→𝑖𝑎

𝑒𝑖𝑚𝑧[𝑖𝑚(𝑧 + 𝑖𝑎) − 2]

(𝑧 + 𝑖𝑎)3
      =

𝑒−𝑚𝑎(1 + 𝑚𝑎)

4𝑎3𝑖
 

By Cauchy’s Residue theorem 

                                           ∫ 𝑓(𝑧)𝑑𝑧

𝐶

= 2𝜋𝑖 × sum of the residues 

 𝑖. 𝑒., ∫ 𝑓(𝑥)𝑑𝑥

𝑅

−𝑅

+ ∫ 𝑓(𝑧)𝑑𝑧

𝐶𝑅

=
𝜋

2𝑎3
(1 + 𝑚𝑎)𝑒−𝑚𝑎 ,   from (1) 

Making 𝑅 → ∞ and noting (2), we get 

                                ∫ 𝑓(𝑥)𝑑𝑥

∞

−∞

=
𝜋

2𝑎3
(1 + 𝑚𝑎)𝑒−𝑚𝑎 

            or   ∫
𝑒𝑖𝑚𝑥

(𝑥2 + 𝑎2)2
𝑑𝑥

∞

−∞

=
𝜋

2𝑎3
(1 + 𝑚𝑎)𝑒−𝑚𝑎 

equating real parts from both sides, 

                                  ∫
𝑐𝑜𝑠 𝑚𝑥

(𝑥2 + 𝑎2)2
𝑑𝑥

∞

−∞

=
𝜋

2𝑎3
(1 + 𝑚𝑎)𝑒−𝑚𝑎 

                         or   2 ∫
𝑐𝑜𝑠 𝑚𝑥

(𝑥2 + 𝑎2)2
𝑑𝑥

∞

0

=
𝜋

2𝑎3
(1 + 𝑚𝑎)𝑒−𝑚𝑎 

                         or   ∫
𝑐𝑜𝑠 𝑚𝑥

(𝑥2 + 𝑎2)2
𝑑𝑥

∞

0

=
𝜋

4𝑎3
(1 + 𝑚𝑎)𝑒−𝑚𝑎  
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𝐄𝐗. 𝟔𝟏. Evaluate ∫
𝑐𝑜𝑠 𝑥

𝑥2 + 𝑎2
𝑑𝑥

∞

−∞

  (𝑎 > 0) using residue theorem.  

𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧: Let 𝑓(𝑧) =
𝑒𝑖𝑧

𝑧2 + 𝑎2
 

Consider ∫ 𝑓(𝑧)𝑑𝑧

𝐶

 where 𝐶 is the closed contour as shown in the figure. 

Poles of 𝑓(𝑧) are given by 𝑧2 + 𝑎2 = 0 or 𝑧 = ±𝑖𝑎. 

But 𝑧 = 𝑖𝑎 only lies inside 𝐶. 

                 [𝑅𝑒𝑠 𝑓(𝑧)]𝑧=𝑖𝑎 = lim
𝑧→𝑖𝑎

(𝑧 − 𝑖𝑎)𝑓(𝑧) 

                                               = lim
𝑧→𝑖𝑎

𝑒𝑖𝑧

𝑧 + 𝑖𝑎
=

1

2𝑖𝑎
𝑒−𝑎 

∴ By Residue theorem, 

                         ∫ 𝑓(𝑧)𝑑𝑧

𝐶

= 2𝜋𝑖 × 𝑠𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠 

                                              = 2𝜋𝑖 ×
1

2𝑖𝑎
𝑒−𝑎 =

𝜋𝑒−𝑎

𝑎
 

𝑖. 𝑒. , ∫ 𝑓(𝑥)𝑑𝑥

𝑅

−𝑅

+ ∫ 𝑓(𝑧)𝑑𝑧

𝐶𝑅

=
𝜋𝑒−𝑎

𝑎
 

𝑖. 𝑒. , ∫
𝑒𝑖𝑥

𝑥2 + 𝑎2
𝑑𝑥

𝑅

−𝑅

+ ∫
𝑒𝑖𝑧

𝑧2 + 𝑎2
𝑑𝑧

𝐶𝑅

=
𝜋𝑒−𝑎

𝑎
 

Making 𝑅 → ∞, we get 

              ∫
𝑒𝑖𝑥

𝑥2 + 𝑎2
𝑑𝑥

∞

−∞

=
𝜋𝑒−𝑎

𝑎
       [𝑠𝑖𝑛𝑐𝑒 lim

𝑅→∞
∫

𝑒𝑖𝑧

𝑧2 + 𝑎2
𝑑𝑧

𝐶𝑅

= 0] 

Equating real parts, we get 

                           ∫
𝑐𝑜𝑠 𝑥

𝑥2 + 𝑎2
𝑑𝑥

∞

−∞

=
𝜋𝑒−𝑎

𝑎
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8. LECTURE NOTES 

 

                       Solutions of Algebraic and Transcendental equations: 

1) Polynomial function: A function ( )f x  is said to be a polynomial function  

               if  ( )f x   is a polynomial in x. 

              ie,   𝑓(𝑥) = 𝑎0𝑥𝑛 + 𝑎1𝑥𝑛−1 + ⋯ … … … . . +𝑎𝑛−1𝑥 + 𝑎𝑛 

  where
0 0a  , the co-efficients 

0 1, ........... na a a  are real constants and n is a 

    non-negative integer. 

2) Algebraic function: A function which is a sum (or) difference (or) product of                         

 two polynomials is called an algebraic function. Otherwise, the function is 

called a transcendental (or) non-algebraic function. 

Eg:    (i)  𝑓(𝑥) = 𝑐1𝑒𝑥 + 𝑐2𝑒−𝑥 = 0    (𝑖𝑖)  𝑓(𝑥) = 𝑒5𝑥 −
𝑥3

2
+ 3 = 0 

3)  Root of an equation: A number   is called a root of an equation ( ) 0f x =  if  

( ) 0f  = . We also say that   is a zero of the function. 

 Note: The roots of an equation are the abscissae of the points where the graph  

( )y f x=  cuts the x-axis. 

                                     Methods to find the roots of f (x) = 0 

 Direct method: 

We know the solution of the polynomial equations such as linear equation 

𝑎𝑥 + 𝑏 =0, and quadratic equation 2 0ax bx c+ + = ,using direct methods or 

analytical methods. Analytical methods for the solution of cubic and 

quadratic equations are also available. 
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1.1. Bisection method: 

 

 Bisection method is a simple iteration method to solve an equation. This method is 

also known as Bolzano method of successive bisection. Sometimes it is referred to 

as half-interval method. 

(i)  Suppose we know an equation of the form ( ) 0f x =  has exactly one real 

root between two real numbers 
0 1,x x .The number is chosen such that 

( )0f x  and ( )1f x will have opposite sign. 

 

(ii)  Let us bisect the interval  0 1,x x  into two half intervals and find the mid 

point 0 1
2

2

x x
x

+
= . If ( )2 0f x =  then 

2x  is a root. 

 

(iii) If ( )1f x  and ( )2f x  have same sign then the root lies between 
0x  and x2.  

 

(iv) The interval is taken as [𝑥0, 𝑥2]. Otherwise the root lies in the interval 2 1,x x . 

 

(v) Next calculate x 3 , x4, x5---,until two consecutive iterations are equal. 

Then we stop the process after getting desired accuracy. 

                 

          This method is known as Bisection Method 

PROBLEMS 

1). Find a root of the equation 3 5 1 0x x− + =  using the bisection method  in 5 – 

stages 

Sol     Let  𝑓(𝑥) = 𝑥3 − 5𝑥 + 1. We note that 
𝑓(0) > 0

𝑓(1) < 0
           𝑎𝑛𝑑 

   One root lies between 0 and 1 

  Consider 
0 10 1x and x= =  

By Bisection method the next approximation is  

  
( )

( ) ( ) ( )

0 1
2

2

1
0 1 0.5

2 2

0 : 5 1.375 0 0 0

x x
x

f x f and f

+
= = + =

 = = −  
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       We have the root lies between 0 and 0.5 

        Now  
3

0 0.5
0.25

2
x

+
= =  

        We find ( ) ( )3 0.234375 0 0 0f x and f= −    

         Since ( )0 0f  , we conclude that root lies between 
0 3x and x  

The third approximation of the root  is  

         𝑥4 =
𝑥0+𝑥3

2
=

1

2
(0 + 0.25) = 0.125 

        We have ( )4 0.37495 0f x =   

        Since ( ) ( )4 30 0f x and f x  , the root lies between  

  
4 30.125 0.25x and x= =  

        Considering the 4th approximation of the roots  

  ( )3 4
5

1
0.125 0.25 0.1875

2 2

x x
x

+
= = + =  

( )5 0.06910 0f x =  , since ( ) ( )5 30 0f x and f x   the root must lie between 

𝑥5 = 0.18758 𝑎𝑛𝑑 𝑥3 = 0.25 

Here the fifth approximation of the root is   

  

( )

( )

6 5 3

1

2

1
0.1875 0.25

2

0.21875

x x x= +

= +

=

 

          We are asked to do up to 5 stages 

           We stop here 0.21875 is taken as an approximate value of the root  

               and it lies between 0 and 1 
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2) Find a root of the equation 3 4 9 0x x− − =  using bisection method in four stages 

Sol        Let ( ) 3 4 9f x x x= − −
 

We note that ( )2 0f   and ( )3 0f   

   One root lies between 2 and 3  

         Consider 
0 12 3x and x= =  

  By Bisection method 0 1
2 2.5

2

x x
x

+
= =  

  Calculating ( ) ( )2 2.5 3.375 0f x f= = −   

  The root lies between 𝑥2 𝑎𝑛𝑑 𝑥1 

  The second approximation is 𝑥3 =
1

2
(𝑥1 + 𝑥2) =

2.5+3

2
= 2.75 

Now 𝑓(𝑥3) = 𝑓(2.75) = 0.7969 > 0 

   The root lies between 
2 3x and x  

  Thus the third approximation to the root is  

   ( )4 2 3

1
2.625

2
x x x= + =  

  Again ( ) ( )4 2.625 1.421 0f x f= = −   

   The root lies between 
3 4x and x  

  Fourth approximation is𝑥5 =
1

2
(𝑥3 + 𝑥4) =

1

2
(2.75 + 2.625) = 2.6875 

 

 



 
 

7|N M P T - U N I T - I  
 
 

 

1.2. False Position Method ( Regula – Falsi Method) 

In the false position method we will find the root of the equation ( ) 0f x =  Consider 

two initial approximate values 
0 1x and x  near the required root so that 

( ) ( )0 1f x and f x  have different signs. This implies that a root lies between
0 1x and x . 

The curve ( )f x  crosses x- axis only once at the Point 
2x  lying between the 

points 𝑥0 𝑎𝑛𝑑𝑥1. Consider the point ( )( )0 0,A x f x=  and ( )( )1 1,B x f x=  on the graph 

and suppose they are connected by a straight line. Suppose this line cuts x-axis 

at𝑥2. We calculate the value of ( )2f x  at the point. If ( ) ( )0 2f x and f x  are of 

opposite signs, then the root lies between 
0 2x and x  and value 

1x  is replaced by 
2x  

Otherwise the root lies between 
2x  and 

1x  and the value of 
0x  is replaced by 

𝑥2.Another line is drawn by connecting the newly obtained pair of values. Again 

the point here cuts the x-axis is a closer approximation to the root. This process is 

repeated as many times as required to obtain the desired accuracy. It can be 

observed that the points 

2 3 4, ,x x x ,…obtained converge to the expected root of the equation ( )y f x=
 

The below graph shows how to execute Regula Falsi Method 

 

 

 

To Obtain the equation to find the next approximation to the root 
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  Let ( )( ) ( )( )0 0 1 1, ,A x f x and B x f x= =  be the points on the curve ( )y f x=  Then the 

equation to the chord AB is 
𝑦−𝑓(𝑥0)

𝑥−𝑥0
=

𝑓(𝑥1)−𝑓(𝑥0)

𝑥1−𝑥0
− − − − − −(1)

 

At the point C where the line AB crosses the x – axis, where 𝑓(𝑥) = 0 𝑖𝑒, 𝑦 = 0 

 From (1), we get 
( ) ( )

( ) ( )1 0
0 0

1 0

2
x x

x x f x
f x f x

−
= − →

−
 

x is given by (2) serves as an approximated value of the root, when the interval in 

which it lies is small. If the new value of x is taken as 
2x  then (2) becomes 

 

  

( )

( ) ( )
( )

( ) ( )

( ) ( )
( )

1 0

2 0 0

1 0

0 1 1 0

1 0

3

x x
x x f x

f x f x

x f x x f x

f x f x

−
= −

−

−
= →

−

 

     Now we decide whether the root lies between  

( )0 2 2 1x and x or x and x
 

We name that interval as ( )1 2,x x  The line joining(𝑥1, 𝑦1), (𝑥2, 𝑦2)  meets x – axis at 
3x  

is given by 
( ) ( )

( ) ( )
1 2 2 1

3

2 1

x f x x f x
x

f x f x

−
=

−
 

--------------(2) 

-------------(3) 
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 This will in general, be nearest to the exact root. We continue this procedure till 

the root is found to the desired accuracy 

 The iteration process based on (3) is known as the method of false position  

 The successive intervals where the root lies, in the above procedure are named 

as  

 ( ) ( ) ( )0 1 1 2 2 3, , , , ,x x x x x x  etc 

Where 𝑥𝑖 < 𝑥𝑖+1  and𝑓(𝑥0), 𝑓(𝑥𝑖+1)  are of opposite signs. 

Also 
( ) ( )

( ) ( )
1 1

1

1

i i i i

i

i i

x f x x f x
x

f x f x

− −

+

−

−
=

−
 

PROBLEMS: 

1. By using Regula - Falsi method, find an approximate root of the equation 

4 10 0x x− − =  that lies between 1.8 and 2. Carry out three approximations 

Sol. Let us take ( ) 4 10f x x x= − −  and 
0 11.8, 2x x= =  

 Then ( ) ( )0 1.8 1.3 0f x f= = −   and ( ) ( )1 2 4 0f x f= =   

 Since ( )0f x  and ( )1f x are of opposite signs, the equation ( ) 0f x =  has a root 

between 
0 1x and x  

 The first order approximation of this root is  

   

( ) ( )
( )

( )

1 0
2 0 0

1 0

2 1.8
1.8 1.3

4 1.3

1.849

x x
x x f x

f x f x

−
= −

−

−
= −  −

+

=

 

 We find that ( )2 0.161f x = −  so that ( ) ( )2 1f x and f x  are of opposite signs. Hence 

the root lies between 
2 1x and x  and the second order approximation of the root is  
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( ) ( )
( )

( )

1 2
3 2 2

1 2

.

2 1.849
1.8490 0.159

0.159

1.8548

x x
x x f x

f x f x

 −
= −  

− 

− 
= −  − 

 

=

 

 We find that ( ) ( )3 1.8548f x f=  

   0.019= −  

So that ( ) ( )3 2f x and f x  are of the same sign. Hence, the root does not  lie between 

2 3x and x .But ( ) ( )3 1f x and f x  are of opposite signs. So the root lies between 

3 1x and x  and the third order approximate value of the root is  𝑥4 = 𝑥3 −

[
𝑥1−𝑥3

𝑓(𝑥1)−𝑓(𝑥3)
] 𝑓(𝑥3) 

= 1.8548 −
2 − 1.8548

4 + 0.019
× (−0.019) 

                                                               = 1.8557  

  This gives the approximate value of x. 

2. Find out the roots of the equation 3 4 0x x− − =  using False position method 

Sol. Let ( ) 3 4 0f x x x= − − =  

 Then ( ) ( ) ( )0 4, 1 4, 2 2f f f= − = − =  

 Since ( ) ( )1 2f and f  have opposite signs the root lies between 1 and 2 

 By False position method 
( ) ( )

( ) ( )
0 1 1 0

2

1 0

x f x x f x
x

f x f x

−
=

−
 

     

( ) ( )

( )
2

1 2 2 4

2 4

2 8 10
1.666

6 6

x
 − −

=
− −

+
= = =
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( ) ( )

3
1.666 1.666 1.666 4

1.042

f = − −

= −
 

 Now, the root lies between 1.666 and 2 

  

( )

( )

( ) ( )

3

3

1.666 2 2 1.042
1.780

2 1.042

1.780 1.780 1.780 4

0.1402

x

f

 −  −
= =

− −

= − −

= −

 

 Now, the root lies between 1.780 and  2 

  

( )

( )

( ) ( )

4

3

1.780 2 2 0.1402
1.794

2 0.1402

1.794 1.794 1.794 4

0.0201

x

f

 −  −
= =

− −

= − −

= −

 

 Now, the root lies between 1.794 and 2 

  

( )

( )

( ) ( )

5

3

1.794 2 2 0.0201
1.796

2 0.0201

1.796 1.796 1.796 4 0.0027

x

f

 −  −
= =

− −

= − − = −
 

 Now, the root lies between 1.796 and 2 

  
( )

( )
6

1.796 2 2 0.0027
1.796

2 0.0027
x

 −  −
= =

− −
   

The root is 1.796 

1.3. Newton- Raphson Method:- 

The Newton- Raphson method is a powerful and elegant method to find the 

root of an equation. This method is generally used to improve the results obtained by 

the previous methods. 
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Let 
0x  be an approximate  root of ( ) 0f x =  and let 

1 0x x h= +  be the correct root 

which implies that  ( )1 0f x = . We use Taylor’s theorem and expand 

( ) ( )1 0 0f x f x h= + =  

( ) ( )

( )

( )

1

0 0

0

1

0

0f x hf x

f x
h

f x

 + =

 = −
 

Substituting this in 
1x  ,we get 

( )

( )

1 0

0

0 1

0

x x h

f x
x

f x

= +

= −
 

1x  is a better approximation than 
0x  

Successive approximations are given by 

𝑥2, 𝑥3 … … … . . 𝑥𝑛+1 Where  𝑥𝑖+1 = 𝑥𝑖 −
𝑓(𝑥𝑖)

𝑓1(𝑥𝑖)
 

 

 

PROBLEMS: 

1. Apply Newton – Rapson method to find an approximate root, correct to three 

decimal places, of the equation 3 3 5 0,x x− − =  which lies near 2x =  

Sol:- Here ( ) ( ) ( )3 1 23 5 0 3 1f x x x and f x x= − − = = −
 

  The Newton – Raphson iterative formula   
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( ) ( )

( )
3 3

1 2 2

3 5 2 5
, 0,1,2.... 1

3 1 3 1

i i i
i i

i i

x x x
x x i

x x
+

− − +
= − = =

− −
 

 To find the root near 2x = , we take 
0 2x =  then (1) gives 

 
( ) ( )

( )
( )

( )

3

0
1 2

0

33

1
2 22

1

2 5 16 5 21
2.3333

3 4 1 93 1

2 2.3333 52 5
2.2806

3 1 3 2.3333 1

x
x

x

x
x

x

+ +
= = = =

−−

 ++
= = =

 − −
 

 

  

𝑥3 =
2𝑥2

3 + 5

3(𝑥2
3 − 1)

=
2 × (2.2806)3 + 5

3[(2.2806)2 − 1]
= 2.2790 

𝑥4 =
2 × (2.2790)3 + 5

3[(2.2790)2 − 1]
= 2.2790 

Since 
3x  and  

4x  are identical up to 3 places of decimal, we take 
4 2.279x =  as 

the required root, correct to three places of the decimal 

2. Using Newton – Raphson method 

 a) Find square root of a number 

 b) Find reciprocal of a number 

Sol. a) Square root:- 

  Let ( ) 2 0f x x N= − = , where N is the number whose square root is to be found. 

The solution to ( )f x  is then x N=  

  Here ( )' 2f x x=  

  By Newton-Raphson technique 

  
( )

( )

2

1 1 2

i i
i i i

i i

f x x N
x x x

f x x
+

−
= − = −  
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  1

1

2
i i

i

N
x x

x
+

 
 = + 

 
 

 Using the above iteration formula the square root of any number N can be 

found to any desired accuracy. For example, we will find the square root of 

24N = .  

 Let the initial approximation be 
0 4.8x =  

𝑥1 =
1

2
(4.8 +

24

4.8
) =

1

2
(

23.04 + 24

4.8
) =

47.04

9.6
= 4.9 

  
2

3

1 24 1 24.01 24 48.01
4.9 4.898

2 4.9 2 4.9 9.8

1 24 1 23.9904 24 47.9904
4.898 4.898

2 4.898 2 4.898 9.796

x

x

+   
= + = = =   

   

+   
= + = = =   

   

 

  Since 
2 3x x= , therefore the solution to ( ) 2 24 0f x x= − =  is 4.898 . That means,  

 The square root of 24 is 4.898  

b) Reciprocal:- 

 Let ( )
1

0f x N
x

= − =  where N is the number whose reciprocal is to be found 

The solution to ( )f x is then 𝑥 =
1

𝑁
 . Also, ( )1

2

1
f x

x

−
=  

 To find the solution for ( ) 0f x = , apply Newton – Raphson method 

𝑥𝑖+1 = 𝑥𝑖 −
(

1

𝑥𝑖
− 𝑁)

−1 𝑥𝑖
2⁄

= 𝑥𝑖(2 − 𝑥𝑖𝑁) 

For example, the calculation of reciprocal of 22 is as follows 

Assume the initial approximation be 
0 0.045x =  
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( )

( )

( )

( )

( )

( )

( )

( )

1

2

3

0.045 2 0.045 22

0.045 2 0.99

0.0454 1.01 0.0454

0.0454 2 0.0454 22

0.0454 2 0.9988

0.0454 1.0012 0.04545

0.04545 2 0.04545 22

0.04545 1.0001 0.04545

x

x

x

 = − 

= −

= =

= − 

= −

= =

= − 

= =

 

𝑥4 = 0.04545(2 − 0.04545 × 22) 

= 0.04545(2 − 0.99998) 

= 0.04545(1.00002) 

 = 0.0454509 

 The reciprocal of 22 is 0.04545 

3. Find by Newton’s method, the real root of the equation 𝑥𝑒𝑥 − 2 = 0 correct to 

three decimal places. 

Sol. Let ( ) ( )2 1xf x xe= − →  

 Then ( )0 2f = −  and ( )1 2 0.7183f e= − =  

 So root of ( )f x  lies between 0 and 1 

 It is near to 1. So we take 
0 1x =  and ( ) ( )1 1 1 5.4366x xf x xe e and f e e= + = + =  

  By Newton’s Rule 

 First approximation 
( )

( )
0

1 0 1

0

f x
x x

f x
= −  

   
0.7183

1 0.8679
5.4366

= − =  

 ( ) ( )1

1 10.0672 4.4491f x f x = =
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 The second approximation 
( )

( )
1

2 1 1

1

f x
x x

f x
= −  

    

0.0672
0.8679

4.4491

0.8528

= −

=

 

  Required root is 0.853 correct to 3 decimal places. 

1.4.GAUSS JORDAN METHOD: 

SYSTEM OF NON HOMOGENEOUS LINEAR EQUATIONS 

                  An equation of the form bxaxaxa nn =+++ ..............2211 where x1, x2 ,………,xn are 

unknowns and  a1 , a2 ,……………….,an   , b are constants is called linear equation in  n  

unknowns . 

Definition: Consider the system of m linear equations in n unknowns   x1, x2 ,………,xn as given 

below: 

                        11221111 .............. bxaxaxa nn
=+++  

                        22222112 .............. bxaxaxa nn
=+++  

                                   ………………………………………………………. 

                        inniii bxaxaxa =+++ ..............2211  

                                    ………………………………………………………. 

                       mnnmmm bxaxaxa =+++ ..............2211  

       The number aij’s are known as coefficient and b1 , b2 , …………….bm   are constants. An 

ordered n-tuple (x1, x2 ,………,xn  )  satisfying all the equations simultaneously is called a 

solution of system. 

 

Non-Homogeneous system: 

  If all  bi   0    i.e.at least  one bi  0. 
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Matrix Representation: 

The above system of linear non Homogeneous equations can be written in Matrix form as  

AX=B 

















=

































mnmnmm

n

n

b

b

b

x

x

x

aaa

aaa

aaa

2

1

2

1

......................21

2.....................2221

11211 ...........

 

Augmented Matrix: 

            It is denoted by   [A/B] or [A   B] is obtained by Augmenting A by the column B. 

                  ∴[A /B] =  

















mmnmm

n

n

b

b

b

aaa

aaa

aaa

2

1

......................21

2.....................2221

11211 ...........

 

By reducing   [A /B] into its row echelon form the existence and uniqueness of solution  

  AX = B exists. 

NOTE: 

Given a system, we do not know in general whether it has a solution or not .If there is at 

least one solution , then the system is said to be consistent .If does not have any solution 

then the system is inconsistent. 

 

 CONSISTENT: A system is said to be consistent if it has at least one solution 

 

NOTE: Here rank is denoted by   

Gauss Jordan Method: In Gauss Jordan method augmented matrix [A/B] can be reduced 

to identity matrix and column matrix by elementary row operations. Finally last column 

gives solutions of given linear system. 

        The Augmented matrix [A/B] can be reduced as follows by elementary row 

operations 
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                           [A/ B] =

















=

















−−

−







100

010

001

2113

9312

4211

  

        Then last column is the solution set of given linear system 

For Non Homogeneous System, The system AX = B is consistent i.e it has a solution. 

The system is inconsistent i.e. it has no solution. 

NOTE: Find the rank A and rank [A /B] by reducing the augmented matrix [A /B] to 

Echelon form by elementary row operations. Then the matrix A will be reduced to Echelon 

form. 

                        This procedure is illustrated through the following examples. 

Example 1: Find whether the following equations are consistent, if so solve them  

                        By Gauss Jordan method x + y + 2z= 4; 2x – y + 3z = 9; 3x – y - z = 2.  

Solution: The given equations can be written in the matrix form as   

















−−

−

113

312

211

















z

y

x

 = 

















2

9

4

 

                              i.e. .AX = B    Use Gauss Jordan method 

        The Augmented matrix [A/ B] =

















−−

−

2113

9312

4211

 

                  Applying R2→R2 – 2R1   and     R3→R3 – 3R1 

                                               [A / B]  =

















−−−

−−

10740

1130

4211

  

   Applying    R3→ 3R3 - 4R2 
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                                             [A / B]  =

















−−

−−

341700

1130

4211

   

              Since Rank of A = 3 &   Rank of   [A / B]  = 3 

    Since the number of non- zero rows    of   matrix A is 3  

    Since the number of non- zero rows    of   matrix [A /B] is 3 

                          ∴     Rank of A =   Rank of   [A   B]    

                               i.e.   )()( ABA  =  

      

                          
















−

−−

1700

130

211

















z

y

x

 = 

















− 34

1

4

 

                        R3← R3/(-17) 

                          

















−−

100

130

211

















z

y

x

= 

















2

1

4

 

                      R1← R1-2 R3 and R2→R2+R3 

                         

















−

100

030

011

















z

y

x

= 

















2

3

0

 

Next perform R2/(-3) and R1→R1-R2 

                            

















100

010

001

















z

y

x

= 

















−

2

1

1
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Then solution set X= 
















z

y

x

 

= 

















−

2

1

1

  

 ∴  x = 1,   y = -1   , z = 2    is the solution. 

Example 2: Using Gauss Jordan method solve linear equations given below 

                      x + 2y+ 2z = 2; 3x - 2y - z = 5: 2x - 5y + 3z = -4; x + 4y + 6z = 0. 

Solution: The given equations can be written   in the matrix form as AX = B 

                        i.e.



















−

−−

641

352

123

221

















z

y

x

 = 



















−

0

4

5

2

 

            The Augmented matrix [A/ B] =   



















−−

−−

0641

4352

5123

2221

 

                          Use Gauss Jordan method 

                   Applying   R2→R2 – 3R1; R3→R3 – 2R1; R4→R4 – R1   

                                                       [A /B]  =



















−

−−−

−−−

2420

8190

1780

2221

 

                                        Applying   R3→8R3 – 9R2;; R4→4R4 +R2  ,we get 

                                                        [A/B]  =



















−

−

−−−

9900

555500

1780

2221

 

Applying     R3→R3/55;   R4→R4/9  
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                                                      [A /B]  



















−

−

−−−

1100

1100

1780

2221

   

Applying    R4→R4 -R3     

                                                     [A /B]  



















−

−−−

0000

1100

1780

2221

   

                                       Since Rank of A = 3 &   Rank of [A/ B] = 3 

                                            ∴     Rank of A = Rank of [A /B]    

                                          i.e.  )()( ABA  =  

                             The given system is consistent, so it has a solution. 

                           We have



















−−

000

100

780

221

















z

y

x

  =  



















−

−

0

1

1

2

 

                                    Apply R1-2R3,R2+7R3 

                                          


















−

000

100

080

021

















z

y

x

  =  



















−

−

0

1

8

4

 

                      Next R2/(-8) and R1-2R2 then  

                                        


















000

100

010

001

















z

y

x

  =  



















−

0

1

1

2
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                     ∴ x = 2 ,  y  =  1   , z  =   -1    is the solution. 

1.5. Gauss Siedel Method: 

Algorithm: Consider the linear system of equations as                       

                                                                      (i)         a1 x+b1y+c1z=d1 

                                                                                  a2x+b2y+c2z=d2 

                                                                                  a3x+b3y+c3z=d3 

(ii) If a1,b2, c3 are large as compared with other coefficients , then solve them for x,y,z 

respectively . 

     The system can be written in the below form  

                                                                      X = 
1

𝑎1
 (d1-b1y-c1z) 

                                                                       Y = 
1

𝑏2
 (d2-a2x-c2z) 

                                                                       Z= 
1

𝑐3
 (d3-a3x-b3y) 

(iii) First iteration: We can calculate first iteration values in the following equations                                                       

                                                                       X1 = 
1

𝑎1
 (d1-b1y0+c1z0) 

                                                                       Y1 = 
1

𝑏2
 (d2-a2x1-c2z0) 

                                                                       Z1= 
1

𝑐3
 (d3-a3x1-b3y1) 

(iv) Second iteration: Formulas for second iteration   

                                                                        X2 = 
1

𝑎1
 (d1-b1y1+c1z1) 

                                                                       Y2= 
1

𝑏2
 (d2-a2x2-c2z1) 

                                                                       Z2= 
1

𝑐3
 (d3-a3x2-b3y2) 

                                                                 ------------------------------------ 

                                                                 -------------------------------------- 

First take initial values zeroes as new approximation for an un known value found, it is 

immediately used in next step. We continued these processes up to two successive 
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iterations are approximately equal. This procedure is called as Gauss Siedal iteration 

method. 

PROBLEMS: 

1. Solve by Gauss Siedal method 10x+y+z=12 , 2x+10y+z=13 , 2x+2y+10z=14 

      Sol. Given equations are 10x+y+z=12----(1) 

                                                  2x+10y+z=13----(2) 

                                                   2x+2y+10z=14---(3) 

                                     From (1) x=
1

10
 (12-y-z) 

                                      From (2) y= 
1

10
 (13-2x-z) 

                                     From (3) z = 
1

10
 (14-2x-2y) 

First iteration:                       X1 = 
1

10
 (12-y0-z0)= 

1

10
 (12-0-0) = 1.2 

                                               Y1 = 
1

10
 (13-2x1-z0) = 

1

10
 (13-2(1.2)-0)=1.06 

                                               Z1= 
1

10
 (14-2x1-2y1) = 

1

10
 (14-2(1.2)-2(1.06)) =0.948 

Second iteration:                 X2 = 
1

10
 (12-y1-z1)= 

1

10
 (12-1.2-1.06) = 0.999 

                                               Y2 = 
1

10
 (13-2x2-z1) = 

1

10
 (13-2(0.999)-0.948)=1.005 

                                               Z2= 
1

10
 (14-2x2-2y2) = 

1

10
 (14-2(0.999)-2(1.005)) =0.999 

Third iteration:                     X3 = 
1

10
 (12-y2-z2)= 

1

10
 (12-1.005-0.999) = 1 

                                               Y3 = 
1

10
 (13-2x3-z2) = 

1

10
 (13-2(1)-0.999)=1 

                                               Z3= 
1

10
 (14-2x3-2y3) = 

1

10
 (14-2(1)-2(1)) =1 

Fourth iteration:                   X4 = 
1

10
 (12-y3-z3)= 

1

10
 (12-1-1) = 1 

                                               Y4= 
1

10
 (13-2x4-z3) = 

1

10
 (13-2(1)-1)=1 

                                               Z4= 
1

10
 (14-2x4-2y4) = 

1

10
 (14-2(1)-2(1)) =1 

Since third and fourth iterations are equal then desired set of solutions are  
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                                     X=1, y=1 , z=1 

2. Using Gauss Siedal method solve the linear system 20x+y-2z=17,3x+20y-z=-18,2x-

3y+20z=25 

3. Solve 6x+y+z=105,4x+8y+3z=155,5x+4y-10z=65 by Gauss Siedal method. 

 

 

9. Practice Quiz 

 
 

1. Newton’s iterative formula for finding the Cube root of a number N is xn+1 = [b   ] 

                  a) 










+

2
2

3

1

n

n
x

N
x

  

          b) 










+

3
2

3

1

n

n
x

N
x

  

                    c) 










−

2
2

3

1

n

n
x

N
x

  

          d) 










−

3
2

3

1

n

n
x

N
x

 

2. Iteration formula in Newton-Raphson method is                                     [b   ] 

       a) )x(f

)x(f
xx

n
1

n
n1n +=+

  

           b) )x(f

)x(f
xx

n
1

n
n1n −=+

  

           c) )x(f

)x(f
xx

n

n
1

n1n +=+

  

          d) )x(f

)x(f
xx

n

n
1

n1n −=+

 

3. Which of the following is an algebraic equation ………..               [b ] 
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   a)
2 log 1.2 0x x− − =

  

     b) 
3 22 1 0x x x+ + + =  

     c)cos xx xe=     

     d) 1 0xxe − =  

4. Which of the following is a transcendental equation…                        [a ] 

    a)
2 log 1.2x x− =

   

      b)
3 22 1 0x x x+ + + =  

    c)
3 3 5 0x x− − =    

     d) 
3 5 1 0x x− + =  

5. Using the false position method, the formula for the approximate root of the equation 

( ) 0f x = is………….                           [a ] 

   a)

( ) ( )

( ) ( )

af b bf a
x

f b f a

−
=

−
  

     b)

( ) ( )

( ) ( )

bf b af a
x

f b f a

−
=

−
 

     c)

( ) ( )

( ) ( )

af b bf a
x

f b f a

+
=

+
  

      d)

( ) ( )

( ) ( )

bf b af a
x

f b f a

+
=

+
  

6. If the root of the equation 3 6 4 0x x− + =  lies between 0 & 1, then the first  

 approximation of the required root using Newton-Raphson method is…….                [c ] 

    a)0.55555  

      b)0.4444  

      c)0.77777  

      d)0.66666 

7. The nth order difference of a polynomial of nth degree is______                                [a ] 

 a) Constant      
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8. LECTURE NOTES 

                                                                     Interpolation 

Introduction:- 

  If we consider the statement ( ) 0 ny f x x x x=    we understand that we can find 

the value of y, corresponding to every value of x in the range 0 nx x x  . If the function 

( )f x  is single valued and continuous and is known explicitly then the values of ( )f x  

for certain values of x like 0 1, ,......... nx x x  can be calculated. The problem now is if we 

are given the set of tabular values 

   
0 1 2

0 1 2

: ........

: ........

n

n

x x x x x

y y y y y
 

  Satisfying the relation ( )y f x=  and the explicit definition of ( )f x  is not known, 

then it is possible to find a simple function say ( )f x  such that ( )f x  and ( )x  agree at 

the set of tabulated points. This process to finding ( )x  is called interpolation. If ( )x  is 

a polynomial then the process is called polynomial interpolation and ( )x  is called 

interpolating polynomial. In our study we are concerned with polynomial 

interpolation 

Errors in Polynomial Interpolation:-  

 Suppose the function ( )y x  which is defined at the points ( ), 0,1,2,3i ix y i n= − − − −  is 

continuous and differentiable ( )1n +  times let ( )n x  be polynomial of degree not 

exceeding n such that ( ) ( ), 1,2 1n i ix y i n = = −−− →  be the approximation of ( )y x  

using this ( )n ix  for other value of x, not defined by (1) the error is to be determined   

  Since ( ) ( ) 0 10 , ,......n ny x x for x x x x− = −  we put  

       
( ) ( ) ( )1n ny x x L x  +− =  
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Where ( ) ( ) ( ) ( )1 0 ......... 3n nx x x x x + = − − →  and L to be determined such that the 

equation (2) holds for any intermediate value of x such as 1 1

0, nx x x x x=    

 Clearly 
( ) ( )

( )
( )

1 1

1

1

4
n

n

y x x
L

x



 +

−
= →

 

We construct a function ( )F x  such that ( ) ( ) ( )1

nF x F x F x= = . Then ( )F x  vanishes 

( )2n +  times in the interval 0 , nx x . Then by repeated application of Rolle’s theorem. 

( )1F x Must be zero ( )1n +  times, ( )11F x  must be zero n times…….. in the interval 0 , nx x . 

Also ( )1 0nF x+ =  once in this interval. Suppose this point is x = , 0 nx x   differentiate 

(5) ( )1n +  times with respect to x and putting x = , we get 

  ( ) ( )1 1 ! 0ny L n+ − + =  Which implies that 
( )

( )

1

1 !

ny
L

n

+

=
+

 

Comparing (4) and (6) , we get 

  ( ) ( )
( )

( )
( )

1

1 1 1

1
1 !

n

n n

y
y x x x

n


 

+

+− =
+

 

This can be written as ( ) ( )
( )

( )
( )1 1

1 !

n n

n

x
y x x y

n


 + +− =

+
 

This given the required expression 0 nx x   for error 

2.1. Finite Differences:- 

1. Introduction:- 

  In this chapter, we introduce what are called the forward, backward and 

central differences of a function ( )y f x= . These differences and three standard 

examples of finite differences and play a fundamental role in the study of differential 

calculus, which is an essential part of numerical applied mathematics 
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2. Forward Differences:- 

  Consider a function ( )y f x= of an independent variable x. let 0 1 2, , ,.... ry y y y  be 

the values of y corresponding to the values 0 1 2, , .... rx x x x  of x respectively. Then the 

differences 1 0 2 1,y y y y− − − − − − −  are called the first forward differences of y, and we 

denote them by 0 1, ,.......y y   that is  

  0 1 0 1 2 1 2 3 2, , .........y y y y y y y y y = −  = −  = −  

  In general 1 0,1,2r r ry y y r+ = −  = −−− − −  

  Here, the symbol   is called the forward difference operator  

The first forward differences of the first forward differences are called second forward 

differences and are denoted by 2 2

0 1, ......y y   that is  

  

2

0 1 0

2

1 2 1

y y y

y y y

 =  −

 =  −   

In general 2

1 0,1,2.......r r ry y y r+ =  − =  similarly, the nth forward differences are 

defined by the formula. 

  1 1

1 0,1,2.......n n n

r r ry y y r− −

+ =  − =  

While using this formula for 1n = , use the notation 0

r ry y =  and we have 

0 1,2...... 0, 2,.........n

ry n and r =  = =  the symbol n  is referred as the nth forward 

difference operator. 

 

3. Forward Difference Table:- 

  The forward differences are usually arranged in tabular columns as shown in the 

following table called a forward difference table 

 



 
 

6|N M P T - U N I T - I I  
 
 

 

Values 

of x 

Values 

of y 

First 

differences 

Second 

differences 

Third differences Fourth 

differences 

ox  
0y      

  
0 1 0y y y = −     

1x  
1y   2

0 1 0y y y =  −

 

  

  
1 2 1y y y = −   3 2 2

0 1 0y y y =  −

 

 

2x  2y   2

1 2 1y y y =  −

 

 4 3 3

0 1 0y y y =  −

 

  
2 3 2y y y = −   3 2 2

1 2 1y y y =  −

 

 

3x  
3y   2

2 3 2y y y =  −

 

  

X4 
4y  34 yy −=     

 

Example -finite forward difference table for 
3y x=
 

x ( )y f x=  y  2 y  
3 y  

4 y  

1 1     

  7    

2 8  12   

  19  6  

3 27  18  0 

  37  6  

4 64  24  0 

  61  6  

5 125  30   

  91    

6 216     

 

4. Backward Differences:- As mentioned earlier, let 0 1, ...... ......ry y y  be the values of a 

function ( )y f x=  corresponding to the values 0 1 2, , ............. ......rx x x x  of x respectively. 

Then, 1 1 0 2 2 1 3 3 2, , ,....y y y y y y y y y = −  = −  = −  are called the first backward differences 
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 In general ( )1, 1, 2,3......... 1r r ry y y r− = − = →  

 The symbol  is called the backward difference operator, like the operator  , this 

operator is also a linear operator 

 Comparing expression (1) above with the expression (1) of section we immediately 

note that ( )1, 0,1,2....... 2r ry y r− = = →  

 The first backward differences of the first background differences are called 

second differences and are denoted by 2 2 2

2 3, ry y  −−− −−− −  

i.e.,.. 2 2

2 2 1 3 3 2,y y y y y y = −  = − ………. 

 In general ( )2

1, 2,3..... 3r r ry y y r− = − = →  similarly, the nth backward differences are 

defined by the formula ( )1 1

1, , 1..... 4n n n

r r ry y y r n n− −

− = − = + → While using this formula, 

for n = 1 we employ the notation 0

r ry y =   

  If ( )y f x=  is a constant function, then y = c is a constant, for all x, and we get 

0n

ry n =   the symbol 
n  is referred to as the nth backward difference operator 

5. Backward Difference Table:- 

x Y y  2 y  3 y  

0x  0y     

  1y
=y1-y0

   

1x  1y   2

2y   

  =y2-y1  ∇3𝑦3 

     

  =y3-y2   

     

2y

2x 2y 2

3y

3y

3x 3y
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6. Central Differences:-  

 With  as the values of a function  corresponding to the values

, we define the first central differences  

   as follows  

   

   

The symbol  is called the central differences operator. This operator is a linear 

operator comparing expressions (1) above with expressions earlier used on forward 

and backward differences we get 

 

  In general  

 The first central differences of the first central differences are called the second 

central differences and are denoted by  

  Thus  

   

 Higher order central differences are similarly defined. In general the nth central 

differences are given by  

i) for odd  

ii) for even  

while employing for formula (4) for , we use the notation  

If y is a constant function, that is if  a constant, then 

 

0 1 2, , .... ry y y y ( )y f x=

1 2, ..... ....rx x x of x

1/2 3/2 5/2, ,y y y   − − − −

1/2 1 0 3/2 2 1 5/2 3 2, ,y y y y y y y y y  = − = − = − − − − −

( )1/2 1 1r r ry y y − −= − →



1/2 0 1 3/2 1 2, .....y y y y y y =  =  =  = 

( )1/2 1, 0,1,2...... 2n n ny y y n + +=  =  = →

2 2

1 2, ...y y 

2 2

1 3/2 1/2 2 5/2 3/2, .......y y y     = − = −

( )2

1/2 1/2 3n n ny y y  + −= − →

( )1 1

1/2 1: , 1,2.... 4n n n

r r rn y y y r  − −

− −= − = →

( )1 1

1/2 1/2: , 1,2.... 5n n n

r r rn y y y r  − −

+ −= − = →

1n = 0

r ry y =

y c=

0 1n

ry for all n = 
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7. Central Difference Table 

 

 

 

 

 

 

 

 

 

 

E

x

ample: Given  from the central 

difference table and write down the values of  by taking  

Sol. The central difference table is  

      

-2 12     

  4    

-1 16  -5   

  -1  9  

0 15  4  -14 

  3  -5  

1 18  -1   

( ) ( ) ( ) ( ) ( )2 12, 1 16, 0 15, 1 18, 2 20f f f f f− = − = = = =

2 3

3/2 0 7/2,y y and y  
0 0x =

x ( )y f x= y 2 y 3 y 4 y

      

      

      

      

      

      

      

      

      

0x 0y y 2 y 3 y 4 y

1/2y

1x 1y 2

1y

2/2y 3

3/2y

2x 2y 2

2y 4

2y

5/2y 3

5/2y

3x 3y 2

3y

7/2y

4x 4y
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  2    

2 20     

 

5. Symbolic Relations and Separation of symbols: 

 We will define more operators and symbols in addition to ,  and  already 

defined and establish difference formulae by symbolic methods 

Averaging Operator-Definition:- The averaging operator  is defined by the equation 

 

Shift Operator-Definition:-   The shift operator E is defined by the equation . 

This shows that the effect of E is to shift the functional value to the next higher value

. A second operation with E gives  

Generalizing  

 Relationship Between 

  We have                                                               

 

 

 

Some more relations 

   

Inverse Shift Operator-Definition 

  Inverse operator   is defined as  

 In general  

  



 1/2 1/2

1

2
r r ry y y + −= +

1r rEy y +=

ry

1ry + ( ) ( )2

1 2r r r rE y E Ey E y y+ += = =

n r

r nE y y +=

and E

( ) ( )
33 3 2

0 0 0

3 2 1 0

1 3 3 1

3 3

y E y E E E y

y y y y

 = − = − + −

= − + −

1E− 1

1r rE y y−

−=

n

n r nE y y−

−=

( )

( )

0 1 0

0 0 01

1

y y y

Ey y E y

E y or E

 = −

= − = −

  = − = + 

( )

( )

0 1 0

0 0 01

1

y y y

Ey y E y

E y or E

 = −

= − = −

  = − = + 
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  We can easily establish the following relations 

 i)  

 ii)  

 iii)  

 iv)  

 v)  

Differential Operator-Definition  The operator D is defined as  

Relation between the Operators D and E 

Using Taylor’s series we have,  

This can be written in symbolic form 

    

We obtain in the relation  

❖ If  is a polynomial of degree n and the values of x are equally spaced then 

 is constant 

Proof: 

 Let  where  are constants and . If 

h is the step- length, we know the formula for the first forward difference 

  

11 E−  −

1/2 1/2E E − −

( )1/2 1/21

2
E E −= +

1/2E E =  =

2 21
1

4
  +

( ) ( )Dy x y x
x


=   

( ) ( ) ( ) ( ) ( )
2 3

1 11 111

2! 3!

h h
y x h y x hy x y x y x+ = + + + + −−−−

2 2 3 3

1 .
2! 3! X

hD

x x

h D h D
Ey hD y e y

 
= + + + + −−−− = 
 

( )3hDE e= →

( )f x

( )n f x

( ) 1

0 1 1

n n

n nf x a x a x a x a−

−= + + − − − − − + + 0 1 2, , .... na a a a 0 0a 

( ) ( ) ( ) ( ) ( ) ( )
1

0 1 1

1

0 1 1

n n

n n

n n

n n

f x f x h f x a x h a x h a x h a

a x a x a x a

−

−

−

−

  = + − = + + + + − − − − + + +
 

 − + + − − − − + + 
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Where  are constants. Here this polynomial is of degree , thus, 

the first difference of a polynomial of nth degree is a polynomial of degree  

  Now  

   

Where  are constants. This polynomial is of degree  

Thus, the second difference of a polynomial of degree n is a polynomial of 

degree  continuing like this we get  

 which is constant 

Note:- 

1. As  is a constant, it follows that  

2. The converse of above result is also true that is, if  is tabulated at 

equal spaced intervals and is a constant, then the function  is a 

polynomial of degree n 

 Example:- 

1. Form the forward difference table and write down the values of , 

  

( )

( )
( )( )

1 2 2

0

1 2 3 2 1

1

1

1 2 3

0 2 3 3 2

1
. .

2!

1 2
1 . .

2!

n n n n

n n n n

n

n n n

n n

n n
a x n x h x h x

n n
a x n x h x h x

a h

a nhx b x b x b x b

− −

− − − −

−

− − −

− −

  − 
= + + + − − − − +  

  

  − − 
+ − + + − − − − +  

  

− − − − − − +

= + + + − − − − + +

2 3 2, ,....... nb b b − ( )1n −

( )1n −

( ) ( )

( ) ( ) ( )

( )

2

1 2 3

0 2 3 1 2

1 21 2

0 2 1

1 2 2 3

0 3 4 3

. n n n

n n

n nn n

n

n n n

n n

f x f x

a nh x b x b x b x b

a nh x h x b x h x b x h x

a n h x c x c x c

− − −

− −

− −− −

−

− − −

− −

 =    

 =  + + + −−−−+ + 

   = + − + + − + −−−+ + −     

= + + − − −−−+ +

3 3.... nc c − ( )2n −

( )2n − ( ) ( )( ) ( )0 01 2 2.1. !n n nf x a n n n h a h n = − − −− − − − =



( )n f x ( ) ( )1 20, 0,........n nf x f x+ + =  =

( )n f x

( )f x

( )10f

( ) ( ) ( )2 3 410 , 15 15f f and y  
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x 10 15 20 25 30 35 

y 19.97 21.51 22.47 23.52 24.65 25.89 

Sol. 

x Y      

10 19.97f(10)      

  1.54∆𝒇(𝟏𝟎)     

15 21.51f(15)  -0.58∆𝟐𝒇(𝟏𝟎)    

  0.96  0.67   

20 22.47f(20)  0.09  - 0.68  

  1.05  - 0.01∆𝟑𝒇(𝟏𝟓)  0.72 

25 23.52f(25)  0.08  0.04

∆𝟒𝒇(𝟏𝟓) 

 

  1.13  0.03   

30 24.65f(30)  0.11    

  1.24     

35 25.89f(35)      

 We note that the values of x are equally spaced with step- length h = 5 

Note: -  and 

 

----------------------- 

----------------------- 

 

 

y 2 y 3 y 4 y 5 y

0 1 510, 15 35x x x = = −−−− =

( )

( )

0 0

1 1

19.97

21.51

y f x

y f x

= =

= =

( )5 5 25.89y f x= =

( )5 5 25.89y f x= =



 
 

14|N M P T - U N I T - I I  
 
 

 

From table  

  

2. Evaluate  

 

Sol. Let h be the interval of differencing  

   ∆𝑓(𝑥) = 𝑓(𝑥 + ℎ) − 𝑓(𝑥),for ward formula 

                                                       ∇ 𝑓(𝑥) = 𝑓(𝑥) − 𝑓(𝑥 − ℎ) back ward formula 

   

     

( )

( )

( )

( )

0

2 2

0

3 3

1

4 3

1

10 1.54

10 0.58

15 0.01

15 0.04

f y

f y

f y

f y

 =  =

 =  = −

 =  = −

 =  =

( )

( ) ( )

( )

2

cos

sin

n ax b

i x

ii px q

iii e +



 +



( ) ( )

( ) ( ) ( ) ( )

cos cos cos

h
2sin sin

2 2

sin sin sin

2cos sin
2 2

2sin sin
2 2 2

i x x h x

h
x

ii px q p x h q px q

ph ph
px q

ph ph
px q



 = + −

 
= − + 

 

 + = + + − +  

 
= + + 

 

 
= + + + 

 

( ) ( ) ( )2 1
sin 2sin sin

2 2

ph
px q px q ph

 
 + =  + + + 

 

( )
2

1
2sin sin

2 2

ph
px q ph

   
= + + +   
   
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Proceeding on, we get  

3. Using the method of separation of symbols show that 

 

Sol. To prove this result, we start with the right hand side. Thus 

   

   This is left hand side 

4. Find the missing term in the following data 

X 0 1 2 3 4 

Y 1 3 9 - 81 

 

 Why this value is not equal to . Explain 

( ) ( )

( ) ( )

( ) ( )( )

( ) ( )

( )

1

2

2

2

1

1

1

a x h bax b ax b

ax b ah

ax b ax b ah ax b

ah ax h

ah ax b

iii e e e

e e

e e e e

e e

e e

+ ++ +

+ −

+ + +

+

+

 = −

=

    =   − −
   

= − 

= −

( ) ( )1
n

n ax b ah ax be e e+ + = −

( )
( )1 2

1
1

2

nn

x n x n x x x n

n n
n    − − − − −

−
 = − + + −−−−+ −

( )
( )

( )
( )

( )
( ) ( )

( )

1 2

1 2 1

1
1 2 1

2

1
1

2

1
1 1 1

2

11
1

n

n n

nn n

nn

n
n n

n

n n
x n x x x n

n n
x nE x E x E x

n n
nE E E x E x

E
n n

E E

x E x
E

   

   

 

 

 

− − −

− − − −

−

−
− − + − + − − − − − + − −

−
= − + + − − − − − + −

− 
= − + + − − − − − + − = − 
 

− 
= − = 
 


= = 

n

x n −= 

33
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Sol. Consider  

x Y ∆ ∆2 ∆3 ∆4  

0 1 2 4 x-19 124-4x=0  

1 3 6 x-15 105-3x   

2 9 X-9 90-2x    

3 X 81-x     

4 81      

 

                 124-4x=0— x=124/4=31 

 Substitute given values we get 

  

 From the given data we can conclude that the given function is . To find

, we have to assume that y is a polynomial function, which is not so. Thus we 

are not getting  

2.2. a. Newton’s Forward Interpolation Formula:- 

  Let  be a polynomial of degree n and taken in the following form 

 

  This polynomial passes through all the points  for i = 0 to n. there fore, we 

can obtain the  by substituting the corresponding  as  

   

 Let ‘h’ be the length of interval such that  represent  

4

0 0y =

0 3 2 1 04 4 5 4 0y y y y y − + − + =

3 381 4 54 12 1 0 31y y− + − + =  =

3xy =

3y

33 27y = =

( )y f x=

( ) ( ) ( )( ) ( )( )( )

( )( ) ( ) ( )

0 1 0 2 0 1 3 0 1 2

0 1 1 1n n

y f x b b x x b x x x x b x x x x x x

b x x x x x x −

= = + − + − − + − − − + −−−

+ − − −−−− − →

 ;xi yi

'iy s 'ix s

( )

( ) ( )( ) ( )

0 0 0

1 1 0 1 1 0

2 2 0 1 2 0 2 2 0 2 1

,

,

, 1

at x x y b

at x x y b b x x

at x x y b b x x b x x x x

= =

= = + −

= = + − + − − →

'ix s
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 This implies  

 From (1) and (2), we get 

  

 Solving the above equations for , we get  

 

  

 Similarly, we can see that 

 

  

 If we use the relationship  

0 0 0 0 0, , 2 , 3x x h x h x h x xh+ + + − − − − +

( )1 0 2 0 3 0 0, 2 , 3 2nx x h x x h x x h x x nh− = − − − = −−−− − = →

( )

( )( ) ( )( )

( ) ( )( ) ( ) ( ) ( ) ( )

0 0

1 0 1

2 0 1 2

3 0 1 2 3

0 1 2

2 2

3 3 2 3 2

.....................................

.....................................

1 1 2 3n n

y b

y b b h

y b b h b h h

y b b h b h h b h h h

y b b nh b nh n h b nh n h n h

=

= +

= + +

= + + +

= + + − + − − − + − − →      

0 11 2, , ..... nb b b b 0 0b y=

( )

1 0 1 0 0
1

1 02 0 1
2 2 02

2
2

2

y b y y y
b

h h h

y yy b b h
b y y h

h h

− − 
= = =

−− −
= = − −

2

2 0 1 0 2 1 0 0

2 2 2

2

0
2 2

2 2 2

2 2 2

2!

y y y y y y y y

h h h

y
b

h

− − − − + 
= = =


 =

( ) ( ) ( )( )

3 4

0 0 0
3 43 4

2

0 0
0 0 0 12

,
3! 4! !

2!

n

n n

y y y
b b b

h h n h

y y
y f x y x x x x x x

h h

  
= = −−−−− =

 
 = = + − + − −

( )( )( )

( )( ) ( ) ( )

3

0
0 1 23

0
0 1 1

3!

3
!

n

nn

y
x x x x x x

h

y
x x x x x x

n h
−


+ − − − + −−−+


+ − − −−− − →

0 0 , 0,1,2,.....x x ph x x ph where p n= +  − = =
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 Then  

   

 Equation (3) becomes          for  

  

2.2. b. Newton’s Backward Interpolation Formula:- 

  If we consider 

 

  and impose the condition that y and  should agree at the tabulated 

points  

We obtain   

   

 Where  

( ) ( )

( )

( ) ( )

( ) ( )

( )

( )

1 0 0

2 1 1

1

1

1 2

............................................

............................................

1

i

n

x x x x h x x h

ph h p h

x x x x h x x h

p h h p h

x x p i h

x x p n h−

− = − + = − −

= − = −

− = − + = − −

= − − = −

− = −

− = − −  

0x x
p

h

−
=

( ) ( )
( ) ( )( )

( )( ) ( )( )
( )

2 3

0 0 0 0 0

0

1 1 2

2! 3!

1 2 1
4

!

n

p p p p p
y f x f x ph y p y y y

p p p p n
y

n

− − −
= = + = +  +  +  + − − − − +

− − − − − − − −
 →

( ) ( ) ( )( ) ( )( )( ) ( )0 1 2 1 3 1 2n n n n n n n iy x a a x x a x x x x a x x x x x x x x− − −= + − + − − + − − − + −−−− −

( )ny x

2 1 0, 1,...... , ,n nx x x x x−

( )
( )

( ) ( )
( )

2
1

2

1 1
6

!

n n n n

n

n

p p
y x y p y y

i

p p p n
y

n

+
= +  +  + − − −

+ − − − − + −    + − − −−→

nx x
p

h

−
=
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 This uses tabular values of the left of . Thus this formula is useful formula is useful  

for interpolation near the end of the table values 

Formula for Error in Polynomial Interpolation:-  

  If  is the exact curve and  is the interpolating curve, then the error 

 in polynomial interpolation is given by 

   

 for any x, where  

 The error in Newton’s forward interpolation formula is given by  

   

  Where  

 The error in Newton’s backward interpolation formula is given by  

  Where  

Examples:- 

1. Find the melting point of the alloy containing 54% of lead, using appropriate 

  interpolation formula  

Percentage of 

lead(p)-X 
50 60 70 80 

Temperature 

-Y 205 225 248 274 

 

ny

( )y f x= ( )ny x=

( ) ( )
( )( ) ( )

( )
( ) ( )0 1 1 7

1 !

n n

n

x x x x x x
Error f x x f

n
 +

− − −−−− −
= − = →

+

0 0n nx x x and x x   

( ) ( )
( )( ) ( )

( )
( )1

1 2 .......

1 !

n

n

p p p p n
f x x f

n
 +

− − −
− = 

+

0x x
p

h

−
=

( ) ( )
( )( ) ( )

( )
( )1 1

1 2 .......

1 !

n n

n

p p p p n
f x x h y f

n
 + +

+ + +
− =

+

nx x
p

h

−
=

( )Q c
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Sol. The difference table is  

X Y    

50=X0 205=Y0    

  20=∆𝒀𝟎   

60 225  3=∆𝟐Y0  

  23  0=∆𝟑Y0 

70 248  3  

  26   

80 274    

  

Let temperature = ,X=54 

    

By Newton’s forward interpolation formula 

   

 Melting point = 212.64 

2. Using Newton’s forward interpolation formula, and the given table of values 

X 1.1 1.3 1.5 1.7 1.9 

 0.21 0.69 1.25 1.89 2.61 

 2 3

( )f x

( ) ( )
0 024, 50, 10

50 10 54 0.4

x ph x h

p or p

+ = = =

+ = =

( )
( ) ( )( )

( ) ( )
( )

( )
( )( )( )

( )

2 3

0 0 0 0 0

1 1 2

2! !

0.4 0.4 1 0.4 0.4 1 0.4 2
54 205 0.4 20 3 0

2! 3!

205 8 0.36

212.64

p p p p p
f x ph y p y y y

n

f

− − −
+ = +  +  +  + − − −

− − −
= + + +

= + −

=

( )f x
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Obtain the value of  

Sol.  

x      

1.1 0.21     

  0.48    

1.3 0.69  0.08   

  0.56  0  

1.5 1.25  0.08  0 

  0.64  0  

1.7 1.89  0.08   

  0.72    

1.9 2.61     

 

If we take , 

   

Using Newton’s interpolation formula 

   

 

 

( ) 1.4f x when x =

( )y f x=  2 3 4

0 01.3 0.69x then y= =

( ) ( )

2 3

0 0 0

0

0.56, 0.08, 0, 0.2, 1.3

1
1.4 1.3 0.2 1.4,

2

y y y L x

x ph or p p

 =  =  = = =

+ = + = =

( )

1 1
1

1 2 2
1.4 0.69 0.56 0.08

2 2!

0.69 0.28 0.01 0.96

f

 
− 

 = +  + 

= + − =
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3. The population of a town in the decimal census was given below. Estimate the 

population for the 1895 

Year x 1891 1901 1911 1921 1931 

Population 

of y 
46 66 81 93 101 

Sol. Putting  in the formula  we obtain  

X Y     

1891=x0 46=y0     

  20∆𝑦0    

1901 66  
-

5∆2𝑌0 
  

  15  2  

1911 81  -3  -3 

  12  -1  

1921 93  -4   

  8    

1931 101     

 

2.3. Gauss’s Interpolation Formula:- We take  as one of the specified of x that lies 

around the middle of the difference table and denote  by  and the 

corresponding value of y by . Then the middle part of the forward difference 

table will appear as shown in the next page 

010, 1891, 1895L x x= = = 0x x ph= + 2 / 5 0.4p = =

 2 3 4

( ) ( )( )
( )( )

( )

( ) ( )
( )

( )( )( )( )

0.4 0.4 1
1895 46 0.4 20 5

6

0.4 1 0.4 0.4 2
2

6

0.4 0.4 1 0.4 2 0.4 3

24

54.45

y

thousands

−
= + + − −

− −
+

− − −
+

=

0x

0x rh− x r−

y r−
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X Y      

       

       

       

       

       

       

       

       

       

   

By using the expressions (1) and (2), we now obtain two versions of the following 

Newton’s forward interpolation formula 

 

y 2 y 3 y 4 y 5 y

4x− 4y−

3x− 3y− 4y−

2x− 2y− 3y− 2

4y−

1x− 1y− 2y− 2

3y− 3

4y−

0x 0y 1y− 2

2y− 3

3y− 4

4y−

1x 1y 0y 2

1y− 3

2y− 4

3y− 5

4y−

2x 2y 1y 2

0y 3

1y− 4

2y− 5

3y−

3x 3y 2y 2

1y 3

0y 4

1y− 5

2y−

4x 4y 3y 2

2y 3

1y 4

0y 5

1y−

( )

( )

2

0 1 1

2 2 3

0 1 1

3 3 4

0 1 1

4 4 5

0 1 1

2

1 2 2

2 2 3

1 2 2

3 3 4

1 2 2

4 4 5

1 2 2

1

2

y y y

y y y

y y y

y y y and

y y y

y y y

y y y

y y y

− −

− −

− −

− −

− − −

− − −

− − −

− − −

 =  + 

 =  + 

 =  + 

 =  +  − − − − −

 =  + 

 =  + 

 =  + 

 =  +  − − − − −

( )
( )

( )
( ) ( )

( ) ( ) ( )
( )

2 3

0 0 0 0

4

0

1 1 2
[

2! 3!

1 2 3
] 3

4!

p

p p p p p
y y p y y y

p p p p
y

− − −
= +  +  + 

− − −
+  + − − −− →-----------------3 
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Here  is the value of y at  ,P= (x-x0 )/h 

 

2.3.a. Gauss Forward Interpolation Formula:- 

 Substituting for  from (1)in the formula (3), we get 

  

  

Substituting , this becomes 

 

Note:-  we observe from the difference table that  

  and so on. Accordingly the formula 

 (4) can be written in the notation of central differences as given below 

 

2.3.b. Gauss’s  Backward Interpolation formula:- 

  Let us substitute for ----- from (1) in the formula (3), thus we obtain 

py 0px x x ph= = +

2 3

0 0, ,....y y 

( )
( )

( )
( ) ( )

( ) ( ) ( )

2 3 3

0 0 1 1 1

4 4 5

1 1 1

1 1 2
[

2! 3!

1 2 3
]

4!

p

p p p p p
y y p y y y y

p p p p
y y y

− − −

− − −

− − −
= +  +  +  + 

− − −
+  +  +  + − − −−

( )
( )

( )
( ) ( )

( ) ( ) ( )
( )

2 3

0 0 1 1

4

1

1 1 1
[

2! 3!

1 1 2
]

4!

p

p p p p p
y y p y y y

p p p p
y

− −

−

− + −
= +  +  + 

+ − −
+  + − − −−

( )4

1 2y from−

( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( )

2 3

0 0 1 1

4

2

1 1 1
[

2! 3!

1 1 2
] 4

4!

p

p p p p p
y y p y y y

p p p p
y

− −

−

− + −
= +  +  + 

+ − −
+  + − − −− →

2 2 3 3 4 4

0 1/2 1 0 1 1/2 2 0, , ,y y y y y y y y   − − − =  =  =  =

( ) ( ) ( )

( ) ( ) ( )
( )

2 3

0 1/2 0 1/2

4

0

1 1 1
[

2! 3!

1 1 2
] 5

4!

p

p p p p p
y y p y y y

p p p p
y

  



− + −
= + + +

+ − −
+ + − − −− →

2 3

0 0 0, ,y y y  

-----------------5 

-----------------4 
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 Substituting for  and  from (2) this becomes 

  

2.4. Lagrange’s Interpolation Formula:- 

 Let  be the  values of x which are not necessarily equally 

spaced. Let  be the corresponding values of  let the 

polynomial of degree n for the function  passing through the 

points       be in the following form 

 

Where  an are constants 

 Since the polynomial passes through , . The 

constants can be determined by substituting one of the values of 

 in the above equation 

Putting  in (1) we get,  

 

( )
( )

( )
( ) ( )

( )

( ) ( ) ( )
( )

2 2 3 3 4

0 1 1 1 1 1 1

4 5

1 1

1 1 2
[

2! 3!

1 2 3
]

4!

p

p p p p p
y y p y y y y y y

p p p p
y y

− − − − − −

− −

− − −
= +  +  +  +  +  +  +

− − −
 +  + − − −−

( )
( )

( )
( ) ( ) ( ) ( )( )

( )2 3 4

0 1 1 1 1

1 1 1 1 1 2
[ ]

2! 3! 4!

p p p p p p p p
y p y p y y y− − − −

+ + − + − −
= +  +  +  +  + −−−−

3

1y− 4

1y−

( )
( ) ( ) ( )

( )

( ) ( ) ( )
( )

2 3 4

0 1 1 1 2

4 5

2 2

1 1 1
[

2! 3!

1 1 2
]

4!

p

p p p p p
y y p y y y y

p p p p
y y

− − − −

− −

+ + −
= +  +  +  + 

+ − −
+  +  + − − −−

0 1 2, , ,....x x x nx ( )1n +

0 1 2, , ........ ny y y y ( )y f x=

( )y f x= ( )1n +

( )( ) ( )( ) ( )( )0 0 1 1, , , ,n nx f x x f x x f x− − − −

( ) ( )( ) ( ) ( )( ) ( )

( )( ) ( ) ( )( ) ( ) ( )

0 1 2 1 0 2

2 0 1 0 1 1

...... .........

....... ........ ...... 1

n n

n n n

y f x a x x x x x x a x x x x x x

a x x x x x x a x x x x x x −

= = − − − + − − − +

− − − + + − − − →

0 1 2, , ....a a a

( )( )0 0,x f x ( )( ) ( )( )1 1, ...... ,n nx f x x f x

0 1, ,..... nx x x for x

0x x= ( ) ( )( )( )0 0 1 0 2 0 nf x a x x x x x x= − − −

( )

( )( ) ( )
0

0

1 0 2 0.... n

f x
a

x x x x x x
 =

− − −
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Putting  in (1) we get,  

 

Similarly substituting  in (1), we get 

 

Continuing in this manner and putting  in (1) we  

get  

Substituting the values of , we get  

 

 

Examples:-  

1. Using Lagrange’s formula calculate  from the following table 

 x 0 1 2 4 5 6 

 1 14 15 5 6 19 

 

Sol. Given  

  

From langrage’s interpolation formula 

1x x= ( ) ( )( ) ( )1 1 0 1 2 1 nf x a x x x x x x= − − − − − − −

( )

( )( ) ( )
1

1

1 0 1 2 1.... n

f x
a

x x x x x x
 =

− − −

2x x=

( )

( )( ) ( )
2

2

2 0 2 1 2...... n

f x
a

x x x x x x
 =

− − −

nx x=

( )

( )( ) ( )0 1 1

n

n

n n n n

f x
a

x x x x x x −

=
− − −−−− −

0 1 2, , .... na a a a

( )
( )( ) ( )

( )( ) ( )
( )

( )( ) ( )

( )( ) ( )
1 2 0 2

0

0 1 0 2 0 1 0 1 2 1

....... .....

......... ....

n n

n n

x x x x x x x x x x x x
f x f x

x x x x x x x x x x x x

− − − − − −
= +

− − − − − −

( )
( )( )( ) ( )

( )( ) ( )
( )

( )( ) ( )

( )( ) ( )
( )0 1 2 0 1 1

1 2

2 0 2 1 2 1 2 1

..... .....
.....

...... .....

n n

n

n n n n n

x x x x x x x x x x x x x x
f x f x f x

x x x x x x x x x x x x

−

−

− − − − − − −
+ + +

− − − − − −

( )3f

( )f x

0 1 2 3 5 40, 1, 2, 4, 6, 5x x x x x x= = = = = =

( ) ( ) ( ) ( ) ( ) ( )0 1 2 3 4 51, 14, 15, 5, 6, 19f x f x f x f x f x f x= = = = = =
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 Here  then 

  

 

 

 

 

                          f(3)=10 

     

( )
( )( )( )( )( )

( )( )( )( ) ( )
( )

( )( )( )( )( )

( )( )( )( )( )
( )

( )( )( ) ( )( )

( )( )( ) ( )( )
( )

( )( )

1 2 3 4 5

0

0 1 0 2 0 3 0 4 0 5

0 2 3 4 5

1

1 0 1 2 1 3 1 4 1 5

0 1 3 4 5

2

2 0 2 1 2 3 2 4 2 5

0 1

x x x x x x x x x x
f x f x

x x x x x x x x x x

x x x x x x x x x x
f x

x x x x x x x x x x

x x x x x x x x x x
f x

x x x x x x x x x x

x x x x x x

− − − − −
=

− − − − −

− − − − −
+

− − − − −

− − − − −
+

− − − − −

− − − − − − − − − − − − − − − − − − − −

− − − − − − − − − − − − − − − − − − − −

− − −( ) ( )( )

( )( )( ) ( ) ( )
( )2 3 4

5

5 0 5 1 5 2 5 3 5 4

x x x x
f x

x x x x x x x x x x

− −

− − − − −

3x =

( )
( )( )( )( )( )

( )( )( )( )( )

( )( )( )( )( )

( )( )( )( )( )

( )( )( )( )( )

( )( )( )( )( )

3 1 3 2 3 4 3 5 3 6
3 1

0 1 0 2 0 4 0 5 0 6

3 0 3 2 3 4 3 5 3 6
14

1 0 1 2 1 4 1 5 1 6

3 0 3 1 3 4 3 5 3 6
15

2 0 2 1 2 4 2 5 2 6

f
− − − − −

=  +
− − − − −

− − − − −
 +

− − − − −

− − − − −
 +

− − − − −

( ) ( )( )( )( )

( )( )( )( )( )

( )( )( ) ( )( )

( ) ( )( )( )( )

3 0 3 1 3 2 3 5 3 6
5

4 0 4 1 4 2 4 5 4 6

3 0 3 1 3 2 3 4 3 6
6

5 0 5 1 5 2 5 4 5 6

− − − − −
 +

− − − − −

− − − − −
 +

− − − − −

( )( )( )( )( )

( )( )( )( )( )

3 0 3 1 3 2 3 4 3 5
19

6 0 6 1 6 2 6 4 6 5

− − − − −


− − − − −

12 18 36 36 18 12
14 15 5 6 19

240 60 48 48 60 40
= −  +  +  −  + 

0.05 4.2 11.25 3.75 1.8 0.95= − + + − +

10=
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2. Find  using Lagrange method of  and  order degree polynomials. 

 

  
 

    Sol:      By lagrange’s interpolation formula 

  

 

 

  

  - - - -  

=0.0625+(-0.625)+8.4375+8.75 

=16.625 

 

 

( )3.5f 2nd 3rd

x 1 2 3 4

( ) 1 2 9 28f x

( ) ( )
( ) ( )( )( )

( ) ( ) ( )
0 1 1

0 0 1

.......

....... .......

n
k k n

k

k k k k k n

x x x x x x x x
f x f x

x x x x x x

− +

= −

− − − −
=

− − −


( )
( )( )( )

( )( )( )
( )1 2 3

0

0 1 0 2 0 3

x x x x x x
f x f x

x x x x x x

− − −
= +

− − −

( )( )( )

( )( )( )
( )

( )( )( )

( )( )( )
( )

( )( )( )

( )( )( )
( )

0 2 3

1

1 0 1 2 1 3

0 1 3

2

2 0 2 1 2 3

0 1 2

3

3 0 3 1 3 2

x x x x x x
f x

x x x x x x

x x x x x x
f x

x x x x x x

x x x x x x
f x

x x x x x x

− − −
+

− − −

− − −
+

− − −

− − −
+

− − −

( )
( )( )( )

( )( )( )
( )

3.5 2 3.5 3 3.5 4
3.5 1

1 2 1 3 1 4
f

− − −
 = +

− − −

( )( )( )

( )( )( )
( )

3.5 1 3.5 3 3.5 4
2

2 1 2 3 2 4

− − −
+

− − −

( )( )( )

( )( )( )
( )

( )( )( )

( ) ( )( )
( )

3.5 1 3.5 2 3.5 4
9

3 1 3 2 3 4

3.5 1 3.5 2 3.5 3
28

4 1 4 2 4 3

− − −
+

− − −

− − −
+

− − −

( )
( )( )( )

( )
( )( )( )

( )

( )( )( )

( )
( )

( )( ) ( )
( )

2 3 4 1 3 4
1 2

6 2

1 2 4 1 2 3
9 28

2 6

x x x x x x
f x

x x x x x x

− − − − − −
= +

−

− − − − − −
+ +

−

( )( )
( )( )

( )
( )( )

( )
( )( )

2 2 2

2
5 6 4 3 2 3 2

4 3 4 4 9 3 28
6 2 6

x x x x x x x
x x x x x

− + − − + − +
= + − + − + − + −

− −
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Gauss Formula Example: 

1. Find y(25), given that y20 = 24,y24 = 32, y28  = 35 ,y32  = 40  using Gauss forward 

difference formula : 

Solution:  Given  

 X 20 24 28 32 

           Y 24 32 35 40 

 By Gauss Forward difference formula  

 

 We take x0= 24 as origin. 

X0 = 24, h = 4, x = 25, p = (x-x0)/ h, p = (25-24)/4 = 0.25 

Gauss Forward difference table is  

X Y    

20=x-1
 

24=y-1
 

   

24=x0
 

32=y0
 

= 8   

28=x1
 

35=y1
 

 = 3 = -5  

32=x2 40=y2
 

= 5 = 2 = 7 

 

( ) ( )
3 2 3 2 3 2

3 29 26 24 7 14 8 6 11 6
8 9 12 9 28

6 2 6

x x x x x x x x x
x x x

− + − − + − − + −
= + − + − + +

− −
3 2 3 2 3 2 3 29 26 24 6 48 114 72 27 189 378 216 308 28 168 168

6

x x x x x x x x x x x x − + − + + − + − − + − + + + − − =

( )
3 2

3 26 18 18
3 3

6

x x x
f x x x x

− +
=  = − +

( ) ( ) ( ) ( )
3 2

3.5 3.5 3 3.5 3 3.5 16.625f = − + =

( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( )

2 3

0 0 1 1

4

2

1 1 1
[

2! 3!

1 1 2
] 4

4!

p

p p p p p
y y p y y y

p p p p
y

− −

−

− + −
= +  +  + 

+ − −
+  + − − −− →

y 2 y 3 y

1y−

0y 2

1y−

1y 2

0y 3

1y−
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By gauss forward interpolation Formula  

We get y(25) = 32 +0.25(3) + (
0.25)(0.25−1)

2
)(−5) + 

(0.25+1)(0.25)(0.25−1)

6
(7) = 32 +0.75  

                         +0 .46875 - 0.2734 = 32.945 

             Y(25) = 32.945. 

2. Example: 

 Use Gauss Backward interpolation formula to find f(32) given that f(25) = 0.2707, 

f(30) = 0.3027, f(35) =0 .3386 , f(40) =0 .3794. 

Solution: let x0 = 35 and difference table is  

X Y    

25=x-2
 

0.2707=y-2
 

   

30=x-1
 

0.3027=y-1
 

0.032    

35=x0
 

0.3386=y0 0.0359
 

0.0039  

40=x1 0.3794=y1
 

0.0408
 

0.0049
 

0.0010 

 

From the table y0 = 0.3386 ,h=5,P=(x-x0)/h=(32-35)/5=-0.6 

 = 0.0359,
 = 0.0049,  = 0.0010, xp = 32 p = (xp- x0 )/h = (32-35)/5 = -0.6 

By Gauss Backward difference formula  

 

f(32) = 0.3386 + (-0.6)(0.0359) + (-0.6)(-0.6+1)(0.0049)/2 + (-0.6)(0.36-1)(0.00010)/6 =0 .3165 

y 2 y 3 y

1y−
2

1y− 3

2y−

( )
( ) ( ) ( )

( )

( ) ( ) ( )
( )

2 3 4

0 1 1 1 2

4 5

2 2

1 1 1
[

2! 3!

1 1 2
]

4!

p

p p p p p
y y p y y y y

p p p p
y y

− − − −

− −

+ + −
= +  +  +  + 

+ − −
+  +  + − − −−
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2.5 Stirling’s Formula:  

  Stirling’s formula is arithmetic mean of Gauss forward interpolation and Gauss 

Backward Interpolation formulae 

We know that from Gauss forward formula 

         

And from Gauss backward formula 

      ----(5) 

From 4,5, we found arithmetic mean the Stirling’s formula is defined as 

       P=
𝑋−𝑋0

ℎ
 , where h=x1-x0 

      Y(x) = y0 + P [
∆𝑌−1+∆𝑌0

2
] +

𝑃2

2
 ∆2Y-1 + 

[𝑃(𝑃2−1)]

3!
  [

∆3 𝑌−2+∆3𝑌−1

2
]+

𝑃2(𝑃2−1)

4!
 ∆4 𝑌 -2 +---- 

 

2.5 Bessel’s Formula: 

  

     Y=f(x) is a function with data (xi, yi) with P=
𝑋−𝑋0

ℎ
 , where h=x1-x0 then Bessel’s formula is 

defined as follows  

   Y(X)= Y0+P∆𝑌0 + 
𝑃(𝑃−1)

2!
 [

∆2 𝑌0+∆2𝑌−1

2
] + 

(𝑃− 
1

2
)𝑃(𝑃−1)

3!
 ∆3Y-1 + 

𝑃(𝑃−1)(𝑃+1)(𝑃−2)

4!
 [

∆4 𝑌−2+∆4𝑌−1

2
] + − − − 

 

 

Examples: 

    

1. Using Striling’s formula, compute f(1.22) from the following data 

          

X 1.0 1.1 1.2 1.3 1.4 

F(x) 0.841 0.891 0.932 0.963 0.985 

 

 

( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( )

2 3

0 0 1 1

4

2

1 1 1
[

2! 3!

1 1 2
] 4

4!

p

p p p p p
y y p y y y

p p p p
y

− −

−

− + −
= +  +  + 

+ − −
+  + − − −− →

( )
( ) ( ) ( )

( )

( ) ( ) ( )
( )

2 3 4

0 1 1 1 2

4 5

2 2

1 1 1
[

2! 3!

1 1 2
]

4!

p

p p p p p
y y p y y y y

p p p p
y y

− − − −

− −

+ + −
= +  +  +  + 

+ − −
+  +  + − − −−
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Sol. Chose X0=1.2 is origin and length h=0.1 and P=
𝑋−𝑋0

ℎ
=

1.22−1.2

0.1
 =0.2 

Next we construct central difference table by using above data and evaluate required 

value by Stirling’s formula 

X Y     

=1.0 =0.841     

=1.1 =0.891 =0.05    

=1.2 =0.932 =0.041 =-0.009   

=1.3 =0.963 =0.031 =-0.01 =-0.001  

=1.4 =0.985 =0.022 =-0.009 =0.001 =0.02 

 

Use Stirling’s formula  

 

               Y(x) = y0 + P [
∆𝑌−1+∆𝑌0

2
] +

𝑃2

2
 ∆2 Y-1 +[P(𝑃2 − 1)]/3! [

∆3 𝑌−2+∆3𝑌−1

2
]+

𝑃2(𝑃2−1)

4!
 ∆4 𝑌 -2 +---- 

 

Then Y(1.22) = 0.932+0.2
(0.041+0.031)

2
 +

0.04

2!
 (-0.01)+

0.2(0.04−1)

4!
(0.002) = 0.93899 

 

2.  Find f(16) by Stirling’s formula from the following table 

x 0 5 10 15 20 25 30 

F(x) 0 0.0875 0.1763 0.2679 0.364 0.4663 0.5774 

 

 

 

Examples: 

 

1. Use Bessel’s formula to compute f(1.95) from the following data 

 

X 1.7 1.8 1.9 2.0 2.1 2.2 2.3 

F(X) 2.979 3.144 3.283 3.391 3.463 3.997 4.491 

 

Sol. Choose the origin at X0 =2.0, given h=0.1 and P= 
𝑥−𝑥0

ℎ
 = 

1.95−2.0

0.1
 =-0.5 

Next by using Bessel’s formula and central difference table we can evaluate the required 

solution 

y 2 y 3 y 4 y

2x− 2y−

1x− 1y− 2y−

0x 0y 1y− 2

2y−

1x 1y 0y 2

1y− 3

2y−

2x 2y 1y 2

0y 3

1y− 4

2y−
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X Y      

=1.7 =2.979      

=1.8 =3.144 =0.165     

=1.9 =3.283 =0.139 =-0.026    

=2.0 =3.391 =0.108 =-0.031 =-0.005   

=2.1 =3.463 =0.072 =-0.036 =-0.005 =0  

=2.2 =3.997 =0.53 =0.462 =0.498 
=0.503 

=0.503 

=2.3 =4.491 =0.494 =-0.04 =-0.502 =-1 =-1.503 

Bessel’s formula ∆6y−3 = −2.006 

Y(X)= Y0+P∆𝑌0 + 
𝑃(𝑃−1)

2!
 [

∆2 𝑌0+∆2𝑌−1

2
] + 

(𝑃− 
1

2
)𝑃(𝑃−1)

3!
 ∆3 Y-1 + 

𝑃(𝑃−1)(𝑃+1)(𝑃−2)

4!
 [

∆4 𝑌−2+∆4𝑌−1

2
] + − − − 

 

Y(1.95) = 3.391+(-0.5)(0.072) +
(−0.5)(−0.5−1)(−0.036+0.462)

2.2
 + 

(−0.5−0.5)(−0.5)(−0.5−1)(−0.5−2)(0.503−1)

24.2
  

Y(1.95) = 3.3629  

 

2. Compute Y(25) by using Bessel’s formula to the following table 

X 20 24 28 32 

Y 2854 3162 3544 3992 

 

9. Practice Quiz 

 

1. Newton’s backward Interpolation formula is ……………….                               [   a      ] 

a. 

      

b. y+y0 

y 2 y 3 y 4 y 5 y

3x− 3y−

2x− 2y− 3y−

1x− 1y− 2y− 2

3y−

0x 0y 1y− 2

2y− 3

3y−

1x 1y 0y 2

1y− 3

2y−

4

3y−

2x 2y 1y 2

0y 3

1y−

4

2y−
5

3y−

3x 3y 2y 2

1y 3

0y
4

1y− 5

2y−

( )
( ) ( ) ( )

( )

( ) ( ) ( )
( )

2 3 4

0 1 1 1 2

4 5

2 2

1 1 1
[

2! 3!

1 1 2
]

4!

p

p p p p p
y y p y y y y

p p p p
y y

− − − −

− −

+ + −
= +  +  +  + 

+ − −
+  +  + − − −−
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c. y0 

d. None 

2. The ……………………….Interpolation formula is used to estimate y, if the x-values are 

unequally spaced.                                                                                                  [     c    ] 

a. Newton formula 

b. Gauss formula 

c. Lagrange’s formula 

d. Bessel’s formula 

3. Averaging Operator formula                                                                                 [     d    ] 

a.∆                             

b. ∇ 

c. ∪ 

d.  

4. The relation between ∆ 𝑎𝑛𝑑 𝐸                                                                                [     c     ] 

a. ∆= 𝐸 

b. ∇= 𝐸 

c. ∆= 𝐸 − 1 

d. ∆= 𝐸 + 1 

5.  Find the missing term in the following data                                                         [     c    ] 

x 0 1 2 3 4 

Y 1 3 9 - 81 

 1/2 1/2

1

2
r r ry y y + −= +
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a. 10 

b. 19 

c. 27 

d. 0 

6. The relation between ∇ and E-1                                                                                                                    [       a   ]                

a.  

b.  

c.  

d.  

7. The relation between 𝛿 𝑎𝑛𝑑 𝐸                                                                              [      b     ] 

a.  

b.  

c.  

d.  

8. The relation between 𝜇 𝑎𝑛𝑑 𝐸                                                                                [    c      ] 

a.  

b.  

c.  

11 E−  −

1/2 1/2E E − −

( )1/2 1/21

2
E E −= +

2 21
1

4
  +

11 E−  −

1/2 1/2E E − −

( )1/2 1/21

2
E E −= +

2 21
1

4
  +

11 E−  −

1/2 1/2E E − −

( )1/2 1/21

2
E E −= +
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d.  

9. The relation between 𝜇 𝑎𝑛𝑑 𝛿                                                                                  [     d      ] 

a.  

b.  

c.  

d.  

10. The relation between E and D                                                                             [     d     ] 

a.  

b.  

c.  

d. E = ehD 

10. Assignments 

S.No Question BL CO 

1 

Using Newton’s forward interpolation formula, and the given table of 

values. 

X 1.1 1.3 1.5 1.7 1.9 

F(X) 0.21 0.69 1.25 1.89 2.61 

Obtain the value of 𝑓(𝑥) 𝑤ℎ𝑒𝑛 𝑥 = 1.4 

1 2 

2 
Use Gauss back ward interpolation formula to find 𝑓(32) given 

that  𝑓(25) = 0.2707, 𝑓(30) = 0.3027, 𝑓(35) = 0.3386, 𝑓(40) = 0.3794. 
1 2 

3 
Evaluate 𝑓(10) given 𝑓(𝑥) = 168,192,336 𝑎𝑡 𝑥 = 1,7,15 respectively. Use 

Lagrange interpolation. 
5 2 

4 
Apply Bessel’s formula to obtain )25(f given  

.3992)12(,3544)12(,3162)24(,2854)20( ==== ffff    
1 2 

5 
Apply Stirling’s formula to obtain )35(f given  

.243)50(,346)40(,439)30(,512)20( ==== ffff    
1 2 

2 21
1

4
  +

11 E−  −

1/2 1/2E E − −

( )1/2 1/21

2
E E −= +

2 21
1

4
  +

11 E−  −

1/2 1/2E E − −

( )1/2 1/21

2
E E −= +
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11. Part A- Question & Answers 

S.No Question& Answers BL CO 

1 

Distinguish between interpolation and extrapolation 

 Sol. Interpolation: It is the estimation for some such values              

which lie inside the given Values. 

         Extrapolation: It is the estimation for some such values   

which lie outside the given Values. 

 

4 

 2 

2 

Write relation between E  and  . 

 Sol.  )()()( xfhxfxf −+=  Forward Definition       

                    )()( xfxEf −=    Shift Definition 

                    )()1( xfE −=  

1 2 

3 

Prove that 1)1)(1( =−+  

 Sol.  We know that 1)1(,)1( −=−=+ EE  

                        1)1)(1( 1 ==−+ −EE  

5 2 

4 

Evaluate x1tan −  

Sol. xhxx 111 tan)(tantan −−− −+=  

                        








++

−+
= −

xhx

xhx

)(1
tan 1










++
= −

hxx

h
2

1

1
tan  

5 2 

5 

Evaluate xe if h=1. 

Sol. We know that xhxx eee −= +  

                                          xx ee −= +1  

                                          xee )1( −=  

5 2 

6 

Evaluate  )1)(1)(1)(1( 43210 dxcxbxax −−−− . 

Sol.     Let  )1)(1)(1)(1()( 43210 dxcxbxaxxf −−−−=  

     f(x) is a polynomial of degree 10 and the coefficient of 10x  is 

abcd. 

 )1)(1)(1)(1( 43210 dxcxbxax −−−− = 1010 xabcd = !10abcd . 

5 2 

7 

Write Newton-Gregory forward interpolation formula.                                              

   Sol. 

−−−−−−−−+
−−

+
−

++= 0

3

0

2

00
!3

)2)(1(

!2

)1(
y

ppp
y

pp
ypyy  

1 2 

8 

 Write Newton-Gregory backward interpolation formula.                                            

  Sol.

−−−−−−−−−+
++

+
+

++= nnnn y
ppp

y
pp

ypyy 32

!3

)2)(1(

!2

)1(
 

1 2 

9 

State Langrage’s interpolation formula.                                                                             

  Sol.  Let x1,x2,x3-------------xn be the values of x which are not equally 

spaced and y1,y2,y3------yn   be the Corresponding values of y. 

           Thus Lagrange’s interpolation formula is 

1 2 
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    +
−−−−−−−

−−−−−−−
= 1

13121

32

)())((

)())((
y

xxxxxx

xxxxxx
y

n

n

+
−−−−−−−

−−−−−−−
2

23212

31

)())((

)())((
y

xxxxxx

xxxxxx

n

n --------+ 

                  n

nnnn

n y
xxxxxx

xxxxxx

)())((

)())((

121

121

−

−

−−−−−−−

−−−−−−−
 .  

10 

Write Stirling’s Formula  

 Sol.  Y(x) = y0 + P [
∆𝑌−1+∆𝑌0

2
] +

𝑃2

2
 ∆2 Y-1 + 

[𝑃(𝑃2−1)]

3!
 

[
∆3 𝑌−2+∆3𝑌−1

2
]+

𝑃2(𝑃2−1)

4!
 ∆4 𝑌 -2 +---∞ 

1 2 

 

12. Part B- Questions 

S.No Question BL CO 

1 
For 𝑥 = 0,1,2,4,5; 𝑓(𝑥) = 1,14,15,5,6. 𝑓𝑖𝑛𝑑 𝑓(3) using forward 

difference table. 
1 2 

2 

Find the values of  𝑐𝑜𝑠1.747  using the values given in the table 

below 

X 1.70 1.74 1.78 1.82 1.86 

F(X) 0.9916 0.9857 0.9781 0.9691 0.9584 
 

1 2 

3 

Using Newton’s forward interpolation formula, and the given 

table of values. 

X 1.1 1.3 1.5 1.7 1.9 

F(X) 0.21 0.69 1.25 1.89 2.61 

      Obtain the value of 𝑓(𝑥) 𝑤ℎ𝑒𝑛 𝑥 = 1.4 

1 2 

4 
Use Gauss back ward interpolation formula to find 𝑓(32) given 

that  𝑓(25) = 0.2707, 𝑓(30) = 0.3027, 𝑓(35) = 0.3386, 𝑓(40) = 0.3794. 
1 2 

5 

Use Lagrange interpolation. 

Evaluate 𝑓(10) given 𝑓(𝑥) = 168,192,336 𝑎𝑡 𝑥 = 1,7,15 

respectively. 

5 2 

6 

Find the unique polynomial  𝑝(𝑥) of degree 2 or less such that 

𝑝(𝑥) = 1, 𝑝(3) = 27, 𝑝(4) = 64 using Lagrange’s interpolation 

formula. 

1 2 

7 
Given 𝑓(2) = 10, 𝑓(1) = 8, 𝑓(0) = 5, 𝑓(−1) = 10 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 𝑓(

1

2
) by 

using Gauss forward formula 
6 2 

8 

Using Lagrange’s Interpolation formula, find 𝑦(10)from the 

following table 

X 5 6 9 11 

Y 12 13 14 16 

 Fit the second difference of the polynomial 𝑥4 − 12𝑥3 + 42𝑥2 −
30𝑥 + 9 with interval of differencing  ℎ = 2 

1 2 

9 
Apply Bessel’s formula to obtain )25(f given 

.3992)12(,3544)12(,3162)24(,2854)20( ==== ffff    
1 2 
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∫
1

𝑥
 𝑑𝑥 =

1

3
[(1 + 1.4142) + 3(1.0004 + 1.0062 + 1.0943 + 1.2175)

2

1

+ 2(1.0301)] 

                 =1.0894 

 

Numerical solutions of ordinary differential equations 

1. The important methods of solving ordinary differential equations 

of first order numerically are as follows 

1) Taylor’s series method 

2) Picard’s method 

3) Euler’s method 

4) Modified Euler’s method of successive approximations 

5) Runge- kutta method 

To describe various numerical methods for the solution of ordinary 

differential eqn’s, we consider the general 1st order differential eqn 

Given O.D.Eqn. dy/dx=f(x,y)-------(1) 

with the initial condition y(x0)=y0 , X1=X0+h, X2=X1+h,we have to 

evaluate Y1,Y2---- etc 

The methods will yield the solution in one of the two forms:  

i) A series for y in terms of powers of x, from which the value of y 

can be obtained by direct substitution. 

ii ) A set of tabulated values of y corresponding to different 

values of x 

The methods of Taylor and Picard belong to class(i) 

The methods of Euler, Runge - kutta method, Adams, Milne etc, 

belong to class (ii) 
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3.4 TAYLOR’S SERIES METHOD 

To find the numerical solution of the differential equation  

 →(1) 

With the initial condition →(2) 

can be expanded about the point  in a Taylor’s series in 

powers of   as 

→(3) 

In equ3,  is known from I.C equ2. The remaining coefficients 

etc are obtained by successively differentiating 

equ1 and evaluating at . Substituting these values in equ3, at 

any point can be calculated from equ3. Provided  is small. 

When , then Taylor’s series equ3 can be written as 

→(4) 

1. Using Taylor’s expansion evaluate the value of , 

at a)  

b) Compare the numerical solution obtained with exact 

solution . 

Sol: Given equation can be written as x0=0, y0=0  

 Differentiating repeatedly w.r.t to ‘x’ and evaluating at  

  

 In general,  or  

( , )
dy

f x y
dx

=

0 0( )y x y=

( )y x
0x

0( )x x−

2

0 0 0
0 0 0 0

( ) ( ) ( )
( ) ( ) ( ) ( ) ............ ( )

1 2! !

n
nx x x x x x

y x y x y x y x y x
n

− − −
 = + + + +

0( )y x

0 0 0( ), ( ),......... ( )ny x y x y x 

0x ( )y x

0h x x= −

0 0x =

2

( ) (0) . (0) (0) ...... (0) ........
2! !

n
nx x

y x y x y y y
n

 = + + + + +

2 3 , (0) 0xy y e y − = =

0.2x =

2 3 , (0) 0xy e y y+ = =

0x =

0

0

0

0

( ) 2 3 , (0) 2 (0) 3 2(0) 3(1) 3

( ) 2 3 , (0) 2 (0) 3 2(3) 3 9

( ) 2. ( ) 3 , (0) 2 (0) 3 2(9) 3 21

( ) 2. ( ) 3 , (0) 2(21) 3 45

( ) 2. 3 , (0) 2(45) 3

x

x

x

iv x iv

v iv x v

y x y e y y e

y x y e y y e

y x y x e y y e

y x y x e y e

y x y e y

 = + = + = + =

   = + = + = + =

   = + = + = + =

= + = + =

= + = + 0 90 3 93e = + =

( 1) ( )( ) 2. ( ) 3n n xy x y x e+ = + ( 1) ( ) 0(0) 2. (0) 3n ny y e+ = +
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The Taylor’s series expansion of  about  is 

  

Substituting the values of  

  

 → equ1 

Now put  in equ1 

  

Now put  in equ1 

  

  

 

Analytical Solution: 

 The exact solution of the equation  with  can be 

found as follows 

Which is a linear in y. 

Here   

I.F =  

General solution is ,dividing by 𝑒−2𝑥 on b.s. 

where  ,  

The particular solution is  or  

Put in the above particular solution, 

 

Similarly put  

( )y x
0 0x =

2 3 4 5

( ) (0) (0) (0) (0) (0) (0) ....
2! 3! 4! 5!

x x x x
y x y xy y y y y    = + + + + + +

(0), (0), (0), (0),..........y y y y  

2 3 4 59 21 45 93
( ) 0 3 ........

2 6 24 120
y x x x x x x= + + + + + +

2 3 4 59 7 15 31
( ) 3 ........

2 2 8 40
y x x x x x x= + + + + +

0.1x =

2 3 4 59 7 15 31
(0.1) 3(0.1) (0.1) (0.1) (0.1) (0.1)

2 2 8 40
y = + + + + 0.34869=

0.2x =

2 3 4 59 7 15 31
(0.2) 3(0.2) (0.2) (0.2) (0.2) (0.2)

2 2 8 40
y = + + + + 0.811244=

2 3 4 59 7 15 31
(0.3) 3(0.3) (0.3) (0.3) (0.3) (0.3)

2 2 8 40
y = + + + + 1.41657075=

2 3 xdy
y e

dx
= + (0) 0y =

2 3 xdy
y e

dx
− =

2, 3 xP Q e= − =

2
24

pdx dx

e e
e

−
−= = 

2 2. 3 . 3x x x xy e e e dx c e c− − −= + = − +
23 x xy e ce = − + 0, 0x y= = 0 3 c= − + 3c =

23 3x xy e e= − 2( ) 3 3x xy x e e= −

0.1x =

0.2 0.13. 3 0.34869y e e= − =

0.2x =
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put  

   

There is negligible error between numerical solution and analytical 

solution. 

2. Using Taylor’s series method, solve the equation  for 

 given that when  

Sol: Given that  and  when  i.e.  

Here ,  

Differentiating repeatedly w.r.t ‘x’ and evaluating at  

 

The Taylor’s series for f(x) about  is  

  

Substituting the values of  

(Higher order terms are 

neglected) 

 

3. Solve  using Taylor’s series method and compute 

y(0.1),y(0.2) 

Sol: Given that  

Here ,  

Differentiating repeatedly w.r.t ‘x’ and evaluating at x=0 

0.4 0.23 3 0.811265y e e= − =

0.3x =

0.6 0.33 3 1.416577y e e= − =

2 2dy
x y

dx
= +

0.4x = 0y = 0x =

2 2dy
x y

dx
= + 0y = 0x = (0) 0y =

0 0y = 0 0x =

0x =

2 2 2

2

( ) , (0) 0 (0) 0 0 0

( ) 2 .2 , (0) 2(0) (0)2. 0

( ) 2 2 2 . , (0) 2 2. (0). (0) 2. (0) 2

( ) 2. . 2. . 4. . , (0) 0

y x x y y y

y x x y y y y y

y x yy y y y y y y

y x y y y y y y y

 = + = + = + =

   = + = + =

      = + + = + + =

      = + + =

0 0x =

2 3 4

( ) (0) (0) (0) (0) (0) ...
2! 3! 4!

x x x
y x y xy y y y   = + + + + +

(0), (0), (0),.....y y y 

3 32
( ) 0 (0) 0 0 ........

3! 3

x x
y x x= + + + + + = +

3(0.4) 0.064
(0.4) 0.02133

3 3
y = = =

2 , (0) 1y x y y = − =

2 , (0) 1y x y y = − =

0 1y = 0 0x =
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The Taylor’s series for f(x) about x0 = 0 is 

y(x) = y(0) + y1(0) + y11(0) + y111(0) + ….. 

Substituting the value of y(0), y1(0), y11(0),….. 

y(x) = 1 – x + x2 - x3 + x4 +….. 

y(x) = 1 – x + x2 - x3 + x4 +…..     →(1) 

now put x = 0.1 in (1) 

y(0.1) = 1 – 0.1 + (0.1)2 +  (0.1)3 + (0.1)4 + ….. 

   = 0.91380333 ~ 0.91381 

Similarly put x = 0.2 in (1) 

y(0.2) = 1 – 0.2 + (0.2)2 -  (0.2)3 + (0.2)4 + ….. 

   = 0.8516. 

4.  Solve y1 = x2 – y, y(0) = 1, using Taylor’s series method and 

compute y(0.1), y(0.2), y(0.3) and y(0.4) (correct to 4 decimal 

places). 

Sol.  Given that yI = x2 – y and y(0) = 1 

Here x0 = 0, y0 = 1 or y =1 when x=0 

Differentiating repeatedly w.r.t ‘x’ and evaluating at x = 0. 

YI(x) = x2 – y,  yI(0) = 0 – 1 = -1 

yII(x) = 2x – yI, yII(0) = 2(0) – yI(0) = 0 – (-1) = 1 

yIII(x) = 2 – yII, yIII(0) = 2 – yII(0) = 2 – 1 = 1, 

yIV(x) = - yIII ,     yIV(0) = -yIII (0) = -1. 

The Taylor’s servies for f(x) about x0 = 0 is  

2 2

2 2

( ) , (0) 0 (0) 0 1 1

( ) 1 2 . , (0) 1 2. (0) (0) 1 2( 1) 3

( ) 1 2 2( ) , (0) 2. (0). (0) 2.( (0)) 6 2 8

( ) 2. . 2. . 4. . , (0) 2. (0). (0)

y x x y y y

y x y y y y y

y x yy y y y y y

y x y y y y y y y y y

 = − = − = − = −

   = − = − = − − =

     = − − = − − = − − = −

       = − − − = − 6. (0). (0) 16 18 34y y − = + =

1!

x
2

2!

x 3

3!

x

3

2

8

6

34

24

3

2

4

3

17

12

3

2

4

3

17

12

3

2

4

3

17

12
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           y(x) = y(0) + yI(0) + yII(0) + yIII(0) + yIV(0) +…… 

substituting the values of  y(0) , y1(0) , y11(0) , y111(0) ,…… 

y(x) = 1 + x (-1) + (1) + (1) + (-1) + …… 

y(x) = 1 – x +  +  -  + ……                    →(1) 

Now put x = 0.1 in (1), 

y(0.1) = 1 – 0.1 +  +  -  + …. 

   = 1 – 0.1 + 0.005 + 0.01666 – 0.0000416 -0.905125 ~ 0.9051  

       (4 decimal places) 

Now put x = 0.2 in eq (1), 

y(0.2) = 1 – 0.2 +  +  -  

   = 1 – 0.2 + 0.02 + 0.001333 – 0.000025 

   = 1.021333 – 0.200025 

   = 0.821308 ~ 0.8213 (4 decimals) 

Similarly y(0.3) = 0.7492 and y (0.4) = 0.6897 (4 decimal places). 

5. Solve  -1 = xy and y(0) = 1 using Taylor’s series method and 

compute y(0.1). 

Sol. Given that  - 1 = xy and y(0) = 1 

Here  = 1 + xy and y0 = 1, x0 = 0. 

Differentiating repeatedly w.r.t ‘x’ and evaluating at x0 = 0 

yI(x) = 1 + xy,              yI(0) = 1+0(1) = 1 . 

yII(x) = x.y’+ y,              yII(0) = 0+1=1  

yIII(x) = x.y’’ + yI + yI,   yIII(0) = 0.(1) + 2 (1) =2 

yIV(x) = xyIII + yII + 2yII,  yIV(0) = 0+3(1) =3. 

yV(x) = xyIV + yIII +2yIII,   yV(0) = 0 + 2 + 2(3) = 8 

1!

x
2

2!

x 3

3!

x 4

4!

x

2

2

x 3

6

x 4

24

x

2

2

x 3

6

x 4

24

x

( )
2

0.1

2

( )
3

0.1

6

( )
4

0.1

24

( )
2

0.2

2

( )
3

0.2

6

( )
4

0.2

64

dy

dx

dy

dx

dy

dx
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The Taylor series for f(x) about x0 = 0 is 

y(x) = y(0) + x.yI(0) +  yII (0) + yIII(0) + yIV(0) + yV(0)+….. 

Substituting the values of y(0) , yI(0) , yII(0) , ….  

y(x) = 1 + x +  + (2) + (3) + (8) + …. 

y(x) = 1 + x +  +  +  +  + ….            →(1) 

 Now put x = 0.1 in equ (1), 

y(0.1) = 1 + 0.1 +  +  +  +  + ….. 

   = 1 + 0.1 +0.005 + 0.000333 + 0.0000125 + 0.0000006 

   = 1.1053461 

 

H.W 

 

6. Given the differential equ y1 = x2 + y2, y(0) = 1.Obtain y(0.25), and 

y(0.5) by Taylor’s Series method. 

Ans: 1.3333, 1.81667 

 

7. Solve y1 = xy2 + y, y(0) =1 using Taylor’s series method and compute 

y(0.1) and    y(0.2). 

Ans: 1.111, 1.248. 

 

Note:  We know that the Taylor’s expansion of y(x) about the point x0 

in a power   of (x – x0)is. 

y(x) = y(x0) + yI(x0) + yII(x0) + yIII(x0) + … →(1) 

                                                                  Or 

y(x) = y0 +  +  +  + ….. 

 

2

2!

x 3

3!

x 4

4!

x 5

5!

x

2

2

x 3

6

x 4

24

x 5

120

x

2

2

x 3

3

x 4

8

x 5

15

x

2(0.1)

2

3(0.1)

3

4(0.1)

8

5(0.1)

15

0( )

1!

x x−
2

0( )

2!

x x− 3

0( )

3!

x x−

0( )

1!

x x−
0

Iy

2

0( )

2!

x x−
0

IIy

3

0( )

3!

x x−
0

IIIy
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If we let x – x0 = h. (i.e. x = x0 + h = x1) we can write the Taylor’s 

series as  

y(x) = y(x1) = y0 +  +  +  +  + …. 

i.e. y1 = y0 +  +  +  +  + …..            →(2) 

Similarly expanding y(x) in a Taylor’s series about x = x1. We will 

get. 

y2 = y1 +  +  +  +  + …….                                                →(3) 

Similarly expanding y(x) in a Taylor’s series about x = x2 We will 

get. 

  y3 = y2 +  +  +  + + …...   →(4) 

In general, Taylor’s expansion of y(x) at a point x= xn is 

  yn+1 = yn +  +  +  +  + …..  →(5) 

8. Solve y1 = x-y2, y(0) = 1 using Taylor’s series method and evaluate 

y(0.1), y(0.2) by step  size h=0.1. 

Sol:  Given y1 = x – y2    →(1) 

and  y(0) = 1        →(2) 

Here    x0  = 0,  y0 = 1. 

Differentiating (1) w.r.t ‘x’, we get. 

yII = 1 – 2yyI         →(3) 

 yIII = -2(y. yII + (yI)2)                      → (4) 

 yIV = -2[y. yIII + yI. yII + 2yI. yII]        →(5) 

                = -2(3yI. yII + y. yIII) …... 

Put x0 = 0, y0 = 1 in (1),(3),(4) and (5),  

We get 

   = 0-1 = -1, 

   = 1-2(1) (-1) = 3, 

= -2[(-1)2) + (1) (3)] = -8 

1!

h
0

Iy

2

2!

h
0

IIy

3

3!

h
0

IIIy

4

4!

h
0

IVy

1!

h
0

Iy

2

2!

h
0

IIy

3

3!

h
0

IIIy 0
4!

IV
IVh

y

1
1!

Ih
y

2

1
2!

IIh
y

3

1
3!

IIIh
y

4

1
4!

IVh
y

2
1!

Ih
y

2

2
2!

IIh
y

3

2
3!

IIIh
y

4

2
4!

IVh
y

1!

I

n

h
y

2

2!

II

n

h
y

3

3!

III

n

h
y

4

4!

IV

n

h
y

0

Iy

0

IIy

0

IIIy
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 = -2[3(-1) (3) + (1) (-8)] = -2(-9 -8) = 34. 

Take h=0.1 

Step1: By Taylor’s series, we have 

y1 = y0 +  +  +  +  + …..                  →(6) 

on substituting the values of y0, , , etc in equ (6) we get 

y(0.1) = y1 = 1 + (-1) + (3) + (-8) + (34) + …. 

= 1 – 0.1 + 0.015 – 0.00133 + 0.00014 + … 

   = 0.91381 

 

Step2: Let us find y(0.2), we start with (x1,y1) as the starting 

value. 

Here x1 = x0 + h = 0+0.1 = 0.1 and y1 = 0.91381 

Put these values of x1 and y1 in (1),(3),(4) and (5),we get 

 = x1 -  = 0.1 – (0.91381)2 = 0.1 – 0.8350487 = -0.735 

 = 1 – 2y1  = 1- 2(0.91381) (-0.735)   = 1 + 1.3433 = 2.3433 

 = - 2[( )2 + y1 ] = - 2[(-0.735)2 + (0.91381) (2.3433)] = -5.363112 

 = - 2[3.  + y1 ] 

 = - 2[3.(-0.735) (2.3433) + (0.91381) (-5.363112)] 

   = -2[(-5.16697) – 4.9]  = 20.133953 

By Taylor’s series expansion, 

  y2 = y1 +  +  +  +  + …. 

y(0.2) = y2 = 0.91381 + (0.1) (-0.735) + (2.3433) +                                                                              

(-5.363112) + (20.133953) + …. 

y(0.2) = 0.91381 – 0.0735 + 0.0117 – 0.00089 + 0.00008    = 0.8512 

9. Tabulate y(0.1), y(0.2) and y(0.3) using Taylor’s series method given 

that y1 = y2 + x  and y(0) = 1 

0

IVy

0
1!

Ih
y

2

0
2!

IIh
y

3

0
3!

IIIh
y

4

0
4!

IVh
y

0

Iy 0

IIy

0.1

1

2(0.1)

2

3(0.1)

6

4(0.1)

24

1

Iy 2

1y

1

IIy
1

Iy

1

IIIy 1

Iy 1

IIy

1

IVy 1

Iy 1

IIy 1

IIIy

1
1!

Ih
y

2

1
2!

IIh
y

3

1
3!

IIIh
y

4

1
4!

IVh
y


2(0.1)

2

3(0.1)

6

4(0.1)

24
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Sol:       Given y1 = y2 + x                                  →(1) 

  and  y(0) = 1                                       →(2) 

Here x0 = 0, y0 = 1. 

Differentiating (1) w.r.t ‘x’, we get 

  = 2y yI + 1                                →(3) 

  = 2[y  + (yI)2]                     →(4) 

  = 2[y  + yI + 2 yI ] 

       = 2[y  + 3 yI ]                  →(5) 

Put x0 = 0, y0 = 1 in (1), (3), (4) and (5), we get  

  = (1)2 + 0 = 1 

 = 2(1) (1) + 1 = 3, 

 = 2((1) (3) + (1)2) = 8 

 = 2[(1)(8) + 3(1)(3)] 

               = 34 

Take h = 0.1. 

Step1: By Taylor’s series expansion, we have  

y(x1) = y1 = y0 +  +  +  +  + ….    →(6) 

on substituting the values of yo, ,  etc in (6),we get 

 y(0.1) = y1= 1 + (0.1)(1) + (3) + (8) + (34) + …. 

            = 1 + 0.1 + 0.015 + 0.001333 + 0.000416 

                  y1 = 1.116749 

Step2: Let us find y(0.2),we start with (x1,y1) as the starting values 

Here x1 = x0 + h = 0 + 0.1 = 0.1 and y1 = 1.116749 

Putting these values in (1),(3),(4) and (5), we get 

  = +x1 = (1.116749)2 + 0.1 = 1.3471283 

  = 2y1  + 1 = 2(10116749) (1.3471283) + 1 = 4.0088 

  = 2(y1  + ( )2) = 2((1.116749) (4.0088) + (1.3471283)2]  

IIy 

IIIy 
IIy

IVy 
IIIy IIy IIy


IIIy IIy

0

Iy

0

IIy

0

IIIy

0

IVy

0
1!

Ih
y

2

0
2!

IIh
y

3

0
3!

IIIh
y

4

0
4!

IVh
y

0

Iy 0

IIy

2(0.1)

2

3(0.1)

6

4(0.1)

24

1

Iy 2

1y

1

IIy 1

Iy

1

IIIy 1

IIy 1

Iy
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= 12.5831  

 = 2y1  + 6  = 2(1.116749) (12.5831) + 6(1.3471283) (4.0088)  

= 60.50653 

By Taylor’s expansion 

 y(x2) = y2 = y1 +  +  +  + + …. 

y(0.2) = y2 = 1.116749 + (0.1) (1.3471283)  

+  (4.0088) +  (12.5831)   +  (60.50653) 

 y2 = 1.116749 + 0.13471283 + 0.020044 + 0.002097 + 0.000252 

     = 1.27385 

   y(0.2) = 1.27385 

Step3: Let us find y(0.3),we start with (x2,y2) as the starting value. 

Here x2 = x1 + h = 0.1 + 0.1 =0.2 and y2 = 1.27385 

Putting these values of x2 and y2 in eq (1), (3), (4) and (5),  

we get  

  =  + x2 = (1.27385)2 + 0.2 = 1.82269 

 = 2y2  + 1 = 2(1.27385) (1.82269) + 1 = 5.64366 

 = 2[y2  + ( )2 ] = 2[(1.27385) (5.64366) + (1.82269)2] 

        = 14.37835 + 6.64439 = 21.02274 

 = 2y2 +  + 6   

= 2(1.27385) (21.00274) + 6(1.82269)+(5.64366) 

             = 53.559635 + 61.719856   = 115.27949 

By Taylor’s expansion, 

y(x3) = y3 = y2 +  +  +  +  + ….. 

y(0.3) = y3 = 1.27385 + (0.1) (1.82269) 

 + (5.64366) + (21.02274)                 

       + (115.27949) 

                   = 1.27385 + 0.182269 + 0.02821  

1

IVy 1

IIIy 1

Iy 1

IIy

1
1!

Ih
y

2

1
2!

IIh
y

3

1
3!

IIIh
y

4

1
4!

IVh
y



2(0.1)

2

3(0.1)

6

4(0.1)

24

2

Iy 2

2y

2

IIy 1

2y

2

IIIy 2

IIy 2

Iy

2

IVy 2

IIIy 2

Iy 1

IIy

2
1!

Ih
y

2

2
2!

IIh
y

3

2
3!

IIIh
y

4

2
4!

IVh
y

2(0.1)

2

3(0.1)

6
4(0.1)

24



 
 

18|N M P T - U N I T - I I I  
 
 

 

+ 0.0035037 + 0.00048033    = 1.48831 

        y(0.3) = 1.48831 

 

10. Solve y1= x2 – y, y(0) = 1 using Taylor’s series method and evaluate 

y(0.1),y(0.2),y(0.3) and y(0.4) (correct to 4 decimal places) 

Sol:     Given y1= x2 – y                →(1) 

    and y(0) = 1                       →(2) 

Here x0 = 0, y0 = 1 

Differentiating (1) w.r.t ‘x’, we get  

 yII = 2x – y1→(3) 

 yIII = 2- yII     →(4) 

 yIV = -yIII →(5) 

put x0 = 0, y0 = 1 in (1),(3),(4) and (5), we get  

=  - y0 = 0-1 = -1, 

= 2x0 -  = 2(0) – (-1) = 1 

= 2-  = 2-1 = 1, 

= -  = -1  Take h = 0.1 

 

Step1: by Taylor’s series expansion 

 y(x1) = y1= y0 +  +  +  +  + ….        →(6) 

On substituting the values of y0, ,  etc in (6), we get  

 y(0.1) = y1 = 1+ (0.1) (-1) + (1) + (1) + (-1)+…. 

            = 1-0.1 + 0.005 + 0.01666 – 0.0000416 

  = 0.905125 ~ 0.9051 (4 decimal place). 

Step2: Let us find y(0.2) we start with (x1,y1) as the starting values   

Here x1= x0 + h = 0 + 0.1 = 0.1 and y1 = 0.905125, 

Putting these values of x1 and y1 in (1), (3), (4) and (5), we get 

From 1,3,4,5 we get 

0

Iy 2

0x

0

IIy 0

Iy

0

IIIy 0

IIy

0

IVy 0

IIIy

1!

h
0
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 =  - y1 = (0.1)2 – 0.905125 = -0.895125 

= 2x1 -  = 2(0.1) – (-0.895125) = 1.095125, 

= 2 -  = 2 – 1.095125 = 0.90475, 

= -  = -0.904875, 

 By Taylor’s series expansion, 

y(x2) = y2 = y1 +  +  +  + +…. 

y(0.2) = y2 = 0.905125 + (0.1)(-0.895125) + (1.09125)     

        + (1.095125) + (-0.904875)+…. 

y(0.2) = y2 = 0.905125 – 0.0895125 + 0.00547562 + 0.000150812  

        = 0.8212351 ~ 0.8212 (4 decimal places) 

Step3: Let us find y(0.3), we start with (x2,y2) as the starting value 

Here x2 = x1 + h = 0.1+ 0.1 = 0.2 and y2 = 0.8212351 

Putting these values of x2 and y2 in (1),(3),(4), and (5) we get  

 =  - y2 = (0.2)2 – 0.8212351= 0.04 – 0.8212351 = - 0.7812351 

= 2x2 -  = 2(0.2) + (0.7812351) = 1.1812351, 

= 2 -  = 2 – 1. 1812351 = 0.818765, 

= -  = -0.818765, 

By Taylor’s series expansion, 

y(x3) = y3 = y2 +  +  +  + +…. 

y(0.3) = y3 = 0. 8212351 + (0.1)(-0.7812351) + (1.1812351)         

    + (0.818765) + (-0.818765)+…. 

y(0.3) = y3 = 0. 8212351– 0.07812351+ 0.005906 + 0.000136 –  

         = 0.749150 ~ 0.7492 (4 decimal places) 

Step4: Let us find y(0.4), we start with (x3,y3) as the starting value 
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Here x3 = x2 + h = 0.2+ 0.1 = 0.3 and y3 = 0.749150 

Putting these values of x3 and y3 in (1),(3),(4), and (5) we get  

 =  - y3 = (0.3)2 – 0.749150= -0.65915, 

= 2x3 -  = 2(0.3) + (0.65915) = 1.25915, 

= 2 -  = 2 – 1. 25915 = 0.74085, 

= -  = -0.74085, 

By Taylor’s series expansion, 

y(x4) = y4 = y3 +  +  +  + +…. 

y(0.4) = y4 = 0. 749150 + (0.1)(-0.65915) + (1.25915) +     

(0.74085) + (-0.74085)+…. 

y(0.4) = y4 = 0. 749150 – 0.065915+ 0.0062926+ 0.000123475 – 0.0000030 

        = 0.6896514 ~ 0.6896 (4 decimal places) 

 11. Solve y1 = x2 – y, y(0) = 1using T.S.M and evaluate y(0.1),y(0.2),y(0.3) 

and y(0.4) (correct to 4 decimal place ) Ans : 0.9051, 0.8212, 07492, 

0.6896 

 

 12. Given the differentiating equation y1 = x1 + y2, y(0) = 1. Obtain y(0.25) 

and y(0.5) by T.S.M. 

Ans:   1.3333, 1.81667 

 13.  Solve y1 = xy2 + y, y(0) = 1 using Taylor’s series method and evaluate 

y(0.1) and y(0.2) 

   Ans:    1.111, 1.248. 

3.6 Picard’s Method 

 Consider the differential equation 
dy

dx
= f(x, y) 

 Given that y = y0 for x = x0 

Then y(n) = y0 + ∫ f(x, y(n−1)) dx,    n = 1, 2, 3, ⋯
xn

x0
 

Problems  
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1. Find the value of y for x=0.4 by Picard’s method, given that 
𝑑𝑦

𝑑𝑥
=

𝑥2 + 𝑦2, 𝑦(0) = 0. 

Sol: Given 
𝑑𝑦

𝑑𝑥
= 𝑥2 + 𝑦2, 𝑦(0) = 0 

By Picard’s method  y(n) = y0 + ∫ f(x, y(n−1)) dx,    n = 1, 2, 3, ⋯
xn

x0
 

For the first approximation, replace y0 by 0 

y(1) = 0 + ∫ (x2 + 0) dx =
x3

3

x

0

 

Second approximation is  y(2) = ∫ (x2 + (
x3

3
)

2

) dx = ∫ (x2 +
x6

9
) dx =

x3

3

x

0
+

x

0

x7

63
 

Calculation of  y(3) is tedious and hence approximate value is  y(2) 

For x=0.4, y =
(0.4)3

3
+

(0.4)7

63
= 0.02133 + 0.00026 = 0.0214 

2. Solve Find the value of y at x=0.1 by Picard’s method, given that  

 
𝑑𝑦

𝑑𝑥
=

𝑦−𝑥

𝑦+𝑥
, 𝑦(0) = 1 

Sol: Given 
𝑑𝑦

𝑑𝑥
=

𝑦−𝑥

𝑦+𝑥
, 𝑦(0) = 1 

By Picard’s method  y(n) = y0 + ∫ f(x, y(n−1)) dx = y0 + ∫
𝑦−𝑥

𝑦+𝑥
 dx

x

0

xn

x0
 

For the first approximation, replace y0 by 1 

y(1) = 1 + ∫
1 − 𝑥

1 + 𝑥
 dx

x

0

= 1 + ∫ −1 +
2

1 + 𝑥
 dx

x

0

 

y(1) = 1 + [−x + 2log(1 + x)]0
x 

y(1) = 1 − x + 2log(1 + x) 

Second approximation is  y(2) = 1 + ∫
1−x+2log(1+x)−x

1−x+2log(1+x)+x
 dx

x

0
 

Which is very difficult to integrate 

Hence we use the first approximation itself a s the value of y  

∴ y(x) = y(1) = 1 − x + 2log(1 + x) 
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Put x=0.1, we get 

y(0.1) = 1 − 0.1 + 2log(1 + 0.1) = 1.0906 

3.6 EULER’S METHOD 

It is the simplest one-step method and it is less accurate. Hence it has 

a limited application. 

Consider the differential equation   = f(x,y)          →(1) 

     With  y(x0) = y0→(2) 

Consider the first two terms of the Taylor’s expansion of y(x) at x = x0 

               y(x) = y(x0) + (x – x0) y1(x0)                 →(3) 

from equation (1) y1(x0) = f(x0,y(x0)) = f(x0,y0) 

Substituting in equation (3) 

 y(x) = y(x0) + (x – x0) f(x0,y0) 

At x = x1, y(x1) = y(x0) + (x1 – x0) f(x0,y0) 

 y1 = y0 + h f(x0,y0)    where h = x1 – x0 

Similarly at x = x2 ,  y2 = y1 + h f(x1,y1), 

Proceeding as above, yn+1 = yn + h f(xn,yn) 

This is known as Euler’s Method 

1. Using Euler’s method solve for x = 2 from  = 3x2 + 1,y(1) = 2, by 

taking step size  

(I) h = 0.5 and (II) h=0.25 

Sol:  Here  = f(x,y) = 3x2 + 1, x0 = 1,y0 = 2 

 Euler’s algorithm is yn+1 = yn + h  f (xn,yn), n = 0,1,2,3,…..                 →(1) 

(I) h = 0.5                                    x1 = x0 + h = 1+0.5 = 1.5 

 Taking n = 0 in (1) , we have                 x2 = x1 + h = 1.5 + 0.5 = 2 

   y1 = y0 + h f(x0,y0) 

i.e.  y1 = y(1.5) = 2 + (0.5) f(1,2) = 2 + (0.5) (3 + 1) = 2 + (0.5)(4)=4 

  Here x1 = x0 + h = 1 + 0.5 = 1.5 

dy

dx





dy

dx

dy

dx


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   y(1.5) = 4 = y1 

 Taking n = 1 in (1),we have  

   y2 = y1 + h f(x1,y1) 

 i.e. y(x2) = y2 = 4 + (0.5) f(1.5,4) = 4 + (0.5)[3(1.5)2 + 1] = 7.875 

  Here x2 = x4 + h = 1.5 + 0.5 = 2 

   y(2) = 7.875 

(II)  h = 0.25     x0 = 1,y0 = 2         x1 = 1.25, x2 = 1.50, x3 = 1.75, x4 

= 2 

  Taking n = 0 in (1), we have                

   y1 = y0 + h f(x0,y0) 

  i.e.  y(x1) = y1 = 2 + (0.25) f(1,2) = 2 + (0.25) (3 + 1) = 3=y(1.25) 

   y(x2) = y2 = y1 + h f(x1,y1) 

  i.e. y(x2) = y2 = 3 + (0.25) f(1.25,3)  

              = 3 + (0.25)[3(1.25)2 + 1]  

                         = 4.42188 

  Here x2 = x1 + h = 1.25 + 0.25 = 1.5 

   y2=y(1.5) = 4.42188 

  Taking n = 2 in (1), we have                

  i.e.  y(x3) = y3 = y2+h f(x2,y2)  

                    = 4.42188 + (0.25) f(1.5,2)  

                    = 4.42188 + (0.25) [3(1.5)2 + 1] 

                  = 6.35938 

   Here x3 = x2 + h = 1.5 + 0.25 = 1.75 

   y(1.75) =6. 35938 =y3 

 Taking n = 4 in (1), we have  

   y(x4) = y4 = y3 + h f(x3,y3) 

 i.e. y(x4) = y4 = 6.35938 + (0.25) f(1.75,2)  










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             = 6.35938 + (0.25)[3(1.75)2 + 1]  

     y(x4)= 8.90626=y(2) 

 Note that the difference in values of y(2) in both cases (i.e. when h = 

0.5 and when h = 0.25).The accuracy is improved significantly when h 

is reduced to 0.25 (Example  significantly of the eqn is y = x3 + x and 

with this y(2) = y2 = 10 

2. Solve by Euler’s method,y1 = x + y, y(0) = 1 and find y(0.3) taking 

step size h = 0.1. compare the result obtained by this method 

with the result obtained by analytical solution 

 Sol:   Given D.E. is y1 =f(x,y)= x + y, y(0) = 

1,h=0.1,x0=0,x1=0.1,x2=0.2,x3=0.3,y0=1 

    From Euler’s method 

     y1 = y0 + h f(x0,y0)=1+0.1(0+1)=1.1 

     y(x2) = y2 = y1 + h f(x1,y1)=1.1+0.1(0.1+1.1)=1.22 

      y(x3) = y3 = y2+h f(x2,y2) =1.22+0.1(0.2+1.22)=1.362 

             y1 = 1.1 = y(0.1), 

   y2 = y(0.2) = 1.22 

   y3 = y(0.3) = 1.362 

Analytical method (linear d.e. method) 

            y1 = x + y 

            dy/dx-y=x 

         P=-1,Q=x 

     I.F.=e^int(Pdx)=e^int(-dx)=e^-x 

     Sol. Y(I.F.)=int(Q(i.f.)dx+c 

    Y(e^-x)=int(xe^-x)dx+c=e^-x(-x-1)+c 

    Divide by e^-x on b.s. 
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    Solution y=-x-1+ce^x 

     Put x=0,y=1 then  

      1=-0-1+c 

      C=2 

    General solution y=-x-1+2e^x 

     Particular solution is y(x) = 2ex – (x + 1) 

Hence analytical values y(0.1) = 1.11034, y(0.2) = 1.3428, y(0.3) = 

1.5997 

We shall tabulate the result as follows 

 

The value of y deviate from the execute value as x increases. This 

indicate that the method is not accurate 

3. Solve by Euler’s method y1 + y = 0 given y(0) = 1 and find 

y(0.04) taking step size  

         h = 0.01   Ans:  0.9606 

4. Using Euler’s method, solve y at x = 0.1 from y1 = x+ y +xy, y()) = 

1 taking step size                             h = 0.025. 

5. Given that  = xy ,y(0) = 1 determine y(0.1),using Euler’s 

method. h =0.1 

dy

dx

                   

X                                 
     0              

                         

X1=0.1 

                    

X2=0.2 

                

X3=0.3 

                      

Euler 

y(numerical) 

   

1 
                            

1.1 

                 

1.22 
            

1.362 

                            

Linear 

y(analytical) 

 

1 
                   

1.11034 

           

1.3428 
             

1.3997 
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Sol:  The given differentiating equation is = xy, y(0) = 1 ,a = 0,b=0.1 

Here f(x,y) = xy , x0 = 0 and y0 = 1 

Since h is not given much better accuracy is obtained by breaking up 

the interval (0,0.1) in to five steps. 

i.e. h =  =  = 0.02 

Euler’s algorithm is yn+1 = yn + h f(xn,yn)                         →(1) 

From (1) form = 0, we have 

  y1 = y0 +h f(x0,y0) 

      = 1 + (0.02) f(0,1) 

      = 1 + (0.02) (0) 

      = 1 

Next we have x1 = x0 + h = 0 + 0.02 = 0.02 

From (1), form = 1,we have  

  y2 = y1 + h f(x1,y1) 

      = 1 + (0.02) f(0.02,1) 

      = 1 + (0.02) (0.02) 

      = 1.0004 

Next we have x2 = x1 + h = 0.02 + 0.02 =0.04  

From (1), form = 2,we have  

    y3 = y2 + h f(x2,y2) 

         = 1.004 + (0.02) (0.04) (1.0004) 

         = 1.0012 

Next we have x3 = x2 + h = 0.04 + 0.02 =0.06 

From (1), form = 3,we have  

    y4 = y3 + h f(x3,y3) 

         = 1.0012 + (0.02) (0.06) (1.00012) 

         = 1.0024. 

Next we have x4 = x3 + h = 0.06 + 0.02 =0.08 

From (1), form = 4,we have  

dy

dx

5

b a− 0.1

5










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    y5 = y4 + h f(x4,y4) 

         = 1.0024 + (0.02) (0.08) (1.00024) 

         = 1.0040. 

Next we have x5 = x4 + h = 0.08 + 0.02 =0.1 

When x = x5, y~y5 

y = 1.0040 when x = 0.1 

6. Solve by Euler’s method y1 =  given y(1) = 2 and find y(2). 

7. Given that  = 3x2 + y, y(0) = 4. Find y(0.25) and y(0.5) using 

Euler’s method 

           Sol:  given  = 3x2 + y and y(0) = 4. 

          Here f(x,y) = 3x2 + y , x0 = 0, y0 = 4 

Consider h = 0.25 

Euler’s algorithm is yn+1 = yn + h f(xn,yn)            →(1) 

From (1), for n = 0, we have 

    y1 = y0 + h f(x0,y0) 

       = 2 + (0.25)[0 + 4] 

       = 2 + 1 

       = 3 

Next we have x1 = x0 + h = 0 + 0.25 = 0.25 

 When x = x1, y1~ y 

  y1 = 3 when x1 = 0.25 

From (1), for n = 1, we have 

    y2 = y1 + h f(x1,y1) 

       = 3 + (0.25)[3.(0.25)2 + 3] 

       = 3.7968 

Next we have x2 = x1 + h = 0.25 + 0.25 = 0.5 

 When x = x2, y ~ y2 

  y = 3.7968 when x = 0.5. 



2y

x

dy

dx

dy

dx








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8. Solve first order differential equation  = , y(0) = 1 and 

estimate y(0.1) using Euler’s method (5 steps).h=0.02  

  Ans:         1.0928 

9. Use Euler’s method to find approximate value of solution of   

= y-x + 5 at x = 2-1 and 2-2with initial contention y(0.2) = 1 

 

3.7 Modified Euler’s method 

 

It is given by  

Working rule : 

i)Modified Euler’s method 

 

ii) When can be calculated from Euler’s method 

iii) K=0, 1……… gives number of iteration.  

gives number of times, a particular iteration k is repeated 

Suppose consider dy/dx=f(x, y) -------- (1) with y(x0) =y0----------- (2) 

To find y(x1) =y1 at x=x1=x0+h 

Now take k=0 in modified Euler’s method 

We get ……………………… (3) 

Taking i=1, 2, 3...k+1 in eqn (3), we get 

 (By Euler’s method) 

 

 

------------------------ 

 

If two successive values of are sufficiently close to one 

another, we will take the common value as  

dy

dx

y x

y x

−

+

dy

dx

( ) ( ) ( )
( )1

1 1 1
/ 2 , ,1 , 1,2....., 0,1.....

ii

k k k k k k
y y h f x y f x i ki

−

+ + +
 = + + = =
 

( ) ( ) ( )
( )1

1 1 1
/ 2 , ,1 , 1,2....., 0,1.....

ii

k k k k k k
y y h f x y f x i ki

−

+ + +
 = + + = =
 

1i = 0

1ky +

1, 2...i =

( ) ( ) ( )( )1 1

1 0 0 0 1 1/ 2 , ,
i

y y h f x y f x y
− = + +

 

( ) ( )0

1 0 0 0/ 2 ,y y h f x y= +   

( ) ( ) ( )( )1 0

1 0 0 0 1 1/ 2 , ,y y h f x y f x y = + +
 

( ) ( ) ( )( )2 1

1 0 0 0 1 1/ 2 , ,y y h f x y f x y = + +
 

( ) ( ) ( )( )1

1 0 0 0 1 1/ 2 , ,
k k

y y h f x y f x y
+  = + +

 

( ) ( )1

1 1,
k k

y y
+

( ) ( )2 2 1y y x y x h= = +
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We use the above procedure again 

1)  using modified Euler’s method find the approximate value of 

when given that  

sol:  Given  

Here  

Take h = 0.1 which is sufficiently small 

Here  

The formula for modified Euler’s method is given by 

   

 

Step1: To find y1= y(x1) = y (0.1) 

                  Taking k = 0 in eqn(1) 

 

 when     i = 1  in eqn (2) 

 

        First apply Euler’s method to calculate  = y1 

 

                = 1+(0.1)f(0.1) 

                = 1+(0.1) 

                = 1.10 

 

 

             = 1+0.1/2[f(0,1) + f(0.1,1.10) 

              = 1+0.1/2[(0+1)+(0.1+1.10)] 

              = 1.11 

   When i=2 in eqn (2) 

 

x

0.3x = ( )/ 0 1dy dx x y and y= + =

( )/ 0 1dy dx x y and y= + =

( ) 0 0, , 0, 1f x y x y x and y= + = =

0 1 0 2 1 3 20, 0.1, 0.2, 0.3x x x h x x h x x h= = + = = + = = + =

( ) ( ) ( )( ) ( )1

1 1 1/ 2 , 1
i i

k k k k k ky y h f x y f x y
−

+ + +
 = + + + →
 

( ) ( ) ( )( ) ( )1

1 0 0 0 1 1/ 2 , 2
i i

ky y h f x y f x y
−

+
 = + + + →
 

( ) ( ) ( )( )0

1 0 0 0 1 1/ 2 , ,
i

y y h f x y f x y = + +
 

(0)

1
y

 ( ) ( )0

1 0 0 0,y y h f x y= +

( )0 0 1 10, 1, 0.1, 0 1.10now x y x y= = = =  

 ( ) ( ) ( )( )1 0

1 0 0 0 1 10.1/ 2 , ,y y f x y f x y = + +
 

( ) ( ) ( )( )2 1

1 0 0 0 1 1/ 2 , ,y y h f x y f x y = + +
 
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             = 1+0.1/2[f(0.1)+f(0.1,1.11)] 

             = 1 + 0.1/2[(0+1)+(0.1+1.11)] 

             = 1.1105 

 

= 1+0.1/2[f(0,1)+f(0.1 , 1.1105)] 

             = 1+0.1/2[(0+1)+(0.1+1.1105)] 

             = 1.1105 

Since  

 y1 = 1.1105 

Step:2    To find y2 = y(x2) = y(0.2) 

Taking k = 1 in eqn (1) , we get  

                   i = 1,2,3,4,….. 

For i = 1 

 

is to be calculate from   Euler’s method  

 

              = 1.1105 + (0.1) f(0.1 , 1.1105) 

              = 1.1105+(0.1)[0.1+1.1105] 

               = 1.2316 

  =  

              = 1.1105 +0.1/2[0.1+1.1105+0.2+1.2316] 

              = 1.2426 

 

                = 1.1105 + 0.1/2[f(0.1 , 1.1105) , f(0.2 . 1.2426)] 

                 = 1.1105 + 0.1/2[1.2105 + 1.4426] 

( ) ( ) ( )( )3 2

1 0 0 0 1 1/ 2 , ,y y h f x y f x y = + +
 

( ) ( )2 3

1 1y y=



( ) ( ) ( )( ) ( )1

2 1 1 1 2 2/ 2 , , 3
i i

y y h f x y f x y
− = + + →

 

( ) ( ) ( )( )1 0

2 1 1 1 2 2/ 2 , ,y y h f x y f x y = + +
 

( )0

2y

( ) ( )0

2 1 1 1,y y h f x y= +


(1)

2
y ( ) ( )1.1105 0.1/ 2 0.1,1.1105 0.2,1.2316f f+ +  

( ) ( ) ( )( )2 1

2 1 1 1 2 2/ 2 ,y y h f x y f x y = + +
 
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                 = 1.1105 + 0.1(1.3266) 

                 = 1.2432 

 

                = 1.1105+0.1/2[f(0.1,1.1105)+f(0.2 , 1.2432)] 

                = 1.1105+0.1/2[1.2105+1.4432)] 

                = 1.1105 + 0.1(1.3268) 

                = 1.2432 

          Since  

           Hence y2 = 1.2432 

Step:3 

To find y3 = y(x3) = y y(0.3) 

            Taking k =2 in eqn (1) we get  

 

    For  i = 1 , 

 

 is to be evaluated from Euler’s method . 

 

              = 1.2432 +(0.1) f(0.2 , 1.2432)        

              = 1.2432+(0.1)(1.4432) 

              = 1.3875 

  = 1.2432+0.1/2[f(0.2 , 1.2432)+f(0.3, 1.3875)] 

             = 1.2432  + 0.1/2[1.4432+1.6875] 

( ) ( ) ( )( )3 2

2 1 1 1 2 2/ 2 ,y y h f x y f x y = + +
 

( ) ( )3 3

2 2y y=

( ) ( ) ( )( ) ( )1 1

3 2 2 2 3 3/ 2 , , 4
i

y y h f x y f x y
− = + + →

 

( ) ( ) ( )( )1 0

3 2 2 2 3 3/ 2 , ,y y h f x y f x y = + +
 

( )0

3y

( ) ( )0

3 2 2 2,y y h f x y= +

 ( )1

3y
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              = 1.2432+0.1(1.5654) 

               = 1.3997 

 

         = 1.2432+0.1/2[1.4432+(0.3+1.3997)] 

         = 1.2432+ (0.1) (1.575) 

         = 1.4003 

 

         = 1.2432+0.1/2[f(0.2 , 1.2432)+f(0.3 , 1.4003)] 

         = 1.2432 + 0.1(1.5718) 

          = 1.4004 

 

         = 1.2432 + 0.1/2[1.4432+1.7004] 

         = 1.2432+(0.1)(1.5718) 

          =  1.4004 

        Since  

        Hence    The value of y at x = 0.3 is 1.4004 

2 . Find the solution of  = x-y , y(0)=1 at x =0.1 , 0.2 ,0.3 , 0.4 and 0.5 

. Using modified Euler’s method 

Sol . Given  = x-y and y(0) = 1 

 Here f(x,y) = x-y , x0 = 0 and y0 = 1 

  Consider    h = 0.1  so that  

  x = 0.1 , x2  = 0.2 , x3 =0.3 , x4 = 0.4 and  x5 = 0.5 

         The formula for modified Euler’s method is given by 

( ) ( ) ( )( )2 1

3 2 2 2 3 3/ 2 , ,y y h f x y f x y = + +
 

( ) ( ) ( )( )3 2

3 2 2 2 3 3/ 2 , ,y y h f x y f x y = + +
 

( ) ( ) ( )( )4 3

3 2 2 2 3 3/ 2 , ,y y h f x y f x y = + +
 

( ) ( )3 4

3 3y y=

3 1.4004y = 

dy

dx

dy

dx



 
 

33|N M P T - U N I T - I I I  
 
 

 

    

                 Where k = 0,1, 2, 3,…..                             i = 1, 2, 3,…..  

 

0.1(i=1) 0-1=-1 
½(-1-0.8) = -0.9 

1+(0.1)(-0.9)=0.91 

0.1(i=2) 0-1=-1 ½(-1-0.81)= -0.905 1+(0.1)(-0.905)=0.9095 

0.1(i=3) 0-1=-1 ½(-1-0.80.95)= -

0.90475 

1+(0.1)(-

0.90475)=0.9095 

K=1   
 

0.1 0.1-0.9095= -

0.8095 

- 0.9095+(0.1)(-

0.8095)=0.82855 

0.2(i=1) -0.8095 
½(-0.8095-0.62855) 

0.9095+(0.1)(-

0.719025)=0.8376 

0.2(i=2) -0.8095 ½(-0.8095-0.6376) 0.9095+(0.1)(-

0.72355)=0.8371 

0.2(i=3) -0.8095 ½(-0.8095-0.6371) 0.9095+(0.1)(-

0.7233)=0.8372 

0.2(i=4) -0.8095 ½(-0.8095-

0.6372) 

0.9095+(0.1)(-

0.72355)=0.8371 

K=2    

0.2 0.2-0.8371=-

0.6371 

- 0.8371+(0.1)(-

0.6371)=0.7734 

( ) ( ) ( ) ( )1

1 1 1/ 2 , , 1
i i

k k k k k ky y h f x y fx y
−

+ + += + + →

               

x 

   

K

=

0 

   

0.

0 

0-1=-1 - 1+(0.1)(-1)=0.9 =  

( ),k k k kf x y x y= − ( ) ( )( )1

1 1

1
, ,

2

i

k k k kf x y f x y
−

+ +
 +
 

( ) ( ) ( )( )1

1 1 1/ 2 , ,
i i

k k k k k ky y h f x y f x y
−

+ + +
 = + +
 

( )0

1y



 
 

34|N M P T - U N I T - I I I  
 
 

 

0.3(i=1) = -0.6371 ½(-0.6371-

0.4734) 

0.8371+(0.1)(-

0.555)=0.7816 

0.3(i=2) = -0.6371 ½(-0.6371-

0.4816) 

0.8371-

0.056=0.7811 

0.3(i=3) = -0.6371 ½(-0.6371-

0.4811) 

0.8371-

0.05591=0.7812 

0.3(i=4) = -0.6371 ½(-0.6371-

0.4812) 

0.8371-0.055915 

= 0.7812 

K =3    

0.3(i=1) 0.3-0.7812 - 0.7812+(0.1)(-

0.4812) = 0.7331 

0.4(i=1) -0.4812 ½(-0.4812-

0.4311) 

0.7812-0.0457 = 

0.7355 

0.4(i=2) -0.4812 ½(-0.4812-

0.4355) 

0.7812-0.0458 = 

0.7354 

0.4(i=3) -0.4812 ½(-0.4812-

0.4354) 

0.7812-0.0458 = 

0.7354 

K=4    

0.4 -0.3354 - 0.7354-0.03354 = 

0.70186 

0.5 -0.3354 ½(-0.3354-

0.301816) 

0.7354-0.03186 = 

0.7035 

0.5 -0.3354 ½(-0.3354-

0.30354) 

0.7354-0.0319 = 

0.7035 

 

3. Find y(0.1) and y(0.2) using modified Euler’s formula given that 

dy/dx=x2-y,y(0)=1 

     [consider h=0.1,y1=0.90523,y2=0.8214] 

4. Given compute y(0.2) in steps of 0.1 

     Using  modified Euler’s method 

( )2/ , 0 2dy dx xy y= − =
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     [h=0.1, y1=1.9804, y2=1.9238] 

5. Given y1 = x+siny, y(0)=1 compute y(0.2) and y(0.4) with h=0.2 using 

modified Euler’s    

    method                             

    [y1=1.2046, y2=1.4644] 

 

3.8 Runge – Kutta Methods 

I. Second order R-K Formula 

yi+1 = yi+1/2 (K1+K2), 

Where K1 = h (xi, yi) 

 K2 = h (xi+h, yi+k1) 

For i= 0,1,2------- 

II. Third order R-K Formula 

yi+1 = yi+1/6 (K1+4K2+ K3), 

Where K1 = h (xi, yi) 

 K2 = h (xi+h/2, y0+k1/2) 

 K3 = h (xi+h, yi+2k2-k1) 

For i= 0,1,2------- 

III. Fourth order R-K Formula 

yi+1 = yi+1/6 (K1+2K2+ 2K3+K4), 

Where K1 = h (xi, yi) 

 K2 = h (xi+h/2, yi+k1/2) 

 K3 = h (xi+h/2, yi+k2/2) 

 K4 = h (xi+h, yi+k3) 

For i= 0,1,2------- 
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1. Using Runge-Kutta method of second order, find from  = 

 , y(2)=2 ,  h = 0.25 . 

Sol:  Given      =    , y(2) = 2 . 

Here f(x, y) =  , x0 = 0 , y0=2 and h = 0.25 

 x1 = x0+h = 2+0.25 = 2.25 , x2 = x1+h =2.25+0.25 = 2.5 

 By R-K method of second order, 

 

Step -1:- 

To find y(x1)i.e y(2.25) by second order R - K method taking i=0 in 

eqn(i) 

We have  

Where k1= hf (x0,y0 ), k2= hf (x0+h,y0+k1) 

f (x0,y0 )=f(2,2)=2+2/2=2 

k1=hf (x0,y0 )=0.25(2)=0.5 

k2= hf (x0+h,y0+k1)=(0.25)f(2.25,2.5) 

   =(0.25)(2.25+2.5/2.25)=0.528 

y1=y(2.25)=2+1/2(0.5+0.528) 

=2.514 

Step2: 

To find y(x2) i.e., y(2.5) 

i=1 in (1) 

x1=2.25,y1=2.514,and h=0.25 

( )2.5y
dy

dx
x y

x

+

dy

dx

x y

x

+

x y

x

+



( ) ( ) ( )1 1 2 1 11/ 2 , , , 0,1.... 1i i i iy y k k k hf x h y k i+ = + + − + + = →

( )1 0 1 2

1

2
y y k k= + +


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y2=y1+1/2(k1+k2) 

where  k1=h f((x1,y1 )=(0.25)f(2.25,2.514) 

=(0.25)[2.25+2.514/2.25]=0.5293 

 

=(0.25)[2.5+2.514+0.5293/2.5] 

    =0.55433 

 (2.5)=2.514+1/2(0.5293+0.55433) 

     =3.0558 

y =3.0558 when x = 2.5 

Obtain the values of y at x=0.1,0.2 using R-K method of 

(i)second order (ii)third order (iii)fourth order for the diff eqn 

y1+y=0,y(0)=1 

Sol: Given dy/dx = -y, y(0)=1 

f(x,y) = -y, x0 = 0, y0 = 1 

Here f (x,y) = -y, x0 = 0, y0 = 1 take h = 0.1 

 x1 = x0+h = 0.1, 

x2 = x1+h = 0.2 

Second order: 

step1: To find y(x1) i.e y(0.1) or y1 

by second-order R-K method,we have 

y1 = y0+1/2(k1+k2) 

where k1=hf(x0,y0)=(0.1) f(0,1) = (0.1)(-1)= - 0.1 

k2= hf (x0+h, y0+k1)= (0.1) f (0.1, 1-0.1) = (0.1)(-0.9) = -0.09 

y1=y(0.1)=1+1/2(-0.1-0.09)=1-0.095=0.905 

( ) ( ) ( ) ( )( )2 0 0 1, 0.1 0.1,1 0.1 0.1 0.9 0.09k h f x h y k f= + + = − = − = −

2y y=




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y =0.905 when x=0.1 

Step2: 

To find y2 i.e y(x2) i.e y(0.2) 

Here x1 = 0.1, y1 = 0.905 and h=0.1 

By second-order R-K method, we have 

y2 = y(x2)= y1+1/2(k1+k2) 

Where =(0.1)f(0.1,0.905)=(0.1)(-0.905)=-0.0905 

 

y2 =  y(0.2)=0.905+1/2(-0.0905-0.08145) 

    = 0.905- 0.085975 = 0819025 

Third order 

Step1: 

To find y1 i.e y(x1)= y(0.1) 

By Third order Runge kutta method 

 

where k1 = h f(x0, y0) = (0.1) f (0.1) =  (0.1) (-1) = -0.1 

 

and k3 = h f((x0+h,y0+2k2-k1) 

(0.1) f (0.1,1+2(-0.095)+0.1)=  -0.905 

Hence y1 = 1+1/6(-0.1+4(-0.095)-0.09) = 1+1/6 (-0.57) = 0.905 

y1=0.905 i.e y(0.1)= 0.905 



( )1 1 1,k h f x y=

( ) ( ) ( )

( ) ( ) ( )( )

2 1 1 1, 0.1 0.2,0.905 0.0905

0.1 0.2,0.8145 0.1 0.8145

0.08145

k h f x h y k f

f

= + + = −

= = −

= −

( )1 0 1 2 31/ 6 4y y k k k= + + +

( ) ( ) ( ) ( ) ( )

( )( )

2 0 0 1/ 2, / 2 0.1 0.1/ 2,1 0.1/ 2 0.1 0.05,0.95

0.1 0.95 0.095

k h f x h y k f f= + + = − =

= − = −
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Step2: 

To find y2,i.e y(x2)= y(0.2) 

Here x1=0.1,y1=0.905 and h = 0.1 

Again by 2nd order R-K method 

y2 = y1+1/6(k1+4k2+k3) 

Where k1=h f(x1, y1) = (0.1)f (0.1,0.905)= -0.0905 

k2 = h f (x1+h/2,y1+k1/2)=(0.1)f(0.1+0.2,0.905 - 0.0905)= -(0.1) f (0.15, 

0.85975)= (0.1) (-0.85975) 

and k3 = h f((x1+h,y1+2k2-k1)=(0.1)f(0.2,0.905+2(0.08975)+0.0905= -

0.082355 

hence y2 = 0.905+1/6(-0.0905+4(-0.085975)-0.082355)=0.818874 

y = 0.905 when x = 0.1 

And y =0.818874 when x =0.2 

 fourth order: 

step1: 

x0=0,y0=1,h=0.1 To find y1 i.e y(x1)=y(0.1) 

By 4th order R-K method, we have 

y1 = y0+1/6(k1+2k2+2k3+k4) 

Where k1=h f(x0,y0)=(0.1)f(0.1)= -0.1 

k2= h f (x0+h/2, y0+k1/2) = -0.095 

and k3= h f((x0+h/2,y0+k2/2)=(0.1)f (0.1/2,1-0.095/2) 

= (0.1)f(0.05,0.9525) 

= -0.09525 

and k4= h f(x0+h,y0+k3) 

= (0.1) f(0.1,1-0.09525)=(0.1)f(0.1,0.90475) 

=-0.090475 

Hence y1=1+1/6(-0.1)+2(-0.095)+2(0.09525)-0.090475) 


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=1+1/6(-0.570975)+1-0.951625 = 0.9048375 

Step2: 

To find  

Here x1 = 0.1, y1=0.9048375 and h = 0.1 

Again by 4th order R-K method, we have 

y2 = y1+1/6(k1+2k2+2k3+k4) 

Where k1=h f(x1,y1)=(0.1)f(0.1,0.9048375)=-0.09048375 

k2= hf (x1+h/2,y1+k1/2)=(0.1)f(0.1+0.1/2,0.9048375 -0.09048375 /2)=-

0.08595956 

and k3=hf(x1+h/2, y1+k2/2)=(0.1)f(0.15,0. 8618577)= -0.08618577 

k4 =h f(x1+h,y1+k3)=(0.1)f(0.2,0.86517) 

= -0.08186517 

Hence y2 = 0.09048375+1/6(-0.09048375-2(0.08595956)-2(0.08618577)- 

0.08186517 

=0.9048375-0.0861065 

=0.818731 

y = 0.9048375 when x =0.1 and y =0.818731 

3. Apply the 4th order R-K method to find an approximate value of y 

when x=1.2 in steps of  0.1,given that y1 = x2+y2,y (1)=1.5 

sol. Given y1= x2+y2,and  y(1)=1.5 

Here f(x,y)= x2+y2, y0 =1.5 and x0=1,h=0.1 

So that x1=1.1 and x2=1.2 

Step1: 

To find y1 i.e., y(x1)  

by 4th  order R-K method we have 

( ) ( ) ( )2 2 1, . ., 0.2 , 0.9048375, . ., 0.1 0.9048375y i e y x y y i e y= = =
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y1=y0+1/6 (k1+2k2+2k3+k4) 

k1=hf(x0,y0)=(0.1)f(1,1.5)=(0.1) [12+(1.5)2]=0.325 

k2= hf (x0+h/2,y0+k1/2)=(0.1)f(1+0.05,1.5+0.325)=0.3866 

and k3=hf((x0+h/2,y0+k2/2)=(0.1)f(1.05,1.5+0. 

3866/2)=(0.1)[(1.05)2+(1.6933)2] 

=0.39698 

k4=hf(x0+h,y0+k3)=(0.1)f(1.0,1.89698) 

=0.48085 

Hence  

 

Step2: 

To find y2, i.e.,  

Here x1=0.1,y1=1.8955 and h=0.1 

by 4th  order R-K method we have 

y2 = y1+1/6(k1+2k2+2k3+k4) 

k1=hf(x1,y1)=(0.1)f(0.1,1.8955)=(0.1) [12+(1.8955)2]=0.48029 

k2= hf (x1+h/2,y1+k1/2)=(0.1)f(1.1+0.1,1.8937+0.4796) =0.58834 

and k3=hf((x1+h/2,y1+k2/2)=(0.1)f(1.5,1.8937+0.58743) 

=(0.1)[(1.05)2+(1.6933)2] 

=0.611715 

k4=hf(x1+h,y1+k3)=(0.1)f(1.2,1.8937+0.610728) 

=0.77261 

Hence y2=1.8937+1/6(0.4796+2(0.58834)+2(0.611715)+0.7726) =2.5043 

( ) ( )1

1
1.5 0.325 2 0.3866 2 0.39698 0.48085

6

1.8955

y = + + + +  

=

( ) ( )2 1.2y x y=
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y =2.5043 where  

 

 

4. Using R-K method, find y(0.2) for the eqn dy/dx=y-x,y(0)=1,take 

h=0.2 

Ans:1.15607 

5.Given that y1=y-x,y(0)=2 find y(0.2) using R- K method take h=0.1 

Ans: 2.4214  

6. Apply the 4th order R-K method to find  for one 

equation  take h = 0.1   Ans.  1.0207, 1.038 

7. using R-K method, estimate y(0.2) and y(0.4) for the eqn dy/dx=y2-

x2/ y2+x2,y(0)=1,h=0.2 

Ans:1.19598,1.3751 

8. use R-K method, to approximate y when x=0.2 given that 

y1=x+y,y(0)=1 

Sol: Here f(x,y)=x+y,y0=1,x0=0 

Since h is not given for better approximation of y 

Take h=0.1 

x1=0.1, x2=0.2 

Step1  

To find y1 i.e y(x1)=y(0.1) 

By R-K method,we have  

y1=y0+1/6 (k1+2k2+2k3+k4) 

Where k1=hf(x0,y0)=(0.1)f(0,1)=(0.1) (1)=0.1 

k2= hf (x0+h/2,y0+k1/2)=(0.1)f(0.05,1.05)=0.11 

 0.2x =

( ) ( )0.2 0.4y and y

( )2 210 , 0 1
dy

x y y
dx

= + =


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and k3=hf((x0+h/2,y0+k2/2)=(0.1)f(0.05,1+0. 11/2)=(0.1)[(0.05) 

+(4.0.11/2)] 

=0.1105 

k4=h f (x0+h,y0+k3)=(0.1)f(0.1,1.1105)=(0.1)[0.1+1.1105] 

=0.12105 

Hence  

y = 1.11034 

Step2: 

To find y2 i.e y(x2) = y(0.2) 

Here x1=0-1, y1=1.11034 and h=0.1 

Again By R-K method,we have  

y2=y1+1/6(k1+2k2+2k3+k4) 

k1=h f(x1,y1)=(0.1)f(0.1,1.11034)=(0.1) [1.21034]=0.121034 

k2= h f (x1+h/2, y1+k1/2)=(0.1)f(0.1+0.1/2,1.11034+0.121034/2) 

=0.1320857 

and k3=h f((x1+h/2,y1+k2/2)=(0.1)f(0.15,1.11034+0.1320857/2) 

=0.1326382 

k4=h f(x1+h,y1+k3)=(0.1)f(0.2,1.11034+0.1326382) 

(0.1)(0.2+1.2429783)=0.1442978 

Hence y2=1.11034+1/6(0.121034+0.2641714+0.2652764+0.1442978 

=1.11034+0.1324631 =1.242803 

y =1.242803 when x=0.2 

9.Using Runge-kutta method of order 4,compute y(1.1) for the eqn 

y1=3x+y2,y(1)=1.2 h = 0.05 

 ( ) ( )1

1
0.1 1 0.1 0.22 0.240 0.12105

6
y y= = + + + +




